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ABSTRACT

Learning a policy using only observational data is challenging because the distri-
bution of states it induces at execution time may differ from the distribution ob-
served during training. We propose to train a policy by unrolling a learned model
of the environment dynamics over multiple time steps while explicitly penalizing
two costs: the original cost the policy seeks to optimize, and an uncertainty cost
which represents its divergence from the states it is trained on. We measure this
second cost by using the uncertainty of the dynamics model about its own pre-
dictions, using recent ideas from uncertainty estimation for deep networks. We
evaluate our approach using a large-scale observational dataset of driving behav-
ior recorded from traffic cameras, and show that we are able to learn effective
driving policies from purely observational data, with no environment interaction.

1 INTRODUCTION

In recent years, model-free reinforcement learning methods using deep neural network controllers
have proven effective on a wide range of tasks, from playing video or text-based games (Mnih et al.,
2015; 2016; Narasimhan et al., 2015) to learning algorithms (Zaremba et al., 2015) and complex
locomotion tasks (Lillicrap et al., 2015; Zhang et al., 2015). However, these methods often require
a large number of interactions with the environment in order to learn. While this is not a problem if
the environment is simulated, it can limit the application of these methods in realistic environments
where interactions with the environment are slow, expensive or potentially dangerous. Building a
simulator where the agent can safely try out policies without facing real consequences can mitigate
this problem, but requires human engineering effort which increases with the complexity of the
environment being modeled.

Model-based reinforcement learning approaches try to learn a model of the environment dynamics,
and then use this model to plan actions or train a parameterized policy. A common setting is where
an agent alternates between collecting experience by executing actions using its current policy or
dynamics model, and then using these experiences to improve its dynamics model. This approach
has been shown empirically to significantly reduce the required number of environment interac-
tions needed to obtain an effective policy or planner (Atkeson & Santamaria, 1997; Deisenroth &
Rasmussen, 2011; Nagabandi et al., 2017; Chua et al., 2018).

Despite these improvements in sample complexity, there exist settings where even a sin-
gle poor action executed by an agent in a real environment can have consequences which

∗Equal contribution.

1



Published as a conference paper at ICLR 2019

are not acceptable. At the same time, with data collection becoming increasingly inex-
pensive, there are many settings where observational data of an environment is abundant.
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Figure 1: Different mod-
els fitted on training points
which cover a limited region
the function’s domain. Mod-
els make arbitrary predictions
outside of this region.

This suggests a need for algorithms which can learn policies pri-
marily from observational data, which can then perform well in a
real environment. Autonomous driving is an example of such a
setting: on one hand, trajectories of human drivers can be easily
collected using traffic cameras (Halkias & Colyar, 2006), resulting
in an abundance of observational data; on the other hand, learning
through interaction with the real environment is not a viable solu-
tion.

However, learning policies from purely observational data is chal-
lenging because the data may only cover a small region of the space
over which it is defined. If the observational data consists of state-
action pairs produced by an expert, one option is to use imitation
learning (Pomerleau, 1991). However, this is well-known to suffer
from a mismatch between the states seen at training and execution
time (Ross & Bagnell, 2010). Another option is to learn a dynam-
ics model from observational data, and then use it to train a policy
(Nguyen & Widrow, 1989). However, the dynamics model may
make arbitrary predictions outside the domain it was trained on,
which may wrongly be associated with low cost (or high reward) as shown in Figure 1. The policy
network may then exploit these errors in the dynamics model and produce actions which lead to
wrongly optimistic states. In the interactive setting, this problem is naturally self-correcting, since
states where the model predictions are wrongly optimistic will be more likely to be experienced, and
thus will correct the dynamics model. However, the problem persists if the dataset of environment
interactions which the model is trained on is fixed.

In this work, we propose to train a policy while explicitly penalizing the mismatch between the
distribution of trajectories it induces and the one reflected in the training data. We use a learned
dynamics model which is unrolled for multiple time steps, and train a policy network to minimize a
differentiable cost over this rolled-out trajectory. This cost contains two terms: a policy cost which
represents the objective the policy seeks to optimize, and an uncertainty cost which represents its di-
vergence from the states it is trained on. We measure this second cost by using the uncertainty of the
dynamics model about its own predictions, calculated using dropout. We apply our approach in the
context of learning policies to drive an autonomous car in dense traffic, using a large-scale dataset
of real-world driving trajectories which we also adapt into an environment for testing learned poli-
cies 1. We show that model-based control using this additional uncertainty regularizer substantially
outperforms unregularized control, and enables learning good driving policies using only observa-
tional data with no environment interaction or additional labeling by an expert. We also show how
to effectively leverage an action-conditional stochastic forward model using a modified posterior
distribution, which encourages the model to maintain sensitivity to input actions.

2 MODEL-PREDICTIVE POLICY LEARNING WITH UNCERTAINTY
REGULARIZATION

We assume we are given a dataset of observational data which consists of state-action pairs D =
{(st, at)}t. We first describe our general approach, which consists of two steps: learning an action-
conditional dynamics model using the collected observational data, and then using this model to
train a fast, feedforward policy network which minimizes both a policy cost and an uncertainty cost.

2.1 ACTION-CONDITIONAL FORWARD MODEL

In this work, we consider recent approaches for stochastic prediction based on Variational Autoen-
coders (Kingma & Welling, 2013; Babaeizadeh et al., 2017; Denton & Fergus, 2018). The stochastic
model fθ(s1:t, at, zt) takes as input a sequence of observed or previously predicted states s1:t, an
action at, and a latent variable zt which represents the information about the next state st+1 which

1Dataset and environment can be found at https://github.com/Atcold/pytorch-PPUU

2

https://github.com/Atcold/pytorch-PPUU


Published as a conference paper at ICLR 2019

is not a deterministic function of the input. During training, latent variables are sampled from a
distribution whose parameters are output by a posterior network qφ(s1:t, st+1) conditioned on the
past inputs and true targets. This network is trained jointly with the rest of the model using the
reparameterization trick, and a term is included in the loss to minimize the KL divergence between
the posterior distribution and a fixed prior p(z), which in our case is an isotropic Gaussian.

The per-sample loss used for training the stochastic model is given by:

L(θ, φ; s1:t, st+1, at) = ‖st+1 − fθ(s1:t, at, zt)‖22 + βDKL(qφ(z|s1:t, st+1)‖p(z)) (1)

After training, different future predictions for a given sequence of frames can be generated by sam-
pling different latent variables from the prior distribution.

Recent models for stochastic video prediction (Babaeizadeh et al., 2017; Denton & Fergus, 2018)
do not use their model for planning or training a policy network, and parameterize the posterior
distribution over latent variables using a diagonal Gaussian. In our case, we are training an action-
conditional video prediction model which we will later use to train a policy. This leads to an addi-
tional requirement: it is important for the prediction model to accurately respond to input actions,
and not use the latent variables to encode factors of variation in the outputs which are due to the
actions. To this end we propose to use a mixture of two Gaussians, with one component fixed to the
prior, as our posterior distribution:

(µφ, σφ) = qφ(s1:t, st+1)

u ∼ B(pu)

zt ∼ (1− u) · N (µφ, σφ) + u · p(z)

This can be seen as applying a form of global dropout to the latent variables at training time 2,
and forces the prediction model to extract as much information as possible from the input states
and actions by making the latent variable independent of the output with some probability. In our
experiments we will refer to this parameterization as z-dropout.

2.2 TRAINING A POLICY NETWORK WITH UNCERTAINTY MINIMIZATION

Once the forward model is trained, we use it to train a parameterized policy network πψ , which we
assume to be stochastic. We first sample an initial state sequence s1:t from the training set, unroll the
forward model over T time steps, and backpropagate gradients of a differentiable objective function
with respect to the parameters of the policy network (shown in Figure 2). During this process the
weights of the forward model are fixed, and only the weights of the policy network are optimized.
This objective function contains two terms: a policy cost C, which reflects the underlying objective
the policy is trying to learn, and an uncertainty cost U , which reflects how close the predicted state
induced by the policy network is to the manifold which the data D is drawn from.

Training the policy using a stochastic forward model involves solving the following problem, where
latent variables are sampled from the prior and input into the forward model at every time step:

argmin
ψ

[ T∑
i=1

C(ŝt+i) + λU(ŝt+i)
]
, such that:


zt+i ∼ p(z)
ât+i ∼ πψ(ŝt+i−1)

ŝt+i = f(ŝt+i−1, ât+i, zt+i)

The uncertainty cost U is applied to states predicted by the forward model, and could reflect any
measure of their likelihood under the distribution the training data is drawn from. We propose here
a general form based on the uncertainty of the dynamics model, which is calculated using dropout.
Intuitively, if the dynamics model is given a state-action pair from the same distribution asD (which

2If the variances of both Gaussians are zero, this becomes equivalent to applying dropout to the latent code
where all units are either set to zero or unchanged with probability pu.
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Figure 2: Training the policy network using the stochastic forward model. Gradients with respect to
costs associated with predicted states are passed through the unrolled forward model into a policy
network.

it was trained on), it will have low uncertainty about its prediction. If it is given a state-action pair
which is outside this distribution, it will have high uncertainty.

Dropout (Hinton et al., 2012; Srivastava et al., 2014) is a regularization technique which consists of
randomly setting hidden units in a neural network to zero with some probability. The work of (Gal
& Ghahramani, 2016) showed that estimates of the neural network’s uncertainty for a given input
can be obtained by calculating the covariance of its outputs taken over multiple dropout masks.
We note that this uncertainty estimate is the composition of differentiable functions: each of the
models induced by applying a different dropout mask is differentiable, as is the covariance operator.
Furthermore, we can summarize the covariance matrix by taking its trace (which is equal to the sum
of its eigenvalues, or equivalently the sum of the variances of the outputs across each dimension),
which is also a differentiable operation. This provides a scalar estimate of uncertainty which is
differentiable with respect to the input.

More precisely, let fθ1 , ..., fθK denote our prediction model with K different dropout masks applied
to its hidden units (this can also be viewed as changing its weights). We define our scalar measure
of uncertainty U as follows:

U(ŝt+1) = tr
[
Cov[{fθk(s1:t, at, zt)}Kk=1]

]
=

d∑
j=1

Var({fθk(s1:t, at, zt)j}Kk=1)

where d is the dimensionality of the output. Minimizing this quantity with respect to actions en-
courages the policy network to produce actions which, when plugged into the forward model, will
produce predictions which the forward model is confident about 3.

A simple way to define U given an initial sequence of states s1:t from D would be to set
U(ŝt+k) = ‖ŝt+k − st+k‖2, which would encourage the policy network to output actions which
lead to a similar trajectory as the one observed in the dataset. This leads to a set of states
which the model is presumably confident about, but may not be a trajectory which also satisfies
the policy cost C unless the dataset D consists of expert trajectories. If this is the case, setting
C(ŝt+i) = U(ŝt+i) = 1

2‖ŝt+k − st+k‖2 gives a model-based imitation learning objective which
simultaneously optimizes the policy cost and the uncertainty cost. The problem then becomes:

3In practice, we apply an additional step to normalize this quantity across different modalities and rollout
lengths, which is detailed in Appendix D.
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Figure 3: Training the policy network using the differentiable uncertainty cost, calculated using
dropout.

argmin
ψ

[ T∑
i=1

‖ŝt+i − st+i‖2
]
, such that:


zt+i ∼ qφ(z|s1:t, st+1)

ât+i ∼ πψ(ŝt+i−1)

ŝt+i = f(ŝt+i−1, ât+i, zt+i)

We call the first approach MPUR , for Model-Predictive Policy with Uncertainty Regularization,
and the second MPER , for Model-Predictive Policy with Expert Regularization. A key feature of
both approaches is that we optimize the objective over T time steps, which is made possible by
our learned dynamics model. This means that the actions will receive gradients from multiple time
steps ahead, which will penalize actions which lead to large divergences from the training manifold
further into the future, even if they only cause a small divergence at the next time step.

2.3 RELATIONSHIP TO BAYESIAN NEURAL NETWORKS

Our MPUR approach can be viewed as training a Bayesian neural network (BNN) (Neal, 1995)
with latent variables using variational inference (Jordan et al., 1999; Kingma & Welling, 2013). The
distribution over model predictions for st+1 is given by:

p(st+1|s1:t, a,D) =

∫
p(st+1|fθ(s1:t, a, z))p(θ, z|D)dθdz

The distribution p(θ, z|D) reflects the posterior over model weights and latent variables given the
data, and is intractable to evaluate. We instead approximate it with the variational distribution q
parameterized by η = {φ, θ∗}:

qη(z, θ) = qφ(z|s1:t, st+1) · qθ∗(θ)

Here qφ represents a distribution over latent variables represented using a posterior network with
parameters φ, which could be a diagonal Gaussian or the mixture distribution described in Section
2.1. The distribution qθ∗ is the dropout approximating distribution over forward model parameters
described in (Gal & Ghahramani, 2016), a mixture of two Gaussians with one mean fixed at zero.
We show in Appendix B that training the stochastic forward model with dropout by minimizing the
loss function in Equation 1 is approximately minimizing the Kullback-Leibler divergence between
this approximate posterior and the true posterior.
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Figure 4: Preprocessing pipeline for the NGSIM-I80 data set. Orange arrows show same vehicles
across stages. Blue arrows show corresponding extracted context state. (a) Snapshots from two of
the seven cameras. (b) View point transformation, car localisation and tracking. (c) Context states
are extracted from rectangular regions surrounding each vehicle. (d) Five examples of context states
it extracted at the previous stage.

Once the forward model is trained, for a given input we can obtain an approximate distribution over
outputs p(ŝt+1|s1:t, a) induced by the approximate posterior by sampling different latent variables
and dropout masks. We now show that the covariance of the outputs ŝt+1 can be decomposed into
a sum of two covariance matrices which represent the aleatoric and epistemic uncertainty, using a
similar approach as (Depeweg et al., 2018). Using the conditional covariance formula we can write:

cov(ŝt+1|s1:t, a) = covθ(Ez[ŝt+1|s1:t, a, θ]) + Eθ[covz(ŝt+1|s1:t, a, θ)] (2)

The first term is the covariance of the random vector Ez[ŝt+1|s1:t, a, θ] when θ ∼ qθ∗(θ). This
term ignores any contribution to the variance from z and only considers the effect of θ. As such it
represents the epistemic uncertainty. The second term represents the covariance of the predictions
obtained by sampling different latent variables z ∼ p(z) averaged over different dropout masks, and
ignores any contribution to the variance from θ. As such it represents the aleatoric uncertainty. Our
uncertainty penalty explicitly penalizes the trace of the first matrix where the expectation over z is
approximated by a single sample from the prior. Note also that the covariance matrix corresponding
to the aleatoric uncertainty will change depending on the inputs. This allows our approach to handle
heteroscedastic environments, where the aleatoric uncertainty will vary for different inputs.

3 DATASET AND PLANNING ENVIRONMENT

We apply our approach to learn driving policies using a large-scale dataset of driving videos taken
from traffic cameras. The Next Generation Simulation program’s Interstate 80 (NGSIM I-80) dataset
(Halkias & Colyar, 2006) consists of 45 minutes of recordings from traffic cameras mounted over a
stretch of highway. The driver behavior is complex and includes sudden accelerations, lane changes
and merges which are difficult to predict; as such the dataset has high environment (or aleatoric)
uncertainty. After recording, a viewpoint transformation is applied to rectify the perspective, and
vehicles are identified and tracked throughout the video. This yields a total 5596 car trajectories,
which we split into training (80%), validation (10%) and testing sets (10%). In all, the dataset
contains approximately 2 million transitions.

We then applied additional preprocessing to obtain a state and action representation (st, at) for
each car at each time step, suitable for learning an action-conditional predictive model. Our state
representation st consists of two components: an image it representing the neighborhood of the car,
and a vector ut representing its current position and velocity. The images it are centered around
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the ego car and encode both the lane emplacements and the locations of other cars. Each image has
3 channels: the first (red) encodes the lane markings, the second (green) encodes the locations of
neighboring cars, which are represented as rectangles reflecting the dimensions of each car, and the
third channel (blue) represents the ego car, also scaled to the correct dimensions. This is summarized
in Figure 4. The action at at a given time step consists of a 2-dimensional vector representing the
acceleration/braking of the car and its change in steering angle. We also define two cost functions
which together make up the policy cost: a proximity cost which reflects how close the ego car is to
neighboring cars, and a lane cost which reflects how much the ego car overlaps with lane markings.
These are represented as a cost vector at each timestep, ct = (Cproximity(st), Clane(st)). Full details
can be found in Appendix A.

We also adapted this dataset to be used as an environment to evaluate learned policies, with the
same interface as OpenAI Gym (Brockman et al., 2016). Choosing a policy for neighboring cars is
challenging due to a cold-start problem: to accurately evaluate a learned policy, the other cars would
need to follow human-like policies which would realistically react to the controlled car, which are
not available. We take the approach of letting all the other cars in the environment follow their
trajectories from the dataset, while a single car is controlled by the policy we seek to evaluate. This
approach avoids hand-designing a policy for the neighboring cars which would likely not reflect
the diverse nature of human driving. The limitation is that the neighboring cars do not react to the
controlled car, which likely makes the problem more difficult as they do not try to avoid collisions.

4 RELATED WORK

A number of authors have explored the use of learned, action-conditional forward models which are
then used for planning, starting with classic works in the 90’s (Nguyen & Widrow, 1990; Schmidhu-
ber, 1990; Jordan & Rumelhart, 1992), and more recently in the context of video games (Oh et al.,
2015; Pascanu et al., 2017; Weber et al., 2017), robotics and continous control (Finn et al., 2016;
Agrawal et al., 2016; Nagabandi et al., 2017; Srinivas et al., 2018). Our approach to learning poli-
cies by backpropagating through a learned forward model is related to the early work of (Nguyen
& Widrow, 1989) in the deterministic case, and the SVG framework of (Heess et al., 2015) in the
stochastic case. However, neither of these approaches incorporates a term penalizing the uncertainty
of the forward model when training the policy network.

The works of (McAllister & Rasmussen, 2016; Chua et al., 2018) also used model uncertainty esti-
mates calculated using dropout in the context of model-based reinforcement learning, but used them
for sampling trajectories during the forward prediction step. Namely, they applied different dropout
masks to simulate different state trajectories which reflect the distribution over plausible models,
which were then averaged to produce a cost estimate used to select an action.

Our model uncertainty penalty is related to the cost used in (Kahn et al., 2017), who used dropout
and model ensembling to compute uncertainty estimates for a binary action-conditional collision
detector for a flying drone. These estimates were then used to select actions out of a predefined set
which yielded a good tradeoff between speed, predicted chance of collision and uncertainty about
the prediction. In our work, we apply uncertainty estimates to the predicted high-dimensional states
of a forward model at every time step, summarize them into a scalar, and backpropagate gradients
through the unrolled forward model to then train a policy network by gradient descent.

The work of (Depeweg et al., 2018) also proposed adding an uncertainty penalty when training
paramaterized policies, but did so in the context of BNNs trained using α-divergences applied
in low-dimensional settings, whereas we use variational autoencoders combined with dropout for
high-dimensional video prediction. α-BNNs can yield better uncertainty estimates than variational
inference-based methods, which can underestimate model uncertainty by fitting to a local mode of
the exact posterior (Depeweg et al., 2016; Li & Gal, 2017). However, they also require computing
multiple samples from the distribution over model weights when training the forward model, which
increases memory requirements and limits scalability to high-dimensional settings such as the ones
we consider here.

The problem of covariate shift when executing a policy learned from observational data has been
well-recognized in imitation learning (Pomerleau, 1991; Ross & Bagnell, 2010). The work of (Ross
et al., 2011) proposed a method to efficiently use expert feedback (if available) to correct this shift,
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(a) Ground truth sequence (b) Deterministic Model

(c) Stochastic Model, sample 1 (d) Stochastic Model, sample 2

Figure 5: Video prediction results using a deterministic and stochastic model over 200 time steps
(images are subsampled across time). Two different future predictions are generated by the stochas-
tic model by sampling two different sequences of latent variables. The deterministic model averages
over possible futures, producing blurred predictions.

which has also been applied in the context of autonomous driving (Zhang & Cho, 2016). Our
approach also addresses covariate shift, but does so without querying an expert.

Our MPER approach is related to the work of (Englert et al., 2013), who also performed imitation
learning at the level of trajectories rather than individual actions. They did so in low-dimensional
settings using Gaussian Processes, whereas our method uses an unrolled neural network representing
the environment dynamics which can be applied to high-dimensional state representations. The
work of (Baram et al., 2017) also used a neural network dynamics model in the context of imitation
learning, but did so in the interactive setting to minimize a loss produced by a discriminator network.

Several works have used deep learning models for autonomous driving, either to learn policies
through imitation learning (Pomerleau, 1991; LeCun et al., 2006; Bojarski et al., 2016; Pan et al.,
2017) or for modeling vehicle dynamics (Williams et al., 2017). These works focused on lane fol-
lowing or avoiding static obstacles in visually rich environments and did not consider settings with
dense moving traffic. The work of (Sadigh et al., 2016) developed a model of the interactions be-
tween the two drivers which was then used to plan actions in simple settings, using symbolic state
representations. In our work, we consider the problem of learning driving policies in dense traffic,
using high-dimensional state representations which reflect the neighborhood of the ego car.

5 EXPERIMENTS

We now report experimental results. We designed a deterministic and stochastic forward model
to model the state and action representations described in Section 3, using convolutional layers to
process the images it and fully-connected layers to process the vectors ut and actions at. All model
details can be found in Appendix C and training details can be found in Appendix D. Code and
additional video results for the model predictions and learned policies can be found at the following
URL: https://sites.google.com/view/model-predictive-driving/home.

5.1 PREDICTION RESULTS

We first generated predictions using both deterministic and stochastic forward models, shown in
Figure 5. The deterministic model produces predictions which become increasingly blurry, while
the stochastic model produces predictions which stay sharp far into the future. By sampling different
sequences of latent variables, different future scenarios are generated. Note that the two sequences
generated by the stochastic model are different from the ground truth future which occurs in the
dataset. This is normal as the future observed in the dataset is only one of many possible ones.
Additional video generations can be viewed at the URL.
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Method Model Mean Distance Success Rate (%)
Human 209.4 100.0
No action 87.3 16.2
1-step IL 73.8± 7.9 7.3± 4.1
SVG stochastic 17.1± 4.3 0.0± 0.0
VG deterministic 11.9± 4.2 0.0± 0.0
MPUR stochastic+z-dropout 171.2± 4.5 74.8± 3.0
MPUR stochastic 166.8± 2.4 71.8± 1.0
MPUR deterministic 162.4± 2.8 69.1± 1.6
MPER stochastic 70.0± 8.0 4.6± 2.1
MPER deterministic 157.4± 0.7 63.7± 0.5
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(b)

Human The human trajectories observed in the testing set, which are all collision-free.
No action A policy which outputs an action of zero, maintaining constant speed and direction.
1-step IL A policy network trained with single-step imitation learning.
SVG A policy network trained with stochastic value gradients. This is the same setup

as (Heess et al., 2015), with the difference that the agent does not interact with the
environment and learns from a fixed observational dataset.

VG A policy trained with value gradients, using the deterministic forward model. This
is similar to SVG, but does not involve latent variables.

MPUR A policy trained with MPUR , using a deterministic or stochastic model. A cost
term is included to penalize the uncertainty of the dynamics model.

MPER A policy trained with MPER , using a deterministic or stochastic model. The policy
is trained to match expert trajectories from the training set.

(c)

Figure 6: a) Performance different methods, measured in success rate and distance travelled. Includ-
ing a cost term penalizing the dynamics model’s uncertainty is essential for good performance. Us-
ing the modified posterior distribution (z-dropout) improves performance when using the stochastic
forward model. b) Training policies by performing longer rollouts through the environment dynam-
ics model also significantly improves performance. c) Summary of compared methods.

5.2 POLICY EVALUATION RESULTS

We evaluated policies using two measures: whether the controlled car reaches the end of the road
segment without colliding into another car or driving off the road, and the distance travelled before
the episode ends. Policies which collide quickly will travel shorter distances.

We compared our approach against several baselines which can also learn from observational data,
which are described in Figure 6c. Table 6a compares performance for the different methods, opti-
mized over different rollout lengths. The 1-step imitation learner, SVG and VG all perform poorly,
and do not beat the simple baseline of performing no action. Both MPUR and MPER significantly
outperform the other methods. Videos of the learned policies for both MPER and MPUR driving in
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1-step IL MPER (20 step) MPUR (20 step)

Figure 7: Trajectories for MPUR , MPER and a single-step imitation learner policies over the stretch
of highway. The single-step imitation learner policy often veers across lanes, whereas the other
policies stay within. These policies also change their speed to avoid collisions (see URL).

Method Mean Distance (m) Success Rate (%) Total Predicted Cost U

VG 14.9 0.0 0.05 1081.2
MPUR 168.8 73.5 0.13 0.4

Table 1: Policy and uncertainty costs with and without uncertainty regularization. The policy trained
with unregularized VG exploits errors in the forward model to produce actions which yield low
predicted cost but high uncertainty. Including the uncertainty cost yields higher predicted cost, but
better performance when the policy is executed in the environment.

the environment can be found at the URL. The policies learn effective behaviors such as braking,
accelerating and turning to avoid other cars. Figure 7 shows trajectories on the map for different
methods. We see that the single-step imitation learner produces divergent trajectories which turn
into other lanes, whereas the MPUR and MPER methods show trajectories which primarily stay
within their lanes.

MPUR becomes equivalent to VG in the deterministic setting if we remove the uncertainty penalty,
and the large difference in performance shows that including this penalty is essential. Table 1 shows
the average predicted policy cost and uncertainty cost of the two methods. VG produces much
lower predicted policy cost, yet very high uncertainty cost. This indicates that the actions the policy
produces induce a distribution over states which the forward model is highly uncertain about. The
policy trained with MPUR produces higher policy cost estimates, but lower uncertainty cost, and
performs much better when executed in the environment.

The stochastic model trained with a standard Gaussian posterior yields limited improvement over
the deterministic model. However, the stochastic model trained with the z-dropout parameterization
yields a significant improvement. Comparisons of action-conditional predictions using both models
can be seen at the URL. The standard model is less responsive to input actions than the model trained
with z-dropout, which likely accounts for their difference in performance. We hypothesize that the
standard model uses its latent variables to encode factors of variation in the output which are in
fact due to the actions. Using z-dropout discourages this since information in the output cannot be
encoded in the latent variables the times they are sampled from the prior, and the loss can better be
lowered by predicting the outputs from the actions instead. Please see Appendix E for additional
experiments and discussion of this phenomenon.

Figure 6b shows the performance of MPUR and MPER for different rollout lengths. All methods
see their performance improve dramatically as we increase the rollout length, which encourages
the distribution of states the policy induces and the training distribution to match over longer time
horizons. We also see that the stochastic model with z-dropout outperforms the standard stochastic
model as well as the deterministic model over most rollout lengths.

6 CONCLUSION

In this work, we proposed a general approach for learning policies from purely observational data.
The key elements are: i) a learned stochastic dynamics model, which is used to optimize a policy cost
over multiple time steps, ii) an uncertainty term which penalizes the divergence of the trajectories
induced by the policy from the manifold it was trained on, and iii) a modified posterior distribution
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which keeps the stochastic model responsive to input actions. We have applied this approach to a
large observational dataset of real-world traffic recordings, and shown it can effectively learn policies
for navigating in dense traffic, which outperform other approaches which learn from observational
data. However, there is still a sizeable gap between the performance of our learned policies and
human performance. We release both our dataset and environment, and encourage further research
in this area to help narrow this gap. We also believe this provides a useful setting for evaluating
generative models in terms of their ability to produce good policies. Finally, our approach is general
and could potentially be applied to many other settings where interactions with the environment are
expensive or unfeasible, but observational data is plentiful.
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A DATASET AND PLANNING ENVIRONMENT

To begin with, we describe the details and preparation of the dataset and planning environment which
we used, which are summarized in Figure 4. The Next Generation Simulation program’s Interstate
80 (NGSIM I-80) dataset (Halkias & Colyar, 2006) consists of 45 minutes of recordings made of
a stretch of highway in the San Francisco Bay Area by cameras mounted on a 30-story building
overlooking the highway. The recorded area includes six freeway lanes (including a high-occupancy
vehicle lane) and an onramp. The driver behavior is complex and includes sudden accelerations, lane
changes and merges which are difficult to predict; as such the dataset has high aleatoric uncertainty.
There are three time segments, each of 15 minutes, taken at different times of day which capture
the transition between uncongested and congested peak period conditions. After recording, a view-
point transformation is applied to rectify the perspective, and vehicles are identified and tracked
throughout the video; additionally, their size is inferred. This yields a total 5596 car trajectories,
represented as sequences of coordinates {xt, yt}. We split these trajectories into training (80%),
validation (10%) and testing sets (10%).

We then applied additional preprocessing to obtain suitable representations for learning a predictive
model. Specifically, we extracted the following: i) a state representation for each car at each time
step st, which encodes the necessary information to choose an action to take, ii) an action at which
represents the action of the driver, and iii) a cost ct, which associates a quality measure to each state.
We describe each of these below.

State representation: Our state representation consists of two components: an image representing
the neighborhood of the car, and a vector representing its current position and velocity. For the
images, we rendered images centered around each car which encoded both the lane emplacements
and the locations of other cars. Each image has 3 channels: the first (red) encodes the lane markings,
the second (green) encodes the locations of neighboring cars, which are represented as rectangles
reflecting the dimensions of each car, and the third channel (blue) represents the ego car, also scaled
to the correct dimensions. All images have dimensions 3× 117× 24, and are denoted by it. 4 Two
examples are shown in Figure 8. We also computed vectors ut = (pt,∆pt), where pt = (xt, yt) is
the position at time t and ∆pt = (xt+1 − xt, yt+1 − yt) is the velocity.

4Another possibility would have been to construct feature vectors directly containing the exact coordinates
of neighboring cars, however this presents several difficulties. First, cars can enter and exit the neighborhood,
and so the feature vector representing the neighboring cars would either have to be dynamically resized or
padded with placeholder values. Second, this representation would not be permutation-invariant, and it is
unclear where to place a new car entering the frame. Third, encoding the lane information in vector form would
require a parametric representation of the lanes, which is more complicated. Using images representations
naturally avoids all of these difficulties.
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(a) 19.8 km/h (b) 50.3 km/h

Figure 8: Image state representations and proximity cost masks for cars going at different speeds.
The higher the speed, the longer the safety distance required to maintain low cost.

Action representation: Each action vector at consists of two components: an acceleration (which
can be positive or negative) which reflects the change in speed, and a change in angle. The accelera-
tion at a given time step is computed by taking the difference between two consecutive speeds, while
the change in angle is computed by projecting the change in speed along its orthogonal direction:

∆speed = ‖∆pt+1‖2 − ‖∆pt‖2
∆angle = (∆pt+1 −∆pt)

>(∆pt)⊥/‖∆pt‖2
at = (∆speed,∆angle)

Cost: Our cost function has two terms: a proximity cost and a lane cost. The proximity cost reflects
how close the ego car is to neighboring cars, and is computed using a mask in pixel space whose
width is equal to the width of a lane and whose height depends on the speed of the car. Two examples
are shown in Figure 8. This mask is pointwise multiplied with the green channel, and the maximum
value is taken to produce a scalar cost. The lane cost uses a similar mask fixed to the size of the
car, and is similarly multiplied with the red channel, thus measuring the car’s overlap with the lane.
Both of these operations are differentiable so that we can backpropagate gradients with respect to
these costs through images predicted by a forward model.

This preprocessing yields a set of state-action pairs (st, at) (with st = (it, ut)) for each car, which
constitute the dataset we used for training our prediction model. We then use the cost function to
optimize action sequences at planning time, using different methods which we describe in Section
2.2.

We now describe how we adapted this dataset to be used as an environment to evaluate planning
methods. Building an environment for evaluating policies for autonomous driving is not obvious
as it suffers from a cold-start problem. Precisely measuring the performance of a given driving
policy would require it to be evaluated in an environment where all other cars follow policies which
accurately reflect human behavior. This involves reacting appropriately both to other cars in the
environment as well as the car being controlled by the policy being evaluated. However, constructing
such an environment is not possible as it would require us to already have access to a policy which
drives as humans do, which in some sense is our goal in the first place. One could hand-code a
driving policy to control the other cars in the environment, however is it not clear how to do so in a
way which accurately reflects the diverse and often unpredictable nature of human driving.
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observation = env.reset()
while not done:
    action = policy(observation)
    observation, reward, done, info = env.step(action)
    env.render()

Figure 9: NGSIM planning environment.

We adopt a different approach where we let all other cars in the environment follow their trajectories
in the dataset, while controlling one car with the policy we seek to evaluate. The trajectory of the
controlled car is updated as a function of the actions output by the policy, while the trajectories
of the other cars remain fixed. If the controlled car collides with another car, this is recorded and
the episode ends. This approach has the advantage that all other cars in the environment maintain
behavior which is close to human-like. The one difference with true human behavior is that the
other cars do not react to the car being controlled or try to avoid it, which may cause crashes which
would not occur in real life. The driving task is thus possibly made more challenging than in a true
environment, which we believe is preferable to using a hand-coded policy. The interface is set up
the same way as environments in OpenAI Gym (Brockman et al., 2016), and can be accessed with a
few lines of Python code, as shown in Figure 9.

B BAYESIAN NEURAL NETWORK FORMULATION DETAILS

Our MPUR approach can be viewed as training a Bayesian neural network (BNN) (Neal, 1995)
with latent variables using variational inference (Jordan et al., 1999; Kingma & Welling, 2013). The
distribution over model predictions for st+1 is given by:

p(st+1|s1:t, a,D) =

∫
p(st+1|fθ(s1:t, a, z))p(θ, z|D)dθdz

The distribution p(θ, z|D) reflects the posterior over model weights and latent variables given the
data, and is intractable to evaluate. We instead approximate it with the variational distribution q
parameterized by η:

qη(z, θ) = qφ(z|s1:t, st+1) · qθ∗(θ)

Here qφ represents a distribution over latent variables parameterized by φ, which could be a di-
agonal Gaussian or the mixture distribution described in Section 2.1. The distribution qθ∗ is the
dropout approximating distribution over model parameters described in (Gal & Ghahramani, 2016)
(Section 3.2 of Supplement). This defines a mixture of two Gaussians with small variances over
each row of each weight matrix in the forward model, with the mean of one Gaussian fixed at zero.
The parameters of this distribution are the model weights, and samples can be drawn by applying
different dropout masks. The parameters of the variational distribution are thus η = {θ∗, φ}, and
can be optimized by maximizing the evidence lower bound, which is equivalent to minimizing the
Kullback-Leibler divergence between the approximate posterior and true posterior:

LELBO(θ∗, φ; s1:t, st+1, a) =

∫
log p(st+1|fθ(s1:t, a, z))qη(θ, z)dθdz −DKL(qη(θ, z)||p0(θ, z))

(3)

Here p0(z, θ) = p0(z) · p0(θ) represents a prior over latent variables and model parameters. By
applying the chain rule for KL divergences together with the fact that z and θ are independent, we
obtain:
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DKL(qη(θ, z)||p0(θ, z)) = DKL(qφ(z|s1:t, st+1) · qθ∗(θ)||p0(z) · p0(θ))

= DKL(qφ(z|s1:t, st+1)||p0(z)) +DKL(qθ∗(θ|z)||p0(θ|z))
= DKL(qφ(z|s1:t, st+1)||p0(z)) +DKL(qθ∗(θ)||p0(θ))

Setting both Gaussians in p0(θ) to have zero mean, the second KL term becomes equivalent to
scaled `2 regularization on the model parameters, and can be set arbitrarily small (Section 4.2 in
Supplement of (Gal & Ghahramani, 2016)). Ignoring this term and approximating the integral in
Equation 3 using a single sample, we obtain:

LELBO(θ∗, φ; s1:t, st+1, a) ≈ log p(st+1|fθ̄(s1:t, a, z))−DKL(qφ(z|s1:t, st+1)||p0(z))

where θ̄ ∼ qθ∗(θ) and z ∼ qφ(s1:t, st+1)). Assuming a diagonal Gaussian likelihood on the outputs
with constant variance 1/β, we can rewrite this as:

LELBO(θ∗, φ; s1:t, st+1, a) ≈ − 1

β
· ‖st+1 − fθ̄(s1:t, a, z)‖ −DKL(qφ(z|s1:t, st+1)||p0(z))

Multiplying by β does not change the maximum. We now see that maximizing this quantity is
equivalent to minimizing our loss term in Equation 1, i.e. training a variational autoencoder with
dropout.

C MODEL DETAILS

The architecture of our forward model consists of four neural networks: a state encoder fenc, an ac-
tion encoder fact, a decoder fdec, and the posterior network fφ. At every time step, the state encoder
takes as input the concatenation of 20 previous states, each of which consists of a context image
it and a 4-dimensional vector ut encoding the car’s position and velocity. The images it−20, ..., it
are run through a 3-layer convolutional network with 64-128-256 feature maps, and the vectors
ut−20, ..., ut are run through a 2-layer fully connected network with 256 hidden units, whose final
layers contain the same number of hidden units as the number of elements in the output of the con-
volutional network (we will call this number nH ). The posterior network takes the same input as
the encoder network, as well as the the ground truth state st+1, and maps them to a distribution over
latent variables, from which one sample zt is drawn. This is then passed through an expansion layer
which maps it to a representation of size nH . The action encoder, which is a 2-layer fully-connected
network, takes as input a 2-dimensional action at encoding the car’s acceleration and change in
steering angle, and also maps it to a representation of size nH . The representations of the input
states, latent variable, and action, which are all now the same size, are combined via addition. The
result is then run through a deconvolutional network with 256-128-64 feature maps, which produces
a prediction for the next image it+1, and a 2-layer fully-connected network (with 256 hidden units)
which produces a prediction for the next state vector ut+1. These are illustrated in Figure C.

The specific updates of the stochastic forward model are given by:

(µφ, σφ) = qφ(s1:t, st+1) (4)
ε ∼ N (0, I) (5)
zt = µφ + σφ · ε (6)

ŝt+1 = (̃it+1, ũt+1) = fθ(s1:t, at, zt) (7)

The per-sample loss is given by:

`(s1:t, st+1) = ‖̃it − it‖22 + ‖ũt − ut‖22 + βDKL(N (µφ, σφ)||p(z)) (8)
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Figure 10: Individual components of the prediction model.

We also train a cost predictor which takes as input the states predicted by the forward model and
produces a two-dimensional output (one output for the proximity cost, and one output for the lane
cost). This consists of a 3-layer encoder followed by a two-layer fully connected network with
sigmoid non-linearities as the end to constrain the values between 0 and 1.

D TRAINING DETAILS

D.1 FORWARD MODEL

We trained our prediction model in deterministic mode (p = 0) for 200,000 updates, followed by
another 200,000 updates in stochastic mode. We save the model after training in deterministic mode
and treat it as a deterministic baseline. Our model was trained using Adam (Kingma & Ba, 2014)
with learning rate 0.0001 and minibatches of size 64, unrolled for 20 time steps, and with dropout
(pdropout = 0.1) at every layer, which was necessary for computing the epistemic uncertainty cost
when training the policy network.

D.2 POLICY MODELS

All cars are initialized at the beginning of the road segment with the initial speed they were driving
at in the dataset, and then are controlled by the policy being measured. We only report performance
for cars in the testing trajectories, which were not used when training the forward model or policy
network.

All policy networks have the same architecture: a 3-layer ConvNet with feature maps of size 64-
128-256 (which takes 20 consecutive frames as input), followed by 3 fully-connected layers with 256
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hidden units each, with the last layer outputting the parameters of a 2D Gaussian distribution from
which the action is sampled. All policy networks are trained with Adam with learning rate 0.0001.
The MPER and MPUR policies are trained by backpropagation through the unrolled forward model
using the reparamaterization trick (Kingma & Welling, 2013). The single-step imitation learner is
trained to directly minimize the negative log-likelihood of the ground truth action in the dataset
under the parameters output by the policy network. All MPUR policies use a weighting of λ = 0.5
for the uncertainty cost. Additionally, we detach gradients of predicted costs coming into the states,
to prevent the policy from lowering the predicted cost (which is speed-dependent) by slowing down.
We found that not doing this can result in the policy slowing excessively, and then attempting to
speed up only when another car gets close. We repeat the policy training with 3 random seeds for
each method.

The policy cost which we minimize for VG, SVG and MPUR is given by:

C = Cproximity + 0.2 · Clane (9)

where Cproximity and Clane are the proximity and lane costs described in Section 3. This puts a higher
priority on avoiding other cars while still encouraging the policy to stay within the lanes. MPUR
additionally minimizes U , the model uncertainty cost described in Section 2.2.

When computing the uncertainty cost, to compensate for differences in baseline uncertainty across
different rollout lengths, we normalize by the empirical mean and variance for every rollout length
t of the forward model over the training set, to obtain µtU and σtU . We then define our uncertainty
cost as follows:

U(ŝt+1)←
[U(ŝt+1)− µtU

σtU

]
+

(10)

If the uncertainty estimate is lower than the mean uncertainty estimate on the training set for this
rollout length, this loss will be zero. These are cases where the model prediction is within normal
uncertainty ranges. If the uncertainty estimate is higher, this loss exerts a pull to change the action
so that the future state will be predicted with higher confidence by the forward model.

E ACTION SENSITIVITY EXPERIMENTS

We found the lack of responsiveness of the stochastic forward model to be especially pronounced
when it is given a sequence of latent variables inferred from the current training sequence by the
posterior network, instead of a sequence of latent variables sampled from the prior (intuitively,
using the inferred sequence corresponds to using the future from the dataset, while using a sampled
sequence corresponds to a different future). One reason for this difference in responsiveness may
be that in the first case, the latent variables are highly dependent whereas in the second they are
independent. If action information is encoded in the latent variables, the effects on the output may
partially cancel each other out when the latents are independent. However, when they are highly
dependent, together they may explain away the effects of the actions input to the forward model.

The table below shows the performance of MPUR policies learned using inferred and sampled latent
variables. We see a large drop in performance when using the inferred latent variables. This is
consistent with the videos at the URL, which show that the forward model is less sensitive to actions
when the latent variables are sampled from the posterior instead of the prior. Note that the z-dropout
parameterization reduces this problem somewhat.

Method Sampling Mean Distance Success Rate
MPUR + z-dropout zt ∼ p(z) 168.2 72.1
MPUR zt ∼ p(z) 157.4 63.6
MPUR + z-dropout zt ∼ qφ(z|s1:t, st+1) 126.1 30.8
MPUR zt ∼ qφ(z|s1:t, st+1) 86.0 19.2
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F MODEL-FREE RESULTS

Although the goal of this work is to learn policies with no environment interaction, for complete-
ness we also report results of running Proximal Policy Optimization (PPO) (Schulman et al., 2017),
a state-of-the-art model-free algorithm which learns through interacting with its environment. We
used the OpenAI Baselines implementation (Brockman et al., 2016) with the same policy network
architecture as for the other methods, and set the reward to be the negative policy cost defined in
equation 9. We measure both final performance and cumulative regret, using the success rate as a
reward. Cumulative regret is a measure often used in online learning which represents the difference
between the agent’s accumulated reward and the accumulated reward which would have been ob-
tained by following the optimal policy, which we take to be human performance here. Specifically,
the regret at epoch M is given by:

ρ(M) = TE[R∗]− E[

M∑
m=1

R̂m]

where R∗ represents the reward obtained by following the optimal policy and Rm is the reward
obtained by following the policy at epoch m. Unlike final performance, regret also reflects poor
decisions made during the learning process.

Results are shown in Figure 11. PPO obtains slightly higher final performance than MPUR, but
also incurs higher regret as it executes poor policies in the environment during the early stages of
learning. In contrast, MPUR learns through observational data and already has a good policy in
place when it begins interacting with the environment.

Figure 11: Performance comparison for MPUR and PPO, in terms of a) cumulative regret and b)
final performance
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Method Mean Distance Success Rate
MPUR + z-dropout 171.2± 4.5 74.8± 3.0
PPO 181.0± 6.7 77.8± 5.6

(b)
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