
Under review as a conference paper at ICLR 2020

LEARNING FROM POSITIVE AND UNLABELED DATA
WITH ADVERSARIAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Positive-unlabeled (PU) learning learns a binary classifier using only positive and
unlabeled examples without labeled negative examples. This paper shows that
the GAN (Generative Adversarial Networks) style of adversarial training is quite
suitable for PU learning. GAN learns a generator to generate data (e.g., images) to
fool a discriminator which tries to determine whether the generated data belong
to a (positive) training class. PU learning is similar and can be naturally casted
as trying to identify (not generate) likely positive data from the unlabeled set
also to fool a discriminator that determines whether the identified likely positive
data from the unlabeled set (U) are indeed positive (P). A direct adaptation of
GAN for PU learning does not produce a strong classifier. This paper proposes a
more effective method called Predictive Adversarial Networks (PAN) using a new
objective function based on KL-divergence, which performs much better. Empirical
evaluation using both image and text data shows the effectiveness of PAN.

1 INTRODUCTION

Positive-unlabeled (PU) learning learns a binary classifier from only Positive (P) and Unlabeled (U)
examples with no labeled negative examples (Denis, 1998; Liu et al., 2002; Elkan & Noto, 2008;
du Plessis et al., 2014; Bekker & Davis, 2018b). It has many applications in text analysis, bio-
medicine, spam detection, recommendation, remote sensing, matrix and knowledge base completion,
graph learning, etc (Li & Liu, 2003; Yu et al., 2004; Fusilier et al., 2015; Scott & Blanchard, 2009; Li
et al., 2010; Cerulo et al., 2010; Calvo et al., 2007; Ren et al., 2015; Hsieh et al., 2015; Wu et al.,
2017; Zupanc & Davis, 2018). This paper proposes an adversarial PU learning method inspired
by GAN (generative adversary networks) (Goodfellow et al., 2014), as we found that the GAN
framework naturally suits PU learning. GAN aims to generate data of a particular training class,
which is like the positive class P in PU learning. GAN works by generating likely positive data
using a generator G(·) to fool a discriminator D(·), which determines whether the generated data
indeed belong to the training (positive) class. For PU learning, this is like choosing likely positive
instances from the unlabeled set U (achieved by a classifier) also to fool a discriminator D(·). Thus,
we can simply replace GAN’s generator with a classifier C(·) to produce a PU learner.1 Note that the
classifier is also a discriminator, but we use the term classifier here to distinguish it from the original
discriminator of GAN. Note also both C(·) and D(·) are neural networks.2

This paper first proposes a direct adaptation of GAN, called a-GAN (adapted GAN), for PU learning
following the above idea (see Section 3). However, this simple method is unable to produce state-
of-the-art results. It led us to propose a new objective function based on Kullback-Leibler (KL)
divergence. Our final proposed method is called PAN (Predictive Adversary Networks) due to the
use of the classifier to replace the generator in GAN along with a new adversarial training method.
On the new objective function, it is clearly desirable to consider the overall performance of C(·)
on the entire unlabeled set. We use a distance metric to measure whether C(·) can produce similar

1PU learning is analogous to GAN and vice versa. That is, if we could put all the data (e.g., images) that
can be generated by GAN’s generator in a set, the set should be regarded as unlabeled as it contains both good
(positive) and bad (negative) images. Then what the generator does is like selecting good images to fool the
discriminator, which is exactly what our classifier does with a set of given unlabeled data.

2Their exact architectures are given in the experiment section (see Training Details in Section 5.1) since C(·)
and D(·) have different architectures for text and image.

1

Under review as a conference paper at ICLR 2020

predictions to those of D(·) for all the examples in U . If C(·) gives similar predictions, it means that
the examples obtaining high probabilities from C(·) also get high probabilities from D(·), achieving
the goal of fooling D(·), which will give us a good final PU classifier. We employ KL-divergence as
the distance metric to measure the difference between C(·) and D(·).
One important advantage of PAN is that it does not need the input of class prior probability, which
many state-of-the-art systems need (see Section 2). In practice, the class prior is unknown (there
are some existing methods to estimate it, see below). Hou et al. (2018) and Chiaroni et al. (2018)
have employed GAN to generate positive and/or negative data and then use a separate learner (e.g.,
CNN) to learn the final PU classifier using the generated data, they are not adaptations of GAN
like PAN and their generators generate only images. PAN can be applied to any data as it has no
generator. We evaluate PAN using both text and image classification datasets and show it outperforms
start-of-the-art PU learning baselines even when we give them the perfect class prior probabilities.
We also show that when the class prior probability estimation is off, the results can be quite poor.

2 RELATED WORK

Research in PU learning started in early 2000s (Denis, 1998; Liu et al., 2002; Lee & Liu, 2003;
Yu et al., 2004; Liu et al., 2003; Elkan & Noto, 2008). Denis (1998) proposed it under statistical
query framework. Liu et al. (2002) studied sample complexity. Elkan & Noto (2008) showed that if
ranking is the goal of PU learning rather than classification, then PU learning is equivalent to the
conventional binary learning. Due to numerous applications, there has been a recent surge of interest
in PU learning (du Plessis et al., 2014; Mordelet & Vert, 2014; du Plessis et al., 2015; Sechidis &
Brown, 2015; Claesena et al., 2015; Chang et al., 2016; Niu et al., 2016a; Yi et al., 2017; Liu et al.,
2017; Jian et al., 2017; Northcutt et al., 2017; Kiryo et al., 2017; Sakai et al., 2017; Hou et al., 2018;
Xu et al., 2017; Gong et al., 2018; Bekker & Davis, 2018a; Chiaroni et al., 2018; Hsieh et al., 2018;
Bao et al., 2018; Shi et al., 2018; Sansone et al., 2018; Kato et al., 2019).

Early approaches for PU learning use 2-steps. Step 1 finds some highly probable negative examples
from the unlabeled set. Step 2 uses the positive set, highly probable negative set, and the remaining
unlabeled set to build a classifier (Liu et al., 2002; Yu et al., 2004; Li & Liu, 2003). Liu et al. (2003);
Shi et al. (2018) also regarded the unlabeled data to have noisy labels. Several techniques applied
training data re-weighting via regularization as well (Lee & Liu, 2003; Elkan & Noto, 2008). Work
in (du Plessis et al., 2014; 2015; Kiryo et al., 2017) avoided parameter tuning by using unbiased risk
estimators. Kato et al. (2019) deals with sample selection bias.

None of these works explores the idea of adversarial learning as we do in PAN. Hou et al. (2018)
used GAN to generate positive and negative examples and then used them to build the final classifier
employing a separate classification model. Chiaroni et al. (2018) proposed a method to use GAN
to generate negative training examples. Both papers are for image classification. Generating text
and other forms of data using GAN is relatively more challenging. PAN does not generate data. It
replaces the generator with a classifier to directly train the required PU classifier in the adversarial
learning framework using positive and unlabeled data. Our formulation and objective function are
also quite different from those of GAN. Moreover, Xu et al. (2017) and Gong et al. (2018) used
traditional margin-based methods.

Our a-GAN method is also related to the studies of weighted adversarial nets (WAN) (Chen et al.,
2018; Zhang et al., 2018) as a-GAN also weights the discriminator, but the proposed PAN differs
significantly from WAN. That is because although WAN weights the discriminator but the adversarial
training procedure is the same as the original GAN (similar to our a-GAN). Our a-GAN is also similar
to the method DAN recently posted on arXiv (Liu et al., 2019) as we can see from their Eq. 5 and our
Eq. 2. The training methods are slightly different. PAN takes a very different approach as we will see
in the next two sections.

Other related works include leveraging biased negative examples (Hsieh et al., 2018; Sakai et al.,
2017), studying the random assumption of PU learning (Bekker & Davis, 2018a), multi-instance PU
learning (Bao et al., 2018), scalable PU learning (Sansone et al., 2018), etc. More details can be
found in the survey (Bekker & Davis, 2018b).

A weakness with these recent state-of-the-art systems is that they need the class prior probabil-
ity (du Plessis et al., 2015; Kiryo et al., 2017; Hou et al., 2018; Xu et al., 2017; Chiaroni et al., 2018;

2

Under review as a conference paper at ICLR 2020

Positive Set: Unlabeled Set:

+++ ...

Sample and try to get
highest reward from D

From P ? (score for input is positive)

Yes No

+++ +++ + ...- ---
Positive Set: Unlabeled Set:

+++ ...

Give a consistent
score with D

Give a different score
with C to recognize
"fake instances"

a-GAN PAN

Term in Eq. (3)

+++ + + ...- --

Distance Metric (term and in Eq. (3))

Figure 1: An Illustration of the objective functions of a-GAN (left) and PAN (right) as a comparison
of the two models.

Kato et al., 2019), which is hard for the user to provide. Although there are methods that try to
estimate the class prior (Menon et al., 2015; Ramaswamy et al., 2016; Jain et al., 2016; du Plessis
et al., 2017; Gong et al., 2019), we will show that if the estimate is off, the results can be quite poor.

3 BACKGROUND

GAN is an adversarial learner that learns a generator for generating data such as images. It composes
of two networks, a generator and a discriminator. The generator generates new data instances, and
the discriminator evaluates them for authenticity, i.e. deciding whether each generated data instance
it reviews belongs to the actual training dataset or not. Through an iterative and adversarial process,
the generator can generate new data instances that the discriminator has hard time to distinguish from
the real training data. GAN is formulated as a minmax game as follows:

min
G

max
D

V(D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (1)

where G(·) is the generator that aims to generate data that can approximate real data to fool the
discriminator D(·), while D(·) tries its best to discriminate the generated data from real/training data.
Pdata is the data generating distribution of the real data, and Pz is the data generating distribution of
the generator. Through an adversarial training, we expect to learn a good generator.

3.1 DIRECT ADAPTATION OF GAN FOR PU LEARNING

We now present the direct adaptation of GAN (a-GAN) for PU learning. The real training data in
GAN is our labeled positive data P . As illustrated in Figure 1, the discriminator D(·) in a-GAN still
plays the same role as that in GAN, but the generator in a-GAN is replaced with another discriminator,
which we call the classifier (or predictor) C(·). The goal of C(·) is to identify likely positives from
the unlabeled set U to give to the discriminator for it to decide whether these are real positive data.
The following equation shows this approach:

min
C

max
D

V(D,C) = Exp∼Pp(xp)[logD(xp)]

+ Exs=argxu∼Pu(xu) C(xu)=1[log(1−D(xs))]
(2)

where xs denotes the example judged as a likely positive example from U by C(·). P p and Pu are
the data generating distributions of the known positive data and the unlabeled data in PU learning,
respectively. The known positive examples are randomly selected from the positive population. The
hidden positives in the unlabeled set is also a random sample of the same positive population.

Due to the discreteness of the last term in the equation, we use the Policy Gradient method (Sutton
et al., 2000) from reinforcement learning to train it, where the last term is regarded as the reward for
optimizing C(·). We call this adapted version of the system a-GAN (adapted GAN).

a-GAN does reasonably well (see Section 5.2). However, since it focuses on the positive data only, its
learning is not balanced, which can cause some confusion with the separation of positive and negative
data. Next, we present the final proposed method PAN, which emphasizes both positive and negative
and is able to produce a better separation for them.

3

Under review as a conference paper at ICLR 2020

4 PROPOSED PAN

PAN adopts the same adversarial learning idea to build a PU classifier C(·). However, as the right
part of Figure 1 shows, instead of using D(·) to directly discriminate the known positive data and
the selected positive data by C(·), we propose to use the adversarial learning idea on the probability
distributions of D(·) and C(·) on each example (or instance). Specifically, in the part surrounded by
the red dash-lined box in Figure 1, D(·) and C(·) produce a score for each input example xu

i from
the unlabeled set in parallel with different optimization objectives. D(·) tries to give xu

i the opposite
prediction score to that of C(·) in order to identify it as a “fake” example; C(·) tries to give xu

i a
similar score to that of D(·) to fool D(·). The adversarial learning is performed through a distance
metric, D(·) tries to enlarge the distance with D(·) but C(·) tries to shrink the distance, which is
applied to each example in the unlabeled set (no sampling is used). We choose KL-divergence as
the metric, which minimizes the information loss between the two probability distributions as it has
been shown to be able to learn and suit complex distributions (Kingma & Welling, 2013; Goodfellow
et al., 2014). The green links in Figure 1 show the procedure of optimizing the known positive data.
Note that the unlabeled data are regarded as the negative data in PAN to endow D(·) the ability to
recognizing negative samples to some extent.

4.1 PREDICTIVE ADVERSARY NETWORKS (PAN)

Unlike GAN, which only generates positive examples that are hard to distinguish by the discriminator
D(·), we also want the remaining unlabeled examples to be easily distinguishable (as possible
negatives) by the discriminator. To this end, C(·) tries to separate positive and negative examples in
the unlabeled data with a large margin. That is, C(·) not only gives high probabilities to examples
that D(·) has difficulty to distinguish (meaning D(·) also gives high probabilities to those examples)
but also low probabilities to examples that are easy to distinguish by D(·) (meaning D(·) also gives
low probabilities to those examples because of the easy separation). Note, when we say C(·) or
D(·) gives high/low probability, we mean the probability of being positive. We propose to achieve
our goal by controlling the distance (similarity) between the predictions of C(·) and D(·) on the
unlabeled set. We use the sum of KL-divergences on the predictions of all examples (or instances) in
U as the distance. In detail, PAN assumes the output of D(·) (respectively, C(·)) on ith instance as a
discrete distribution over binary outcomes (or classes) of positive and negative. For example, if D(·)
(likewise, C(·)) gives an instance the probability of 0.3. It means that for the positive outcome or
class, the probability is 0.3, and for the negative outcome, the probability is 0.7. We use Di and Ci to
denote the two distributions and KL-divergence is employed to measure their distance. Superscripts
pu and u denote the corresponding datasets. PAN’s objective is defined as follows:

min
C

max
D

V(D,C) = −
n∑
i=1

KL(P pui ||D
pu
i)︸ ︷︷ ︸

I

+λ (

n0∑
i=1

KL(Du
i ||Cui)︸ ︷︷ ︸

II

−
n0∑
i=1

KL(Du
i ||C̃ui))︸ ︷︷ ︸

III

(3)

where P pu
i is the probability distribution of positive and unlabeled of the ith instance (we basically

treat unlabeled as negative, which is an issue to be addressed shortly) in the given PU data Xpu

(including both positive Xp and unlabeled Xu data), and n and n0 are the total numbers of training
examples in Xpu and Xu respectively. C̃u

i denotes the opposite distribution of Cu
i , i.e., 1−Cu

i (with
a slight abuse of notation). λ is a hyper-parameter for balancing the distances.

We marked three terms in Eq. 3. The adversarial learning of Eq. 3 works as follows: The first term
marked by I is to minimize the sum of the divergences between Dpu

i and P pu
i (notice the minus sign

in front). It aims to achieve the goal of helping D(·) recognize positive instances (it is necessary
especially at the beginning of training). When optimizing C(·), the term marked by II minimizes the
sum of the KL-divergences from Cu

i to Du
i , indicating that C(·) tries to give the same probability to

the input xu
i as D(·). In this case, the instances/examples getting high probabilities (chosen by C(·)

as positive) can also get high probabilities from D(·). This achieves the goal of fooling D(·) by C(·).
When optimizing D(·), the term marked II maximizes the sum of the KL-divergences between Du

i
and Cu

i , meaning that D(·) tries to give low probabilities to the instances that get high probabilities
from C(·) in order to detect ‘fake’ positive examples, and vice versa.

Using the first two terms can already perform the function of PAN. An advantage of PAN is that it
can consider and optimize both positive and negative examples in the unlabeled set. However, we

4

Under review as a conference paper at ICLR 2020

show that the term marked II produces asymmetric gradient for positive and negative examples for
both D(·) and C(·) in Appendix A. That means the term marked II can cause unbalanced training
between positive and negative examples and lead to high precision and low recall. To this end, we
propose the term marked III which can eliminate the concern (see Appendix A). Ablation study also
shows the effectiveness of term III in Appendix D.3. With all three terms, we build an adversarial
learning approach for PU learning through the minimizing and maximizing operations mentioned
above, i.e., a minmax game between D(·) and C(·).

4.2 SIMPLIFICATION OF EQUATION 3

To facilitate the optimization of the objective function in Eq. 3, we use D to denote D(xpu) and C to
denote C(xpu) and simplify Eq. 3 to (see Appendix B for derivations):

min
C

max
D

V(D,C)

= Exp∼Pp(xp)[logD(xp)] + Exu∼Pu(xu)[log(1−D(xu))]︸ ︷︷ ︸
IV:−H(PL,D(xpu))

+ λ · Exu∼Pu(xu)[(log(1− C(xu))− log(C(xu)))︸ ︷︷ ︸
V

(2D(xu)− 1)]

︸ ︷︷ ︸
VI

(4)

where P p denotes the distribution of the positive data. As we marked in Eq. 4, term IV is the cross
entropy loss between D(xpu) and the ground-truth label distribution P pu of the PU data, denoted by
H(P pu, D(xpu)). About the term marked VI, we elaborate with the following two points:

(1). Term VI can be viewed approximately as a policy gradient reinforcement learning algorithm for
training C(·) but with no sampling operation, if we regard D(xu) as the reward and term V as the
policy. Clearly, if D(·) outputs a high ‘reward’ that exceeds 0.5, meaning that D(·) judges the current
input as a positive instance with high probability, Eq. 4 will maximize the probability of C(·) over
the current input to fit the distribution of D(·). However, if D(·) outputs a low ‘reward’ below 0.5,
minimizing Eq. 4 is equivalent to minimizing the probability of C(·) over the current input. As a
consequence, the distribution of C(·) is made closer to D(·).
(2). The term marked with V in Eq. 4 is a comparison game between the likelihood log(C(xu))
of choosing an example or the likelihood log(1 − C(xu)) of not choosing an example xu. If the
choosing probability is greater than the not choosing probability, the value of term V is less than 0.
Then to optimize D(·), maximizing Eq. 4 is equivalent to minimizing the probability of D(xu). On
the contrary, maximizing Eq. 4 is equivalent to maximizing the probability of D(xu). Clearly, this
is an adversarial learning method: for the case that term V is less than 0, D(·) tries to distinguish
examples selected by C(·) (to give low probabilities to these examples). For the case that term VII is
greater than 0, D(·) tries to give high probabilities to examples not selected by C(·), which helps the
system move away from local training optimal.

Analysis of the Learned Classifier (C(·)): Although the proposed PAN is quite different from
original GAN, its running follows the adversarial procedure. The behaviors of optimal C(·) and
D(·) are that C(·) gives the same prediction as D(·) while D(·) cannot move away from C(·), which
means D(·) also give positive (or negative) scores to examples that get positive (or negative) scores
from C(·).3 The reason that D(·) cannot move away from C(·) is because moving away from C(·)
will let D(·) make errors on known positive data. We give theoretical analysis of the optimal decision
surface learned by PAN in Appendix C. Due to the complexity of PAN, we cannot give the precise
optimal decision surface expression, but we show its properties in the Appendix C.

4.3 TRAINING ALGORITHM OF PAN

Algorithm 1 gives the training algorithm of PAN using stochastic gradient descent for conciseness.
Note, our method is not limited to using stochastic gradient descent. In this work, we use Adam for
optimization. The algorithm alternately trains the discriminator D(·) and the classifier C(·). In each
step or iteration, the lines between 5 to 10 (not including 10) are for training D(·) and the lines after
10 are for training C(·). The details of the algorithm are self-explanatory.

3Positive (or negative) score means the score is greater (or lower) than 0.5.

5

Under review as a conference paper at ICLR 2020

Algorithm 1 PAN training by minibatch stochastic gradient descent method.
Input: given positive training data Xp; given unlabeled training data Xu;
Initial: Randomly initialize D(·) and C(·);
for number of training steps do

// Training D(·) k steps, we set k = 1.
5: for k steps do

• Sample a mini-batch of m positive examples {xp1, . . . ,xpm} from Xp;
• Sample a mini-batch of m unlabeled examples {xu1 , . . . ,xum} from Xu;
• Update D(·) by ascending its stochastic gradient:

∇θd
m∑
i=1

[logD(xpi) + log(1−D(xui)) + λ(log(1− C(xui))− logC(xui))(2D(xui)− 1)]

end for
10: • Sample a mini-batch of m unlabeled examples {xu1 , . . . ,xum} from Xu;

• Update C(·) by descending its stochastic gradient:

∇θc
m∑
i=1

[λ(log(1− C(xui))− logC(xui))(2D(xui)− 1)]

end for

5 EXPERIMENTS

We now evaluate the proposed technique PAN and compare it with state-of-the-art baselines.Three
text and two image classification datasets are used in our experiments.

(1). YELP: a collection of online reviews from Yelp. Each review is labeled with a star rating
ranging from 1 to 5. The dataset is extracted from the Yelp Dataset Challenge 2015. (2). RT: a
collection of online reviews from rotten tomatoes with sentiment labels good and bad. (3). IMDB:
another collection of online review for binary sentiment classification. (4). 20News: a collection of
about 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different news topics. (5).
MNIST: a collection of 70,000 images of handwritten digits from 0 to 9. (6). CIFAR10: a collection
of 60000 32x32 colour images of 10 classes, with 6000 images per class. See 4 for all datasets.

5.1 EXPERIMENT SETTINGS

Data Preparation: Since the five datasets are for traditional supervised learning with class labels,
we need to prepare positive P and unlabeled U data for PU learning. We use two steps, after which
we obtain the training and testing data for each dataset (on the left of the dataset name in Table 1).

Step 1 - Constructing positive and negative data. As not all datasets have 2 classes, we need to make
each of them a two-class (positive and negative) dataset. RT and IMDB are already two-class datasets.
For YELP, which has 5 classes, we remove the reviews with the class label of 3-stars, and split the
remaining classes into two: one as the positive data (4 or 5 stars) and the other as the negative data (1
or 2 stars) (this is commonly done for sentiment classification (Pang & Lee, 2008)). Following the
baseline (Kiryo et al., 2017), for 20News, topics ‘alt.’, ‘comp.’, ‘misc.’, and ‘rec.’ form the positive
data, and topics ‘sci.’, ‘soc.’ and ‘talk.’ form the negative data. For MNIST, all images labeled with
even numbers form the positive data and all images labeled with odd numbers form the negative data.
For CIFAR10, classes airplane, automobile, ship and truck are used as the positive data and the rest
as the negative data.

Step 2 - Creating PU learning datasets. After step 1, we get positive and negative training data for
each dataset. We then build the PU learning training dataset, which includes positive and unlabeled
data as follows. For each dataset (except CIFAR10), we randomly select 10% (5% for CIFAR10 for
diversity). We also show more results by varying the ratio in Appendix D.1, the percent of positive

4See http://www.yelp.com/dataset challenge for YELP, http://www.cs.cornell.edu/people/pabo/movie-review-data/ for RT,
https://www.imdb.com/interfaces/ for IMDB, http://qwone.com/∼jason/20Newsgroups/ for 20NEWS, http://yann.lecun.com/exdb/mnist/ for
MNIST, http://www.cs.toronto.edu/ kriz/cifar-10-python.tar.gz for CIFAR10.

6

Under review as a conference paper at ICLR 2020

examples from the whole positive set as the known positive data P for PU learning. The unlabeled
data U consists of the negative data and the remaining positive data in the dataset.5

Baselines: We use our a-GAN and five state-of-the art representative approaches as the baselines.

a-GAN. This is the direct adaptation of GAN given in Section 3.

UPU (du Plessis et al., 2015). This method proposed a general unbiased estimator that is also convex
for loss functions meeting certain linear-odd conditions.

NNPU (Kiryo et al., 2017). This is a non-negative risk estimator for PU learning. When minimized,
it is more robust against overfitting, and is able to use flexible models even given limited P data.
Note that NNPU has two versions, the linear and the MLP versions. We give the results of the MLP
version as it does better.

NNPUSB (Kato et al., 2019). This is a recent algorithm that extended NNPU with an additional
mechanism for handling sample selection bias.

GenPU (Hou et al., 2018): This system uses the GAN framework and an array of generators and
discriminators to generate both positive and negative data for PU learning.

PMPU (Gong et al., 2018): this is a traditional SVM based PU learning method.

It is important to note that both UPU and NNPU need the input of the class prior probability, which
is often not available in practice. In our experiments, we provide them the correct class prior
probabilities. Even with this favorable condition, they are still weaker than PAN, which does not need
the class prior probability input. For UPU and NNPU, we use the opensource code from the authors
and a third party6, respectively. For NNPUSB, we use the original code provided by the authors.
Note also we use the same network as these baselines, including architecture, number of parameters,
and the optimization method. We also give them exactly the same positive and unlabeled data and the
test data. For GenPU, we again use the code provided by the authors. For PGAN’s results mentioned
above, since there is no source code available, we used the best results reported in the paper.

Training Details: For fair comparison, we use the same classifier C for all systems following the
baselines. For text, a 2-layer convolutional network (CNN), with 5 * 100 and 3 * 100 convolutions
for layers 1 and 2 respectively, and 100 filters for each layer, is used as the classifier C(·) and
discriminator D(·). The word embeddings are also trained by the system. For MNIST, the classifier
is a 3-layer MLP (with 2 hidden layers, more specifically, d-512-256-1) as it is fairly simple. The
classifier for the CIFAR10 dataset was an all convolutional net: (32 × 32 × 3)-[C(3 × 3, 96)] - C(3
× 3, 96, 2) - [C(1 × 1, 192)] - C(1 × 1, 10) - 1000 - 1000 - 1, where each input is a 32 × 32 RGB
image, C(3×3, 96) means 96 channels of 3×3 convolutions followed by ReLU, C(3 × 3, 96, 2)
means a similar layer but with stride 2, etc. We set λ in Eq. 3 and 4 to 0.0001, please see more details
in Appendix D.2. We also balance the impact of positive and unlabeled data for term I in Eq. 3 in
training; otherwise the positive examples will be dominated by the unlabeled data. We use 1:1 ratio of
positive data and unlabeled data in each mini-batch in training. The network parameters are updated
using the Adam algorithm with a learning rate of 0.0001. For baseline a-GAN, it needs pre-training
of D(·). We use the original positive and unlabeled (regarded as negative) data to pre-train D(·) in
order to enable its ability to classify positive and unlabeled data. We pre-train D(·) 3 epochs for the
datasets.

0 25 50 75 100
epoch

0.5

0.6

0.7

0.8

acc

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.5

0.6

0.7

0.8

0.9
precision

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
recall

PAN
a-GAN
UPU
NNPU
NNPUSB

Figure 2: YELP - due to space limit, we only show 100 epochs.

5Note that PU learning has two data sampling settings, we use the one-pass (Niu et al., 2016b) or single-
training-set (Elkan & Noto, 2008) setting, not the case-controlled or two-pass (Ward et al., 2009) setting.

6https://github.com/GarrettLee/nnpu tf

7

Under review as a conference paper at ICLR 2020

Table 1: Dataset details and experiment results: On the left of Dataset - training and testing data for
each dataset. On the right - F-score (F) and accuracy (Acc) of PAN and baselines for the dataset

Training
Testing

Dataset
a-GAN UPU NNPU NNPUSB PAN

P-Label Unlabel

Pos Pos Neg Pos Neg F Acc F Acc F Acc F Acc F Acc

26,000 234,000 260,000 20,000 20,000 YELP 83.72 83.33 79.72 79.33 80.70 81.06 81.92 81.76 83.45 83.56

426 3,839 4,264 1086 1047 RT 66.10 58.00 50.21 56.50 62.38 58.63 66.58 59.60 66.58 64.10

1,250 11,250 12,500 12,500 12,500 IMDB 73.01 70.64 70.35 69.87 76.21 74.62 74.24 71.88 77.10 78.84

800 7,144 6,056 1,800 1,800 20News 63.48 68.66 59.13 53.07 78.52 78.07 75.87 75.56 81.06 81.00

3,000 29,492 30,508 4,926 5,074 MNIST 94.67 95.03 94.21 94.29 95.40 95.35 95.60 95.55 96.51 96.42

1,000 20,000 30,000 4,000 6,000 CIFAR10 76.15 83.04 86.20 88.96 86.09 88.84 86.56 88.59 87.22 89.70

- - - - - Average 76.24 76.45 73.30 73.67 80.34 79.43 80.13 78.82 81.99 82.27

0 25 50 75 100
epoch

0.50

0.55

0.60

0.65

0.70
acc

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.5

0.7

0.9
precision

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.0
0.2
0.4
0.6
0.8
1.0

recall
PAN
a-GAN
UPU
NNPU
NNPUSB

Figure 3: RT - due to space limit, we only show 100 epochs.

0 25 50 75 100
epoch

0.4

0.6

0.8
acc

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
precision

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.0
0.2
0.4
0.6
0.8
1.0

recall

PAN
a-GAN
UPU
NNPU
NNPUSB

Figure 4: IMDB - due to space limit, we only show 100 epochs in this and the figures below.

0 25 50 75 100
epoch

0.4

0.5

0.6

0.7

0.8
acc

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.5

0.6

0.7

0.8

0.9

precision
PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.1
0.3
0.5
0.7
0.9

recall

PAN
a-GAN
UPU
NNPU
NNPUSB

Figure 5: 20News

0 25 50 75 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
acc

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
precision

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
recall

PAN
a-GAN
UPU
NNPU
NNPUSB

Figure 6: MNIST

5.2 RESULTS AND ANALYSIS

Figures 2-7 show the test accuracy, precision and recall in each epoch of each method. The usual
first-order exponential weighted moving average smoothing with weight 0.7 is applied to the figures.
Note that due to space limitations, we only show the curves of 100 epochs, but the final results in
Table 1 are produced with more epochs as NNPU takes slightly longer to reach the peak (see below).

8

Under review as a conference paper at ICLR 2020

0 25 50 75 100
epoch

0.4

0.6

0.8

1.0
acc

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.4

0.6

0.8

1.0
precision

PAN
a-GAN
UPU
NNPU
NNPUSB

0 25 50 75 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0
recall

PAN
a-GAN
UPU
NNPU
NNPUSB

Figure 7: CIFAR10

The final accuracy and F-score results of A-GAN, UPU, NNPU, NNPUSB and PAN are given in
Table 1 (on the right side of dataset names) and the results for GenPU and PMPU are given Table 2.
Since different epochs give different results, for a fair comparison, we give the average of both the
best F-score (F) and best accuracy (Acc) for each system on each dataset over 200 epochs (all systems
converged before 200 epochs) over 5 runs. The F-score is measured on the positive data/class, as in
PU learning the user is normally interested in identifying the positive data. The last row in the table
gives the average result for each column.

From the Figures and Table 1, we can make the following observations.

(1). From the results in Table 1 (on the right side of dataset names in the table), we see that PAN
outperforms all baselines on all datasets (the last row gives the average of each algorithm for all
datasets). Among the baselines, NNPU and NNPUSB are the strongest and their results are very
similar. PAN outperforms them markedly. Given that PAN does not need class prior probability input,
this is even more significant. The direct adaptation of GAN a-GAN is weaker than both NNPU and
PAN, but is better than UPU. Although NNPUSB extends NNPU, it did not do better than NNPU.
The reason could be that our data do not have sample selection bias, which NNPUSB tries to address.

(2). Figures 2 to 7 show that PAN and NNPUSB are robust across all datasets with both high precision
and high recall. And clearly PAN is better than NNPUSB. NNPU is rather unbalanced for precision
and recall for YELP and RT, either very high precision but very low recall, or vice versa. a-GAN
and UPU have the same problem, which is highly undesirable. PAN also outperforms baselines
consistently in accuracy for all six datasets.

(3). From the 6 figures, we also see that a-GAN is unstable. Precision, recall, and accuracy fluctuate
greatly from one epoch to another. Stability problem of GAN is well documented (Metz et al., 2017;
Berthelot et al., 2017). Our adaptation requiring reinforcement learning to train it is likely to have
made the problem worse.

(4). NNPU converges slowly (Figure 3). It didn’t converge even at 100 epoch. We report its best
accuracy and F-score in Table 1 in 200 epochs (it converged earlier than 200).

Table 2: Comparison between our
method and GenPU and PMPU in terms
of Accuracy (%)

Dataset GenPU PMPU PAN
MNIST 70.43 95.74 96.46

CIFAR10 66.25 81.34 89.65

Table 2 shows the results of GenPU and PMPU. Since
GenPU’s data generator cannot generate text data and thus
no results for the text datasets. We can see that GenPU’s
results are dramatically worse. Hou et al. (2018) showed
that GenPU does well with few classes as the positive
and negative, e.g, 1 class as positive and 1 class as neg-
ative. However, in our case, both positive and negative
consists of many classes, which probably make GenPU
work poorly. PMPU is also significantly poorer than PAN.

In summary, we can conclude that PAN markedly outperforms the baselines in accuracy, F-score,
robustness, and stability. Given that PAN does not need the class priors, this is more significant.

Varying Positive Data and NNPU’s Sensitivity to Class Prior: We use MNIST and CIFAR10 as
representatives to study these issues. For each dataset, we randomly select 1 or 2 classes in the
original data to form the positive set, and the rest to form the negative set to generate 2 PU learning
datasets as discussed above. Since both MNIST and CIFAR have 10 classes, for the 1-class positive
PU data, the class prior probability is 10% for positive and 90% for negative (or 1:9 for short). For
the 2-class positive PU data, it is 20% for positive and 80% for negative (or 2:8). The results are
given in Table 2. We see similar improvements from PAN with the exact class prior given to NNPU

9

Under review as a conference paper at ICLR 2020

(1:9 or 2:8). For the 1:9 (respectively, 2:8) case for both MNIST and CIFAR10, if we change the
class prior from the correct 1:9 (2:8) to the wrong 2:8 (3:7), NNPU’s result drops are small (not in
Table 2). So NNPU has some robustness. However, if we change to the wrong 3:7 or 4:6 (for the
correct 1:9), and 4:6 or 5:5 (for the correct 2:8), the drops are dramatic for MNIST. For CIFAR10,
they are smaller, even a small increase in F for the wrong 4:6 (correct 2:8), likely an anomaly as this
data is hard, but still poorer than PAN. We conclude although it is possible to estimate the class prior
(see Section 2), if the estimate is off, the results can be quite poor.

Table 3: Varying the positive data and the class prior probability for NNPU.

Dataset
1 class as positive (1:9) - results given as F / Acc 2 classes as positive (2:8) - results given as F / Acc

PAN
NNPU

PAN
NNPU

1:9 (correct) 3:7 (wrong) 4:6 (wrong) 2:8 (correct) 4:6 (wrong) 5:5 (wrong)

MNIST 97.88 / 99.19 97.82 / 99.16 91.16 / 96.29 82.13 / 91.10 95.59 / 98.42 95.55 / 98.32 77.50 / 88.90 66.94 / 81.41
CIFAR10 51.94 / 84.73 51.46 / 84.65 48.55 / 82.79 41.99 / 76.64 59.42 / 78.35 56.45 / 78.27 57.67 / 77.61 54.62 / 73.29

6 CONCLUSIONS

This paper proposed a new GAN style PU learning method PAN based on adversarial training. PAN is
also significantly different from GAN as PAN does not use a generator but a classifier in its place. The
objective function of PAN is also entirely different as it is based on KL-divergence. PAN represents a
new way to do PU learning. Empirical evaluation using both text and image datasets showed that
PAN outperformed the state-of-the-art baselines. Also importantly, PAN obtained the better results
without using any class prior probability information.

REFERENCES

Han Bao, Tomoya Sakai, Issei Sato, and Masashi Sugiyama. Convex formulation of multiple instance
learning from positive and unlabeled bags. Neural Networks, 105:132–141, 2018.

Jessa Bekker and Jesse Davis. Beyond the selected completely at random assumption for learning
from positive and unlabeled data. arXiv preprint arXiv:1809.03207, 2018a.

Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: A survey. arXiv preprint
arXiv:1811.04820, 2018b.

David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium generative adversarial
networks. CoRR, abs/1703.10717, 2017.

Borja Calvo, Núria López-Bigas, Simon J Furney, Pedro Larrañaga, and Jose A Lozano. A partially
supervised classification approach to dominant and recessive human disease gene prediction.
Computer methods and programs in biomedicine, 85(3):229–237, 2007.

Luigi Cerulo, Charles Elkan, and Michele Ceccarelli. Learning gene regulatory networks from only
positive and unlabeled data. BMC bioinformatics, 11(1):228, 2010.

Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, and Thomas Hasegawa-Johnson,
mark Huang. Positive-unlabeled learning in streaming networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 755764, 2016.

Qingchao Chen, Yang Liu, Zhaowen Wang, Ian Wassell, and Kevin Chetty. Re-weighted adversarial
adaptation network for unsupervised domain adaptation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 7976–7985, 2018.

F. Chiaroni, Mohamed-Cherif Rahal, Nicolas Hueber, and Frédéric Dufaux. Learning with a genera-
tive adversarial network from a positive unlabeled dataset for image classification. In Proceedings
of 25th IEEE International Conference on Image Processing (ICIP), pp. 1368–1372, 2018.

Marc Claesena, Frank De Smet, Johan A. K. Suykensa, and Bart De Moor. Positive and unlabeled
multi-graph learning. Neurocomputing, 160:7384, 2015.

10

Under review as a conference paper at ICLR 2020

François Denis. Pac learning from positive statistical queries. In Proceedings of International
Conference on Algorithmic Learning Theory, pp. 112–126. Springer, 1998.

Marthinus C. du Plessis, Gang Niu, and Masashi Sugiyama. Analysis of learning from positive
and unlabeled data. In Proceedings of Advances in neural information processing systems, pp.
703–711, 2014.

Marthinus C. du Plessis, Gang Niu, and Masashi Sugiyama. Convex formulation for learning from
positive and unlabeled data. In Proceedings of International Conference on Machine Learning, pp.
1386–1394, 2015.

Marthinus Christoffel du Plessis, Gang Niu, and Masashi Sugiyama. Class-prior estimation for
learning from positive and unlabeled data. Machine Learning, 2017.

Charles Elkan and Keith Noto. Learning classifiers from only positive and unlabeled data. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 213–220. ACM, 2008.

Donato Hernández Fusilier, Manuel Montes-y Gómez, Paolo Rosso, and Rafael Guzmán Cabrera.
Detecting positive and negative deceptive opinions using pu-learning. Information processing &
management, 51(4):433–443, 2015.

Chen Gong, Jie Yang, and Jian Yang. Multi-manifold positive and unlabeled learning for visual
analysis. IEEE Transactions on Circuits and Systems for Video Technology, 2019.

Tieliang Gong, Jieping Wang, Guangtao Ye, Zongben Xu, and Ming Lin. Margin based pu learning.
In Proceedings of The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of Advances in
neural information processing systems, pp. 2672–2680, 2014.

Ming Hou, Brahim Chaib-Draa, Chao Li, and Qibin Zhao. Generative adversarial positive-unlabelled
learning. IJCAI, 2018.

Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit S Dhillon. Pu learning for matrix completion. In
ICML, pp. 2445–2453, 2015.

Yu-Guan Hsieh, Gang Niu, and Masashi Sugiyama. Classification from positive, unlabeled and
biased negative data. arXiv preprint arXiv:1810.00846, 2018.

Shantanu Jain, Martha White, and Predrag Radivojac. Estimating the class prior and posterior from
noisy positives and unlabeled data. In NIPS-2016, 2016.

Shantanu Jian, Martha White, and Predrag Radivojac. Recovering true classifier performance in
positive unlabeled learning. In Proceedings of the 31st AAAI Conference on Artificial Intelligence,
pp. 20662073, 2017.

Masahiro Kato, Takeshi Teshima, and Junya Honda. Learning from positive and unlabeled data with
a selection bias. In ICLR, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ryuichi Kiryo, Gang Niu, Marthinus C. du Plessis, and Masashi Sugiyama. Positive-unlabeled
learning with non-negative risk estimator. In Proceedings of Advances in neural information
processing systems, pp. 1675–1685, 2017.

Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples using weighted logistic
regression. In ICML, volume 3, pp. 448–455, 2003.

Wenkai Li, Qinghua Guo, and Charles Elkan. A positive and unlabeled learning algorithm for
one-class classification of remote-sensing data. IEEE transactions on geoscience and remote
sensing, 49(2):717–725, 2010.

11

Under review as a conference paper at ICLR 2020

Xiaoli Li and Bing Liu. Learning to classify texts using positive and unlabeled data. In IJCAI,
volume 3, pp. 587–592, 2003.

Bing Liu, Wee Sun Lee, Philip S. Yu, and Xiaoli Li. Partially supervised classification of text
documents. In ICML, volume 2, pp. 387–394, 2002.

Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S. Yu. Building text classifiers using positive
and unlabeled examples. In ICDM, pp. 179. IEEE, 2003.

Fangqing Liu, Hui Chen, and Hao Wu. Discriminative adversarial networks for positive-unlabeled
learning. arXiv preprint arXiv:1906.00642, 2019.

Yashu Liu, Shuang Qiu, Ping Zhang, Pinghua Gong, and Fei Wang. Computational drug discovery
with dyadic positive-unlabeled learning. In Proceedings of the 2017 SIAM International Conference
on Data Mining, pp. 4553, 2017.

Aditya Krishna Menon, Brendan van Rooyen, Cheng Soon Ong, and Robert C. Williamson. Learning
from corrupted binary labels via class-probability estimation. In ICML-2015, 2015.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. ICLR, 2017.

Fantine Mordelet and Jean-philippe Vert. A bagging svm to learn from positive and unlabeled
examples. Pattern Recognition Letters, 37, 2014.

Gang Niu, Marthinus C. du Plessis, Tomoya Sakai, Yao Ma, and Masashi Sugiyama. Theoretical com-
parisons of positive-unlabeled learning against positive-negative learning. In NIPS, pp. 11991207,
2016a.

Gang Niu, Marthinus C. du Plessis, Tomoya Sakai, Yao Ma, and Masashi Sugiyama. Theoretical
comparisons of positive-unlabeled learning against positive-negative learning. In NIPS-2016,
2016b.

Curtis G. Northcutt, Tailin Wu, and Isaac L. Chuang. Learning with confident examples: Rank
pruning for robust classification with noisy labels. In Proceedings of the Thirty-Third Conference
on Uncertainty in Artificial Intelligence, 2017.

Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and Trends R© in
Information Retrieval, 2(1–2):1–135, 2008.

Harish G. Ramaswamy, Clayton Scott, and Ambuj Tewari. Mixture proportion estimation via kernel
embedding of distributions. In ICML-2016, 2016.

Jing Ren, Qian Liu, John Ellis, and Jinyan Li. Positive-unlabeled learning for the prediction of
conformational b-cell epitopes. BMC bioinformatics, 16(18):S12, 2015.

Tomoya Sakai, Marthinus C. du Plessis, Gang Niu, and Masashi Sugiyama. Semi-supervised
classification based on classification from positive and unlabeled data. In Proceedings of the 34th
International Conference on Machine Learning, pp. 2998–3006, 2017.

Emanuele Sansone, Francesco GB De Natale, and Zhi-Hua Zhou. Efficient training for positive
unlabeled learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

Clayton Scott and Gilles Blanchard. Novelty detection: Unlabeled data definitely help. In Proceedings
of Artificial Intelligence and Statistics, pp. 464–471, 2009.

Konstantinos Sechidis and Gavin Brown. Markov blanket discovery in positive-unlabelled and
semisupervised data. In Proceedings of Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 351366, 2015.

Hong Shi, Shaojun Pan, Jian Yang, and Chen Gong. Positive and unlabeled learning via loss
decomposition and centroid estimation. In IJCAI, pp. 2689–2695, 2018.

12

Under review as a conference paper at ICLR 2020

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Proceedings of Advances in
neural information processing systems, pp. 1057–1063, 2000.

Gill Ward, Trevor Hastie, Simon Barry, Jane Elith, and John R. Leathwick. Presence-only data and
the em algorithm. Biometrics, 2009.

Jia Wu, Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Xindong Wu. Positive and unlabeled
multi-graph learning. IEEE transactions on cybernetics, 47(4):818–829, 2017.

Yixing Xu, Chang Xu, Xu Chao, and Dacheng Tao. Multi-positive and unlabeled learning. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-
17), 2017.

Jinfeng Yi, Kush R. Varshney, Lijun Zhang, and Yao Li. Scalable demand-aware recommendation.
In Proceedings of Advances in neural information processing systems, pp. 24122421, 2017.

Hwanjo Yu, Jiawei Han, and Kevin Chen-Chuan Chang. Pebl: Web page classification without
negative examples. ieee transactions on knowledge and data engineering 16(1), 7081 (2004). IEEE
Transactions on Knowledge and Data Engineering, 16(1):70–81, 2004.

Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. Importance weighted adversarial nets
for partial domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8156–8164, 2018.

Kaja Zupanc and Jesse Davis. Estimating rule quality for knowledge base completion with the
relationship between coverage assumption. In Proceedings of the Web Conference, 2018.

13

Under review as a conference paper at ICLR 2020

Appendix

A ASYMMETRY OF KL(Di||Ci) FOR POSITIVE AND NEGATIVE DATA

In this section, we use the gradient asymmetry for positive and negative of KL-divergence to show
the need for the term marked III in Eq. 3 (also see Eq. 8 below). The term marked II in Eq. 3 will
produce asymmetric gradients for positive and negative examples for both D(·) and C(·) due to
asymmetry of KL(Di||Ci) for positive and negative data (explained below). If we don’t have the
term marked III, gradient of D(·) is:

∇DV (D,C) = ∇D[−
n∑
i=1

KL(P pui ||D
pu
i) + λ(

n0∑
i=1

KL(Du
i ||Cui)]

=

np∑
i=1

1

D(xpi)
−

nu∑
i=1

1

1−D(xui)︸ ︷︷ ︸
(a)

+

nu∑
i=1

log
D(xui)(1− C(xui))

(1−D(xui))C(xui)︸ ︷︷ ︸
(b)

(5)

where np and nu are the size of positive and unlabeled set respectively. Term marked (a) is symmetric
for positive and unlabeled data as they can obtain gradients with the same scale for the corresponding
position, e.g.,D(xpi)+D(xuj) = 1. But it is asymmetric for positive and negative data as positive data
exist in the unlabeled set. That cause the positive being over optimized toward negative. Unfortunately,
term marked (b) is also asymmetric for positive and negative data. We can see, the zero point of
gradient term marked (b) is:

log
D(xui)(1− C(xui))

(1−D(xui))C(xui)
= 0

⇒D(xui) = C(xui)

(6)

which means that the zero point is moved according to C(xui). In the worst case, if C overfitted
to give small probability to instances in the unlabeled set, then D(·) is not easy to escape from
overfitting. In summary, that will cause high precision and low recall.

Asymmetric phenomenon also exist in Eq. 8 below without the term marked III as the gradient for
C(·) is:

∇CV (D,C) = ∇C [−
n∑
i=1

KL(P pui ||D
pu
i) + λ(

n0∑
i=1

KL(Du
i ||Cui)]

=

nu∑
i=1

log
C(xui)−D(xui)

(1− C(xui))C(xui)︸ ︷︷ ︸
(c)

(7)

Clearly, it is asymmetric for positive and negative data, as positives have different gradient scale
compared to negatives. And that can cause the unbalanced training problem. In this case, we propose
to use the flipped distribution of Cu

i , denoted by C̃u
i , to address the problem, and please refer to

the term marked III in Eq. 8. After adding the term marked III, the asymmetric gradient problem
caused by the term marked II is eliminated. The gradient for D(·) now is

∑nu

i=1 log
(1−C(xu

i))
C(xu

i)

which can be regarded as a constant when optimizing D(·). And the gradient for C(·) now is∑nu

i=1 log
2D(xu

i)−1
(1−C(xu

i))C(xu
i)

which is symmetric between positive and negative.

B SIMPLIFICATION

Recall the loss function Eq. 3:

min
C

max
D

V(D,C) = −
n∑
i=1

KL(P pui ||D
pu
i)︸ ︷︷ ︸

I

+λ

1©︷ ︸︸ ︷
(

n0∑
i=1

KL(Du
i ||Cui)︸ ︷︷ ︸

II

−
n0∑
i=1

KL(Du
i ||C̃ui))︸ ︷︷ ︸

III

(8)

14

Under review as a conference paper at ICLR 2020

KL-divergence is defined as:

KL(P ||Q) =
∑
x∈X

P (x) logP (x)− P (x) logQ(x) (9)

X denotes the probability space, it is 1 or 0 (X = {1, 0}) in our scenario. We first address term I
in Eq. 8, if we use D to denote Dpu

i (1) (the probability for ith instance being positive judged by
discriminator) and P to denote P pu

i (1), then Dpu
i (0) = 1−D and P pu

i (0) = 1− P . Then we have:
−KL(P pui ||D

pu
i)

= −P logP + P logD − (1− P) log(1− P) + (1− P) log(1−D)

= P logD + (1− P) log(1−D)

(10)

Due to the fact that P pu
i (0) = 0 and P pu

i (1) = 1 if the ith instance is positive and P pu
i (1) = 0 and

P pu
i (0) = 1 if the ith instance is unlabeled, we can rewrite the result as:

Exp∼Pp(xp)[logD(xp)] + Exu∼Pu(xu)[log(1−D(xu))] (11)
Similarly, for term 1© in Eq. 8, if we use D to denote Du

i (1) and C to denote Cu
i (1), then we get:

KL(Du
i ||Cui)−KL(Du

i ||(1− Cui))
= D logD −D logC + (1−D) log(1−D)− (1−D) log(1− C)−D logD

+D log(1− C)− (1−D) log(1−D) + (1−D) logC

= −D logC − (1−D) log(1− C) +D log(1− C) + (1−D) logC

= (log(1− C)− logC)(2D − 1)

(12)

Then we have:
(log(1− C)− logC)(2D − 1) = Exu∼Pu(xu)[(log(1− C(xu))− log(C(xu)))(2D(xu)− 1)] (13)

Combining Eqs. 11 and 13, we get Eq. 14:
min
C

max
D

V(D,C)

= Exp∼Pp(xp)[logD(xp)] + Exu∼Pu(xu)[log(1−D(xu))]︸ ︷︷ ︸
IV:−H(PL,D(xpu))

+ λ · Exu∼Pu(xu)[(log(1− C(xu))− log(C(xu)))︸ ︷︷ ︸
V

(2D(xu)− 1)]

︸ ︷︷ ︸
VI

(14)

where P p denotes the distribution of the positive data.

C THEORETICAL ANALYSIS ABOUT THE LEARNED CLASSIFIER

In this section, we analyze the properties of the learned classifier and show why Eq. 3 can perform
PU learning. Intuitively, from Eq. 8 (same as Eq. 3 in the paper), we can see that D(·) is biased
if we only consider term I because the unlabeled set contains both positive and negative examples.
However, terms II and III help correct the bias. Eq. 14 (same as Eq. 4 in the paper), which is derived
from Eq. 8 for training, shows the property more clearly than Eq. 8. Notice that the bias in term I in
Eq. 8 will result in high precision and low recall for the positive class. Now back to Eq. 14 and let
us imagine that most examples in the unlabeled set are regarded as negative by C(·) (meaning low
recall). From Eq. 14, we can see that the value of term V will be below zero. But when optimizing
D(·), term VI will push D(·) up for these data points, and thus the bias is reduced and the low recall
problem is mitigated because in the next optimization iteration, C(·) will follow D(·) to go up for
these data points.

We now theoretically discuss the optimal decision surface of the classifier C(·) learned by the
proposed PAN.

Proposition 1. Let T (x) = log[1 − C(x)] − log[C(x)], ε(x) = f(T (x)), the learned optimal
decision surface of C(·) is:

ε(x) =
1

2
− P p(x)

P p(x) + Pu(x)
(15)

f(·) is a type of function that satisfies ε(x) · T (x) > 0.

From Proposition 1, we can see that PAN finds the decision surface by combining P p(x) and Pu(x).
The combination is controlled by ε(x). ε(x) is a function of C(x).

15

Under review as a conference paper at ICLR 2020

C.1 PROOF OF PROPOSITION 1

Proof: The training criterion for discriminator D, given any classifier C, is to maximize the quantity
V (C,D),

V (C,D) =

∫
x

P p(x) logD(x)dx+

∫
x

Pu(x) log(1−D(x))dx

+λ

∫
x

Pu(x)[log(1− C(x))− logC(x)](2D(x)− 1)dx

(16)

Clearly, the maximum point appears at the point with derivative 0. Then we calculate the partial
derivative of V (C,D) to D and get:

P p(x)

D(x)
− Pu(x)

1−D(x)︸ ︷︷ ︸
a©

+λPu(x)[log(1− C(x))− logC(x)]︸ ︷︷ ︸
b©

= 0
(17)

Directly computing the solution is complex. If we omit term b© for the time being, the solution for
Eq. 17 is D(x) = Pp(x)

Pp(x)+Pu(x) . After bringing back b©, this solution should be revised as follows.
With the definition of T (x) = log[1− C(x)]− log[C(x)] and ε(x) = f(T (x)), we can re-write the
solution after revision:

D∗(x) =
P p(x)

P p(x) + Pu(x)
+ ε(x) (18)

where ε(x) is a function of T (x) since P p(x) and Pu(x) are decided by the dataset and ε(x) changes
with the change of T (x). The exact expression of ε(x) is difficult but we can show ε(x) ∝ T (x) in
our case. In Eq. 17, term a© decreases monotonously when D(x) ∈ (0, 1),7 and both λ and P p(x)
are greater than 0. In this case, if T (x) > 0 (T (x) < 0), to keep Eq. 17 equal to 0, D(x) must move
toward the positive (negative) direction, which indicates ε(x) > 0 (ε(x) < 0). Formally, we have:

ε(x) ∝ T (x); ε(x)T (x) > 0 (19)

Note that the training objective of D can be interpreted as using the training data (P p(x) and Pu(x))
to find a discrimination bound and utilizing the learned knowledge in C to adapt it. The mini-max
game in Eq. 4 can now be reformulated as:

L(C) =max
D

V(C,D)

=Ex∼Pu(x)[(log(1− C(x))− log(C(x)))(2D∗(x)− 1)]

=Ex∼Pu(xu)[T (x)(
2P p(x)

P p(x) + Pu(x)
+ 2ε(x)− 1)]

(20)

Clearly, because the range of T (x) is (−ε, ε), L(C) achieves its minimum when T (x) and (2D∗(x)−
1) have opposite signs.8 Then, the optimal T ∗(x) satisfies:

T ∗(x)[
2P p(x)

P p(x) + Pu(x)
+ 2ε(x)− 1] < 0 (21)

As we introduced in Footnote 5, C(x) ∈ (0, 1). In this case, we use C(x) = 0.5 as the decision
surface to perform classification. Clearly, this decision surface equals to T ∗(x) = log(1− 0.5)−
log(0.5) = 0. In summary, we get the optimal decision surface:

ε(x) =
1

2
− P p(x)

P p(x) + Pu(x)
(22)

7We force D(x) to satisfy the condition by adding a Sigmoid function to the end of D. We also force the
output range of C into (0, 1) using the same method.

8The original range of T (x) should be (−∞,+∞). However, such range can cause stability problems for
training. We adopt a standard trick, i.e., adding a small value to the log function, e.g., log(C(x) + 1e−8), to
change the range of T (x) to (−8, 8).

16

Under review as a conference paper at ICLR 2020

D MORE EXPERIMENTS AND ANALYSIS

In the paper we showed that PAN gets significant improvement comparing with state-of-the-art
baselines. Here we give more detailed analysis of PAN in terms of dealing with varied positive ratio
and the selection of hyper-parameter λ in Eq. 3 (also 4).

D.1 VARYING KNOWN POSITIVE RATIO

In this section, we analyse the performance of PAN when dealing with varied ratios of known positive
examples. We vary the ratio of known positive examples from 5% to 30%, and show the accuracy
and F-score of PAN and baseline on MNIST and CIFAR10 datasets. To verify the ability of PAN
working in extreme conditions, we tested PAN on the situation with only 1% positive examples. The
results are reported in Table 4 and 5.

Table 4: Varying the ration of known positive data on MNIST.

Model
MNIST - results given as F / Acc

1% 5% 10% 20% 30%
NNPU 88.34/88.51 93.96/94.09 95.60/96.51 96.89/96.96 97.51/ 97.57
PAN 90.45/90.30 95.27 /95.36 96.51/96.42 97.38/97.43 97.90/97.95

Table 5: Varying the ration of known positive data on CIFAR10.

Model
CIFAR10 - results given as F / Acc

1% 5% 10% 20% 30%
NNPU 81.41/84.22 86.09/88.84 87.84/90.14 89.05 / 91.04 90.01/91.66
PAN 82.70/86.10 87.22/89.70 88.37/90.77 89.74/91.85 90.65 / 92.49

From Table 4 and 5, we can see that PAN can do well with different proportions of known positive
data and with extremely few known positive examples. We note that that the margin between PAN
and NNPU goes large with the decrease of the ratio of known positive examples, which indicates that
PAN is more effective than NNPU. The margin is smaller when the known positive ratio enlarges,
that is because if we have enough positive data, the limitation of getting better results is no longer the
PU learning method, but the performance of the classifier.

D.2 HYPER-PARAMETER SELECTION

λ is the hyper-parameter that balances the KL-divergences. Here, we show that λ should be a small
value but it is not too sensitive when it is around 0.0001. In our case, we set it to 0.0001.

Table 6: Sensitivity of λ on MNIST.

Model
Varying λ - results are Acc

0.01 0.001 0.0001 0.00001 0.000001
PAN 82.70 88.90 90.30 88.23 86.44

D.3 ABLATION STUDY FOR TERM MARKED BY III IN EQ. 3

Table 7: Accuracy (%) on different datasets for PAN with and without term III.

Model YELP RT IMDB 20News MNIST CIFAR10
PAN without term III 80.67 60.32 78.45 72.63 96.30 89.38

PAN full model 83.56 64.10 78.84 81.00 96.42 89.70

17

Under review as a conference paper at ICLR 2020

Table 8: F-score comparison on different datasets with and without term III.

Model YELP RT IMDB 20News MNIST CIFAR10
PAN without term III 81.86 66.28 78.52 73.59 96.27 86.68

PAN full model 83.45 66.58 77.10 81.06 96.51 87.22

Table 7 and 8 show PAN’s ablation results in accuracy and F-score with or without term III respectively.
From the two tables, we can see that adding term III indeed improves the performance of PAN on 5
out of 6 datasets.

18

	Introduction
	Related Work
	Background
	Direct Adaptation of GAN for PU Learning

	Proposed PAN
	Predictive Adversary Networks (PAN)
	Simplification of Equation 3
	Training Algorithm of PAN

	Experiments
	Experiment Settings
	Results and Analysis

	Conclusions
	Asymmetry of KL(Di||Ci) for Positive and Negative Data
	Simplification
	Theoretical Analysis About the Learned Classifier
	Proof of Proposition 1

	More Experiments and Analysis
	Varying Known Positive Ratio
	Hyper-parameter Selection
	Ablation Study for Term Marked by iii in Eq. 3

