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ABSTRACT

Humans learn to play video games significantly faster than the state-of-the-art re-
inforcement learning (RL) algorithms. People seem to build simple models that
are easy to learn to support planning and strategic exploration. Inspired by this,
we investigate two issues in leveraging model-based RL for sample efficiency.
First we investigate how to perform strategic exploration when exact planning is
not feasible and empirically show that optimistic Monte Carlo Tree Search out-
performs posterior sampling methods. Second we show how to learn simple de-
terministic models to support fast learning using object representation. We illus-
trate the benefit of these ideas by introducing a novel algorithm, Strategic Object
Oriented Reinforcement Learning (SOORL), that outperforms state-of-the-art al-
gorithms in the game of Pitfall! in less than 50 episodes.

1 INTRODUCTION

The coupling of deep neural networks and reinforcement learning has led to exciting advances,
enabling reinforcement learning agents that can reach human-level performance in many Atari2600
games (Mnih et al., 2015; 2016; Silver et al., 2017; Hessel et al., 2017). However, such agents
typically require hundreds of millions of time steps to learn to play well. This is in sharp contrast
to people, who typically learn to play Atari games within a few episodes (Lake et al., 2017). Prior
work on human learning for Atari suggests that people may be systematically building models of the
reward and dynamics in the domain and using those to plan efficiently (Tsividis et al., 2017; Dubey
et al., 2018).

Given that human learners seemingly perform model-based RL very quickly, we are motivated to
consider alternative approaches to current model-based RL, which often involves building complex
predictive deep neural networks from scratch. Deep neural networks can require a large amount
of data to accurately train, and performing perfect planning with those models is computationally
expensive. Indeed, while there is a considerable amount of theoretical work done on tabular model-
based reinforcement learning that suggests model-based approaches can be provably sample effi-
cient (Dann et al., 2017; Brafman & Tennenholtz, 2002; Strehl & Littman, 2008), there is much less
success in using model-based reinforcement learning in extremely large environments, in part due
to the challenges of learning simple accurate models in these domains.

Instead, in this paper, we investigate two issues in leveraging model-based RL to speed learning
in large domains. First we explore how to perform approximate planning using models during
model-based RL to support exploration, assuming models are given. Models can facilitate deep
exploration, since one key benefit of using models is that it is often easier to quantify uncertainty in
those models, and perform planning in a way to guide the agent towards exploring and reducing that
uncertainty. Recent work has suggested the benefit of Thompson Sampling methods over optimism
methods for reinforcement learning (Osband & Van Roy, 2016), and, indeed, empirically Thompson
Sampling methods have done very well in contextual bandits and small state space MDPs where it
is possible to plan exactly. However, to our knowledge, there has not been an investigation of how
these popular approaches scale to larger domains where it is computationally prohibitive to perform
exact planning. We introduce optimistic MCTS, a variant of the popular planning technique Monte

1



Under review as a conference paper at ICLR 2019

Carlo Tree Search, and find that optimism here outperforms other approaches in several simulation
experiments when planning can only be done approximately.

Second, while our first investigation explores how to plan to encourage exploration given a model,
we further investigate how to choose the model class to support computational tractability and learn-
ing efficiency. Here we propose to learn object-oriented deterministic models of the domain. People
may leverage and test models of object interactions during video game learning (Tsividis et al., 2017;
Dubey et al., 2018), and object-oriented learning has the nice benefit that data from all similar ob-
jects can be pooled when building a model. Prior work has shown that object-oriented model-based
reinforcement learning can yield provably efficient learning and scale to larger domains (Diuk et al.,
2008). Deterministic models offer an additional benefit over object-oriented models–they require
less data to train (since one does not have to model a large stochastic distribution of outcomes) and
they have additional benefits for planning, reducing the branching factor of next states to 1. Indeed
past work (Diuk et al., 2008) also proposed learning deterministic object-oriented models. In con-
trast, we investigate how to learn the transition model and temporal abstraction to make the world
appear deterministic. In other words, we assume a candidate set of possible transition model classes
and temporal abstractions, and perform model selection to select a level of temporal abstraction and
model that deterministically predicts the outcome of an action.

We illustrate the potential benefit of these ideas by introducing an object oriented algorithm that uses
prior knowledge of model classes and object representation, and show that our algorithm can learn
to achieve positive reward in the notoriously difficult Atari game Pitfall! within 50 episodes. Almost
no RL methods have achieved positive reward on Pitfall! without human demonstrations, and even
with demonstrations, such approaches often take hundreds of millions of frames to learn (Aytar et al.,
2018; Hester et al., 2017). In contrast to demonstrations, we assume two forms of prior knowledge–a
predefined object representation and a class of potential model features. Computer vision is rapidly
advancing to the state that soon we will be able to easily extract objects from even artificial scenes
like the Arcade Learning Environment. The second assumption of candidate model classes is a
stronger assumption, but a large set of models could be defined directly given the object classes and
only incur a cost quadratic in the set of features.

While encouraging, such results should be mostly viewed as a case study. We believe the key contri-
butions of our paper are not this particular demonstration on Pitfall!, but rather the investigation of
exploration approaches when planning can only be done approximately, and the benefit of selecting
among model representations to support computationally tractable planning and fast learning. The
second can be viewed as a bias/variance tradeoff and in future work we plan to consider how to iden-
tify and account for model biases that could limit asymptotic performance during the model-based
planning procedure.

2 PRELIMINARIES

We consider a finite horizon Markov Decision Process (MDP) 〈S,A, T,R, γ〉, where S is the state
space, A the action space, T : S × A → S the transition function, R : S × A → R the reward
function, and γ the discount factor. The goal of the RL agent is to maximize the expected discounted
reward Eπ[

∑T
t=0 γ

tR(st, at)] following a policy π.

3 APPROXIMATE MODEL-BASED PLANNING TO SUPPORT EXPLORATION

Computing an optimal policy for a Markov decision process in a large state space can be extremely
computationally expensive, if not impossible. Therefore some form of approximate planning pro-
cedure is almost always needed for large scale domains. Especially in model-based RL algorithms
when the transition and reward models are initially unknown and should be learned online , a com-
putationally tractable planning algorithm is more critical. Since the model estimates are changing
and one should plan more frequently with the new model estimates.

One popular and powerful approach for scaling up planning for large Markov decision processes is
Monte Carlo Tree Search (Chaslot et al., 2008; Browne et al., 2012), which has been used to achieve
better than world class performance in Go (Silver et al., 2016). When a perfect transition and reward
model is known, MCTS is guaranteed to converge to the optimal value function in the limit of infinite
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Method Optimism Thompson Sampling BAMCP

Number of Episdoes 5.0 ± 1.7 6.2 ± 1.95 11.0 ± 2.5

Table 1: Comparison of different exploration methods in mini-Pitfall! to consistently achieve the
reward at the right end of the first room.
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Figure 1: Pong Prime

computation (i.e. infinite number of rollouts). However, when a model is estimated from the data
and computational power is bounded, prior works has suggested how to adjust planning horizon to
get the best computational performance (Jiang et al., 2015). As of our knowledge there is no work
that additionally investigate the performance of different exploration methods with approximate
planning.

We are interested in how to leverage models to support deep efficient exploration in large domains.
Prior research has strong guarantees to find a near optimal policy with deep exploration when exact
planning can be done, often in small state space (Brunskill et al., 2009; Brafman & Tennenholtz,
2002). In contrast, in this work, we investigate how to leverage models to support deep exploration
when exact planning is not possible (large state space).

We propose a new optimistic MCTS to support deep exploration guided by models. Particularly, we
suggest to perform a MCTS algorithm (e.g. UCT (Kocsis & Szepesvári, 2006)), and use the learned
reward R and transition model T that is optimistic toward unseen or less frequently seen part of
the state-action space (we further discuss how to learn simple models for planning in section 4).
Concretely, while performing rollouts using learned models at each step an optimistic reward bonus
is given. Optimistic reward bonus can be given by any optimism in the face of uncertainty (OFU)
algorithm (e.g. MBIE-EB (Strehl & Littman, 2008) or Rmax (Brafman & Tennenholtz, 2002)).

Optimistic MCTS may have some advantages over alternate ways to achieve deep exploration in
large state spaces given limited computation. In particular optimistic MCTS is leveraging model
uncertainty to drive deep exploration, in contrast to policy search methods with simulated mod-
els (Sutton et al., 2000) that relies on the stochasticity of the policy for exploration and it is unclear
how to leverage model uncertainty.

Additionally, MCTS with posterior sampling methods, like Thompson Sampling (Thompson, 1933)
(by sampling a model from posterior distribution and performing rollouts) has strong guarantees
when exact planning can be done, might not be optimistic enough for efficient exploration. With
limited number of rollouts, agent might not observe the optimistic part of the model, in contrast to
optimistic MCTS where optimism is built into every node of the tree.

To investigate the impact of approximate planning on deep exploration, we compare optimistic
MCTS, with Thomson Sampling, and BAMCP (Guez et al., 2012) (a tractable sample-based method
for approximate Bayes-optimal planning) in two toy domains, Pong Prime and mini-Pitfall!.
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3.1 EXPERIMENTS

In order to test our hypotheses on the impact of imperfect model-based planning on deep exploration
we introduced two toy environments, PongPrime and mini-Pitfall! that are similar to general Atari
games but in smaller scale. Pong Prime environment is designed for a hard exploration task. Dy-
namics of this game is similar to Atari2600’s Pong environment (Bellemare et al., 2013) with minor
tweaks that make the game significantly harder. The enemy paddle is made 3 times larger than the
player paddle. Additionally, the top and bottom 10% percent of the enemy paddle hit the ball back
at 1.5 times the normal speed. Similarly, the player paddle also consists of 3 regions with distinct
behavior. The top region of the paddle hits the ball back at 1.5 times speed. The middle region hits
the ball back at normal speed. Finally, the lower region covers 5% of the paddle and instantly wins
a point for the player. This configuration is set up so that it is difficult but not impossible for the
player to score using the top region (scoring on average around 5% of the time the ball bounces off
the top region). In this setting, the optimal policy is to always hit the ball with the lower region of
the ball. The game is deterministic and model free methods with ε-greedy exploration (e.g. DQN)
consistently loses the game with lowest possible score across 5000 episodes. Figure1(a) shows this
environment.

mini-Pitfall! is a small version of Atari2600 game Pitfall! which we use as a final test bed of our
algorithm. In this version we limit the agent to two rooms of the game (the initial room, room 0,
that agents starts the game in, and the room on the left side, room -1). There exist a dummy reward
Rmax at the right end of the room 0, and the left end of room -1 is a terminal state (underground
connection is also terminal state). Figure 2(a) shows this environment.

We provided the right model class for both experiments so we can separate the effect of exploration
from model mismatch. Figure 1(b) compares the performance of different exploration strategies to
the baseline (which uses a MLE model with UCT algorithm) combining with UCT algorithm in
Pong Prime domain. We perform 500 total tree searches for all runs in Figure 1(b). Additionally,
Table 1 shows the performance of different exploration methods in achieving the reward on the right
side of the room 0 in mini-Pitfall! consistently.

3.2 DISCUSSION

Both BAMCP and TS perform worse than the MLE model. In the limit of infinite simulations,
BAMCP is guaranteed to converge to the Bayes optimal solution (Guez et al., 2012). Similarly, with
full horizon planning, we should be able to compute the exact value for the model sampled with
TS, and there are strong guarantees that such a method will converge to the optimal policy (Osband
& Van Roy, 2016). However, if it is infeasible to use a depth that mimics the game horizon, or
perhaps even to reach a local reward, then TS may suffer. This is because TS samples a single
model, which means that parts of the model may be overly optimistic, while other parts may be
pessimistic. Hence, when performing a limited number of simulations using UCT, we may not go
down branches of the tree that observe the optimistic parts of the sampled model. Therefore, the
computed estimates of the Q value at the root node may not be optimistic, which is often a key part
of proofs of the effectiveness of TS methods, and very helpful empirically.

Additionally, BAMCP suffers more in these environments that are deterministic. This means that
for TS, optimism, and MLE approaches, the tree constructed will only have one child node (the de-
terministic next state) for any chosen action. In contrast, BAMCP samples a different deterministic
model at each rollout, and for the same action node, those models may each deterministically predict
different next states. Hence, BAMCP with M sampled models and planning horizon H , potentially
builds a tree of size O((|A|M)H ), in contrast to the other methods that build a tree of at most size
O(|A|H ), where |A| is the size of action space.

Optimism-based exploration significantly outperforms other approaches. Optimism is built into
every node of the three that is allowing it to distinguish even locally between actions that may need
exploration, in absence of observing long delayed reward. As we demonstrate in Figure 1(c) for the
optimistic method, as planning power increases through more simulations (number of rollouts), the
performance of optimism-based exploration also increases. With sufficient computational power,
optimistic MCTS should learn the optimal policy for Pong Prime domain.
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Figure 2: Macro actions

4 APPROXIMATELY DETERMINISTIC MODEL TO SUPPORT FAST LEARNING

In the previous section we considered how to plan and perform deep exploration given a transition
and reward models. Now we ask a natural question, what types of model to learn?, and how these
models will affect computational tractability of planning and sample efficient learning? In general
simpler models are easier to learn and requires less data to train, in contrast to complex function
approximation methods that often requires massive amount of data and suffer from compounding
errors in lookahead planning (Roderick et al., 2017; Weber et al., 2017). Additionally, simple models
are tractable to perform deep exploration with model uncertainty and reduce planning time.

There are reasonable evidence that humans learns a simple model, often inaccurate, to support plan-
ning and guide decision making (Tsividis et al., 2017; Dubey et al., 2018). In particular, people
seem to benefit from higher level object representations that allows them to factor a high dimen-
sional state space into simple low dimensional object states, this allows human to generalize from
few examples, explore and plan efficiently. Additionally, as discussed in section 3.2, deterministic
models can significantly help in planning and deep exploration, due to smaller branching factor of
the tree (each state node will have only one child per action). Inspired by humans and prior works
on object oriented MDP (Diuk et al., 2008) we hypothesize that object oriented models can help us
learn a simple, easy and approximately deterministic models that are sufficient for planning .

Object detection has been long studied in computer vision, and state-of-the-art algorithms can de-
tect objects with great accuracy in real world scenes (e.g. YoLo (Redmon & Farhadi, 2017), fast
RCNN (Girshick, 2015) mask RCNN (He et al., 2017) and . . . ). We expect that these algorithms
can simply detect objects and their bounding boxes, when they are trained on Atari2600. Thus, here
we assume objects are given, in section 4.2 we discuss how to learn a simple model and further
in section 4.3 we show how temporal abstraction can help learning an approximately deterministic
mode.

4.1 REVIEW OF OBJECT ORIENTED MDP

We use a simpler version of OOMDP (Diuk et al., 2008). we define a set of object classes C =
{c1, . . . , cn} where each class has a set of attributes {c.a1, . . . , c.am}. Each state s consists of
objects f(s) = {o1, . . . , ok} where each object oi ∈ C. The state of an object is defined by the value
assignment to its attributes. Finally, the state s of the underlying MDP is the union of all object
states ∪ki=1oi.

We define the interaction function I : O × O → {0, 1} to be an indicator that determines if two
objects are interacting with each other. For simplicity, we make three assumptions: first, that this
interaction function is known; second, objects from the same class share the same transition function;
and third, each object’s next state is dependent on at most pairwise object interactions and action.
An object’s successor state is determined by a standalone transition function Tc(o, a) or a pairwise
transition function Tci,cj (oi, oj , a) if I(oi, oj) = 1.
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Figure 3: Model selection

4.2 MODEL LEARNING

Given that we are planning at an object level, we hypothesize that even simple models, such as linear
and discrete count based models, give sufficient accuracy for planning, since often objects follow a
very simple physical laws. More importantly, to ensure ”sufficient accuracy in planning”, we further
require that these models predict transitions and rewards in a deterministic fashion.

To ensure deterministic transitions, we consider the class of functions Ft = {f1t , . . . , fnt }, where
each f it is a count-based model of the dynamics for an object. Each function stores the count of every
output based on a different set of input features with given history t. The simplest model in F1 is f11 ,
which uses one history with null input. For example, for a falling object with steady state velocity,
such a model is sufficient as we can predict displacement δx and δy without any input. On the other
hand, fn1 , which uses one history and the most complex set of features, is the most complicated
model in the class F1. In terms of objects, the most complex set of input features that we consider
is the union of the object’s state features, relative state features with respect to an interacting object,
and action.

The goal then is to choose the simplest model that achieves deterministic transitions within
Ft. To do so, we compute the entropy of the observed data for each function H(fkt ) =
−
∑
xi
p(xi) log(p(xi|fkt )) where the summation is over all the observed data. We choose the sim-

plest model that has entropy less than a predefined threshold εent. If none of the models in Ft
satisfy the entropy threshold, we increase t through an exponential back off scheme. Concretely, we
increase the history to the next exponent of 2. We use the same approach and same class of models
for reward functions.

Figure 3(a) shows an example for the game Pitfall!, where we used a Cartesian product of object
size (w, h), object location (x, y) and object intersection (x′, y′) as features. Ignoring null input,
this Cartesian product results in 7 different feature sets. With sufficient history, the entropy of all the
models eventually drops to zero.

4.3 TEMPORAL ABSTRACTION

As we observed in our experiments, objects transitions, especially action-dependent transitions, can
show a highly nonlinear behaviour and dependency to multiple time step histories. Inspired by
human’s reaction time and previous work (Diuk et al., 2008) we use the notion of macro action in
the form of ”act and then wait” in order to learn a simple approximately deterministic transition
models.

Algorithm 1 shows the pseudo code to learn the macro actions from a predefined set of atomic
actions (e.g. in the simplest form it can be the action space of the desired MDP; however, one can
define them as any n-token combination of actions). In algorithm 1 we augment all atomic actions
with k number of no-op or wait, and then greedily decrease the number of no-ops followed by each
action such that all model’s can deterministically predict the next object state. The goal is to have a
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model that achieves deterministic transition, to do so we measure the entropy of model’s prediction
with the observed data as in section 4.2.

Algorithm 1: Macro Actions
Input: maximum number of no-op k, set of atomic actions A
macro actions← atomic action followed by maximum number of no-op;
mark all macro action as reducible;
while there exist a reducible macro action do

a←select a reducible macro action and decrease number of no-op by one;
τ ← compute entropy of model’s prediction with new set of macro actions;
if τ ≥ thresh then

mark a as non reducible macro action and restore the number of no-op for a;
end

end

Figure 2(b) shows the total entropy of model’s versus total number of no-op in Pitfall! environment.
As algorithm progress entropy increases to pass the threshold. Figure 2 (c) shows the entropy of
agent’s models while reducing number of no-op for one action and keeping others constant. As it
shows Jump Right requires 8, Down requires 4 and Right requires none no-op afterward to achieves
a deterministic transition for all actions. Running this algorithm in Pong Prime environment results
in two no-op after each action, since the real dynamics uses 3 step history.

5 SOORL: STRATEGIC OBJECT ORIENTED REINFORCEMENT LEARNING

In this section we put together the insights from previous sections and propose a novel model-based
object oriented RL algorithm, Strategic Object Oriented RL (SOORL). SOORL assumes access to
an object detector, that returns a list of objects with their attributes (i.e. location and bounding box),
an interaction function and macro actions (that can be learned with algorithm 1).

Algorithm 2 shows a pseudo code of SOORL. At each step, SOORL performs lookahead planning
with UCT algorithm, learn and select appropriate transition and reward models for object represen-
tation and performs optimism based exploration.

Algorithm 2: SOORL
Input: object detector f(s), lookahead planning depth d, number of rollouts l
initialize;
for each episode e do

train value function V on replay buffer D;
for each step i do

oi ← detect objects with object detector f(si);
Q(si, a)← perform lookahead planning with depth d and l rollouts;
take action ai = argmaxQ(s, .) and update replay buffer D = D ∪ (oi, ai, oi+1, ri);
update transition and reward models with (oi, ai, oi+1, ri)

Model Learning: SOORL uses the method described in section 4.2 with Cartesian product of object
size (w, h), object location (x, y) and object intersection (x′, y′) as features. Ignoring null input,
this Cartesian product results in 7 different feature sets.

Exploration: Count based models allow SOORL to efficiently perform the knows what it knows
(KWIK) (Li et al., 2008) scheme for exploration (optimistic MCTS). Concretely, if our algorithm
queries the transition or reward model with a previously unseen input, we consider the resulting
state as a state with Rmax reward. Rmax reward is also considered for any previously unseen object
interactions. As we observe the reward for each interaction we update the reward model based on
model-based interval estimation (Strehl & Littman, 2008).
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Planning: At the beginning of each episode, a value function is trained based on previously seen
transitions and rewards. Value function V : O → R is trained over object states and can generally
be any function approximation methods.

Lookahead planning is performed by UCT (Kocsis & Szepesvári, 2006) algorithm with l rollouts
and depth d. Algorithm 3 shows pseudo code of planning, at each planning step, SOORL computes
object interactions, selects appropriate models based on interactions and object states then predicts
rewards and next object state. At depth d of planning SOORL uses value of the object state V (od)
trained at the beginning of each episode.

Algorithm 3: Lookahead Planning
Input: objects o, depth d, rollouts l, value function V
for number of rollouts l do

set current depth i to zero;
while i ≤ d do

if i == d then
update Q values with V (oi);
break;

detect interactions Ii with objects oi and select models T,R;

take action ai = argmaxQ(si, a) + c
√

logN(s,a)
N(s) ;

obtain next object state oi+1 and reward ri with R(oi, Ii), T (oi, Ii) and update Q;

6 EMPIRICAL EVALUATION

In this section we will evaluate SOORL on an Atari game Pitfall!. SOORL assumes access to an
object detector, a predefined set of function classes and macro action (that can be learned using
algorithm described in section 4.3).

Labeled data for object’s in Atari game in not available, and in our experiment we extracted the
objects from Atari RAM and screen information. The need for an object detector makes engineering
burden of SOORL prohibitive to test the algorithm on all Atari games. Thus we focused on one
of the hardest game (sparse reward and hard exploration (Bellemare et al., 2016)), Pitfall!, where
all the previous methods (without human demonstrations) failed to achieve any positive reward.
We showed that object representation can be extremely helpful in this hard exploration game and
SOORL can achieve a positive reward in Pitfall! without human demonstration.

Pitfall! is an Atari2600 environment where the goal is to have the agent traverse through multi-
ple rooms (255 in total) while collecting rewards and avoiding obstacles. It is arguably one of the
hardest Atari2600 game (Hester et al., 2017) due to its large map, sparse positive and dense nega-
tive rewards that necessitate deep exploration and long-horizon planning. The ε-greedy exploration
strategy completely fails in this environment, and more recent count-based exploration (Bellemare
et al., 2016) does not show much performance boost due to the sparsity of positive reward. Pitfall is
difficult even for human players without prior knowledge of the game – (Hester et al., 2017) reports
that human performance varies from 3662 to 47821 points, whereas for other hard Atari games, this
variation is much smaller (e.g. from 32300 to 34900 for Montezuma’s revenge).

6.1 DETAILS

All objects information are extracted from RAM and screen information, and each object’s attribute
is location (x, y) and bounding box size (w, h). Objects are considered interacting with each other
if bounding boxes collide. Transition and reward models for each object are based on the method
described in Section 4.2. The features used are a Cartesian product of object size (w, h), object
location (x, y) and object intersection (x′, y′). Ignoring null input, this Cartesian product results in
7 different feature sets.
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Figure 4: performance of SOORL on Pitfall!

As described in section 3 we used optimism based exploration method, by assigning reward Rmax
to all unseen interactions and transitions. As we observe reward for each interaction we update the
model, based on model based interval estimation (Strehl & Littman, 2008). Additionally in order
to further incentivize exploration we split the screen into N ×M grids and keeping a count of the
number of times agent visits each grid. The agent is given a reward bonus βn(s)−1/2 based on visit
count n(s).

For value function, we used discrete object’s location with the same split used for optimism
bonus, and computed the empirical transition T̂ (o′|o, a) and empirical reward with optimism bonus
r̂(o, a) + βn(s)−1/2, and at the beginning of each episode, we performed value iteration.

6.2 PERFORMANCE AND DISCUSSION

Figure 4(a) shows an increasing number of rooms being discovered across episodes. On average,
the agent discovers 21 rooms within 50 episodes, and in total across 20 runs the agent discovers 27
different rooms. This validates our hypothesis that optimistic MCTS drives deep exploration, that
we also showed in a smaller domains in section 3.

Figure 4(b) shows accumulative reward for each episode of SOORL and compares them to the other
state of the art algorithm. Results of count-based (Bellemare et al., 2016), DQfD (Hester et al.,
2017), A3C (Mnih et al., 2016) and DQN (Mnih et al., 2015) are reported at the time of evaluation.
Our average score across all episodes and all runs is −193.5± 595.8 and SOORL score for the best
episode across all runs in 606.6 ± 1254.5, which is higher than all scores that were reported at the
time of evaluation. To the best of our knowledge, this is the first approach which manages to get
positive rewards on Pitfall! without human demonstrations. Sample videos of the agent reaching
the two closest positive rewards can be found here: https://youtu.be/GvenPZMJiTg (4000
reward) https://youtu.be/74F-ta5LyuA (2000 reward)

Figure 4 (c) shows the percentage of runs that got a positive reward. More than 80% of runs got a
positive reward in 50 episodes that shows consistency of our approach across multiple runs. Due to
simple dynamics model that can be learned fast SOORL is extremely sample efficient in comparison
to other deep RL method that often takes millions of frame to find a good policy. However, end-to-
end deep RL methods use significantly less prior knowledge and using raw pixels as input, thus a
direct comparison with them is unfair. We have also provided macro actions and object information
for DQN and DDQN but those methods are not designed to take advantage of object representation
and did not show a boost in performance. On the other hand, SOORL uses much less prior knowl-
edge than methods with human demonstration (Aytar et al., 2018; Hester et al., 2017), where human
guidance enormously reduce the challenge of exploration.

Additionally, macro actions are provided for SOORL, but as shown in section 4.3 these can be
learned online. Integrating this temporal abstraction with SOORL can increase the sample complex-
ity by O(|A|K), where K is the maximum number of no-ops.
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7 RELATED WORK

Model based RL has accomplished great success in tasks in which a perfect simulator is known (Sil-
ver et al., 2016; 2017), mostly using Monte Carlo Tree Search algorithms like UCT (Kocsis &
Szepesvári, 2006; Chaslot, 2010). Recent work has focused on applying deep learning to model-
based RL by learning the model online (Rosin, 2011; Finn & Levine, 2017; Lenz et al., 2015; Weber
et al., 2017). In contrast to these methods, we seek to learn a simple model based on object repre-
sentation.

Exploration has been extensively studied in the tabular setting (Brafman & Tennenholtz, 2002; Strehl
& Littman, 2008; Jaksch et al., 2010; Osband & Van Roy, 2016). However, these methods do not
scale well to large MDPs and often result in poor sample complexity. Additionally, these methods
assume exact planning that might not be feasible in large state space. Recent approaches (Belle-
mare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017) proposed an extension of count based
exploration to large MDPs. Despite good asymptotic performance, when compared with humans
(Tsividis et al., 2017; Lake et al., 2017), these methods require orders of magnitude more samples.

Bayesian RL methods also provide an effective balance between exploration and exploita-
tion (Ghavamzadeh et al., 2015). When exact planning is possible, they provide strong guarantees.
However, these methods remain computationally intractable in large state spaces. Recent works
propose an extension of these methods to large MDPs (Osband et al., 2016; Azizzadenesheli et al.,
2018; Fortunato et al., 2017). However, these methods are unable to show substantial improvement
in hard exploration, sparse reward environments.

A closely related line of research, finite horizon planning (Kearns et al., 2002; Mannor et al., 2007;
Kearns et al., 1994), has noted how planning horizon can affect planning loss (Kearns & Singh, 2002;
Strehl et al., 2009). Recent study has shown that shorter planning horizons might be better when
there is model inaccuracy (Jiang et al., 2015). In contrast, in this work, we studied how imperfect
planning can affect exploration.

OOMDP (Diuk et al., 2008) defines a notion borrowed from relational MDPs (Guestrin et al., 2003),
and uses objects to learn models and perform model based planning. Model free methods that use
object representation (Garnelo et al., 2016; Roderick et al., 2017; Cobo et al., 2013) fail to scale to
large MDPs and do not leverage object representation for deep exploration. The main difference
between our approach and other object oriented approaches is that we perform scalable planning
with strategic exploration by leveraging objects to learn simple dynamics models.

8 CONCLUSION AND FUTURE WORK

To conclude, we showed how we can achieve a sample efficient RL algorithm with object priors. We
proposed optimistic MCTS as a way to drive deep exploration when exact planning is impossible,
and showed this to be more effective than posterior sampling methods. Additionally, we investigate
how approximately deterministic simple models can be learned with object representation to support
fast learning and planning.

We introduced Strategic Object Oriented RL (SOORL) that uses object representation and optimistic
MCTS with automatic model selection that biases towards simple deterministic models. SOORL
achieves state of the art results in the game of Pitfall!. While there remains works to be done to
reduce the engineering burden of SOORL, lookahead planning with object representation is a very
promising path towards more sample efficient RL algorithms.

A very important line of future research is robust planning. One important challenge in model-
based RL is making planning robust to model inaccuracy. Identifying the right model class is a
nontrivial task, and a wrong model class can easily introduce a catastrophic error in long-horizon
prediction that prohibits the use of tree search algorithms like UCT.
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