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ABSTRACT

Deep learning methods perform well in various tasks. However, the over-fitting
problem, which causes the performance to decrease for unknown data, remains.
We hence propose a method named MixFeat that directly creates latent spaces in
a network that can distinguish classes. MixFeat mixes two feature maps in each
latent space in the network and uses unmixed labels for learning. We discuss the
difference between a method that mixes only features (MixFeat) and a method
that mixes both features and labels (mixup and its family). Mixing features re-
peatedly is effective in expanding feature diversity, but mixing labels repeatedly
makes learning difficult. MixFeat makes it possible to obtain the advantages of
repeated mixing by mixing only features. We report improved results obtained
using existing network models with MixFeat on CIFAR-10/100 datasets. In addi-
tion, we show that MixFeat effectively reduces the over-fitting problem even when
the training dataset is small or contains errors. MixFeat is easy to implement and
can be added to various network models without additional computational cost in
the inference phase.

1 INTRODUCTION

Deep neural networks (LeCun et al., 1998) have performed well for various tasks, such as image
recognition (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016a;b; Han et al.,
2017; Huang et al., 2017), object detection (Ren et al., 2015; Redmon et al., 2016), and semantic
segmentation (Chen et al., 2018; Badrinarayanan et al., 2017).

One remaining problem with training deep neural networks is the over-fitting of training data,
despite many methods having been proposed to solve this problem; e.g., the dropout method
(Srivastava et al., 2014) drops randomly selected elements of feature maps, the mixup method
(Zhang et al., 2018a) and between-class learning (Tokozume et al., 2018) mix pairs of training im-
ages and labels, and the manifold mixup method (Verma et al., 2018) mixes pairs of training feature
maps on a randomly selected latent space and labels. We propose a method named MixFeat to make
each latent space in the network better distinguish each class.

The main contributions of this paper are as follows.

• We propose the MixFeat scheme to reduce the over-fitting problem by mixing two feature
maps in each latent space in the network so that it can distinguish each class without any
additional computational cost in the inference phase.

• We conduct extensive experiments to demonstrate the effectiveness of the generalization of
MixFeat.

MixFeat is easy to implement and can be added to various neural network models. It has the poten-
tial to be applied for various tasks, such as object detection, semantic segmentation, and anomaly
detection. MixFeat is described in the next section.
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2 MIXFEAT

2.1 OVERVIEW

To avoid overfitting, we consider a method that creates latent spaces in a neural network such that
each space can distinguish all classes. Training a network fed with a perturbed sample to output
the same inference as when it is fed the pure sample enlarges Fisher’s criterion (Fisher, 1936) (i.e.,
the ratio of the between-class distance to the within-class variance). It is therefore conceivable for
a network to learn the perturbed samples in order to make each latent space able to distinguish the
classes. However, a perturbation that is independent of the given examples is inefficient because the
latent space is extremely high-dimensional and dynamically changes during learning. We consider
that the perturbation should be determined according to the subspace spanned by several samples in
the latent space. For simplification, we adopt a partial plane spanned by the origin, the base example,
and another example, as shown in Fig 6(a). In this study, we propose the MixFeat method, which
mixes two feature maps in the latent spaces in the network to create latent spaces that can distinguish
each class.

2.2 MIXING ONLY FEATURES OR BOTH FEATURES AND LABELS
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Figure 1: Class distributions in the learned latent spaces, where A and B respectively denote
the distributions of classes A and B while Ai and Bj respectively denote examples in classes A
and B. The mixed features are distributed such that it is possible to distinguish each class in the
mixup method and the mixed features are distributed such that it is easier to distinguish each class
in MixFeat. Because MixFeat repeatedly mixes training examples in each latent space to extend
diversity, the obtained feature space is able to distinguish each class more easily.

In related studies, methods that mix two images and labels have recently been proposed. The mixup
method (Zhang et al., 2018a), between-class learning (BCL) (Tokozume et al., 2018), and manifold
mixup method (Verma et al., 2018) mix two training examples both with respect to features and
labels with random weights, and they have been reported to appreciably reduce over-fitting.

We argue that mixing methods are able to constrain the feature distribution, which cannot be
achieved by training without mixing, and the feature space obtained by MixFeat differs greatly from
those obtained by the mixup family of methods. Figure 1 shows the assumed class distributions
in learned feature spaces. Without mixing, the feature distribution of the mixed features increases
and overlaps the feature distributions of classes A and B (Fig. 1(left)). Mixing methods reduce the
feature distribution of each class and make it easy to distinguish between classes using the following
schemes:

• Regression learning: a learning method that associates mixed features with mixed labels;

• Learning against perturbation: a learning method that associates mixed features with un-
mixed labels.

Moreover, we consider repeatedly mixing features in various layers to obtain more diverse features.
Learning highly diverse features makes it easier for a latent space to distinguish each class and bet-
ter suppress over-fitting problems. However, learning to associate repeatedly mixed features with
repeatedly mixed labels is intuitively difficult. This behavior was also reported in Tokozume et al.
(2018). The authors stated that “the performance when we used only the mixtures of three different
classes (N = 3) was worse than that of N = 2 despite the larger variation in training data,” which
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indicates that we cannot mix repeatedly in the mixup family of methods. In contrast, learning repeat-
edly perturbed features is easy because the perturbation parameter is not a learning target. Hence,
we adopt a method that mixes only features so that repeatedly mixed features can be effectively
learned. MixFeat repeatedly mixes features in one training pass, so MixFeat achieves a latent space
that can distinguish each class more easily (Fig. 1(right)).

2.3 MIXFEAT ALGORITHM
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Figure 2: Computational passes of MixFeat. Let ⊕ denote the addition operator and ⊙ denote
the sample-wise product. Vector r is a random-value vector sampled from Gaussian distribution
N(0, σ2), whereas vector θ is a random-value vector sampled from uniform distribution U(−π, π),
where π indicates the circular constant. Each element of r or θ is associated with the feature map of
each sample in the mini-batch. Furthermore, F denotes the random sort operation along the example
axis to the input tensor, F−1 denotes the restoring order operation along the example axis to the input
tensor, and (copy) denotes copying the vector from the forward training pass. The inference phase
returns the input tensor without modification.

The process of MixFeat is shown in Fig. 2. Let ⊕ denote the addition operator and ⊙ denote the
sample-wise product.

The forward training pass, as shown in Fig. 2(a), is described as

Y = X + (a⊙X + b⊙ F (X)), (1)

where a = r cos θ, b = r sinθ, r ∼ N(0, σ2), θ ∼ U(−π, π),

where the first term X is the input mini-batch tensor, the second term a ⊙ X + b ⊙ F (X) is the
perturbation, Y denotes the output mini-batch tensors of MixFeat, r is a Gaussian random vector
with N(0, σ2), θ is a uniform random vector with U(−π, π), and π is the circular constant. Each
element of r or θ is associated with the feature map of each sample in the mini-batch. Furthermore,
F (X) denotes X randomly sorted along the example axis. An appropriate value for σ is discussed
later.

The backward training pass, shown in Fig.2(b), is calculated as

GX = GY + (a⊙GY + F−1(b⊙GY )), (2)

where GX and GY respectively denote the partial derivatives of the final output loss function with
respect to X and Y , F−1(·) denotes the inverse operation of F (·), which restores the order of
examples before the random sorting, and vectors a and b are copies of a and b in the forward
training pass (copy in Fig. 2).

During inference, as shown in Fig. 2(c), the perturbation branches are not necessary for inference
and can be removed as follows:

Y = X. (3)

Equation (3) indicates that the MixFeat layer in the inference phase returns the input as is; i.e., the
MixFeat layer can be simply removed from the inference phase and it thus does not lead to any
additional computational cost at this point.
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3 EXPERIMENTS

3.1 CIFAR-10 AND 100 DATASETS

The following experiments were conducted on the CIFAR-10 and -100 datasets
(Krizhevsky & Hinton, 2009). The two CIFAR datasets consist of RGB natural images com-
prising 32 × 32 pixels. CIFAR-10 consists of images drawn from 10 classes while CIFAR-100
is drawn from 100 classes. The CIFAR-10 and -100 datasets respectively contain 50,000 train-
ing images and 10,000 test images. In our experiments, the input images of the CIFAR-10
and -100 datasets were processed adopting the following conventional augmentation process
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). The original image of 32× 32 pixels was
color-normalized and then horizontally flipped with 50% probability. It was then zero-padded to a
size of 40× 40 pixels and randomly cropped to an image of 32× 32 pixels.

All models were trained employing back-propagation and a stochastic gradient descent with Nes-
terov momentum (Sutskever et al., 2013). We adopted the weight initialization introduced by
He et al. (2015). A single graphics processing unit (GeForce GTX Titan X or GeForce GTX 1080 Ti)
was used for each training. The initial learning rate was set to 0.05 and decayed by a factor of 0.1 at
the half and three-quarter points of the overall training process (300 epochs), following Huang et al.
(2017). In addition, we used a weight decay (Krogh & Hertz, 1992) of 5× 10−4, momentum of 0.9,
and batch size of 128.

When using the proposed MixFeat method, MixFeat is placed directly after each convolution and
σ = 0.2 is used unless otherwise specified.

We compared the performance of the proposed MixFeat method with two other mixing methods: the
mixup method (Zhang et al., 2018a) and manifold mixup method (Verma et al., 2018). We trained
a ResNet (pre-activation version) (He et al., 2016b), DenseNet, DenseNetBC, (Huang et al., 2017),
and PyramidNet (Han et al., 2017). Following the settings of the original papers, the distribution
parameter α = 1.0 was used for the mixup method and α = 2.0 was used for the manifold mixup
method. For PyramidNet, the initial learning rate was set to 0.01 and a batch size of 32 was used
depending on the memory limitations of the graphics processing unit. We implemented the methods
using Chainer v4.4.0 (Tokui et al., 2015).

Results are given in Table 1. The results obtained with the mixup method were consistently better
than those obtained with the vanilla model, which is a model that does not avoid over-fitting. In
addition, the manifold mixup method sometimes achieved better result than original mixup method.
Ultimately, the best performance was obtained when MixFeat was adopted for almost all network
models. The best results on the CIFAR-10 and -100 datasets were 2.92% and 16.03% for the 272-
layer PyramidNet. These results demonstrate that MixFeat improves the performance of various
network models.

The training and test error curves obtained with and without MixFeat are shown in Fig. 3. The test
error rate training with MixFeat shows better convergence than the rate training without MixFeat.
In addition, the training and testing error curves for training with MixFeat are closer together than
those for training without MixFeat, which demonstrates that MixFeat reduces over-fitting.

3.2 VARIOUS REGULARIZATION METHODS

We compared the performance of the proposed MixFeat method with several other over-fitting avoid-
ance methods: the mixing methods mixup (Zhang et al., 2018a), manifold mixup (Verma et al.,
2018), and input MixFeat; and the shake methods Shake-shake (Gastaldi, 2017), ShakeDrop
(Yamada et al., 2018), and swapout (Singh et al., 2016). Input MixFeat indicates a method that
mixes only input images (and does not mix labels) as a special case of MixFeat. We trained
ResNet (the pre-activation version) (He et al., 2016b) with the learning settings reported in 3.1.
Additionally, following the original papers, stochastic parameters θ1 = θ2 = Linear(1, 0.5)
were used for swapout and bl = Linear(1, 0.5) was used for ShakeDrop; shake parameters
αi ∼ U(0, 1), βi ∼ U(0, 1) were used for the shake-shake and α ∼ U(−1, 1), β ∼ U(0, 1) were
used for ShakeDrop.
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Table 1: Benchmark results on the CIFAR-10 and -100 datasets. We show the average and
standard errors for five trials. C10 and C100 respectively indicate CIFAR-10 and CIFAR-100.
ResNet-B indicates ResNet with bottleneck module. For hyperparameters, we used k = 12 in
DenseNet/DenseNet-BC and α = 200 in PyramidNet. The order of the layers in a module are the
same in each model except of the PyramidNet: BN-ReLU-Conv (ResNet/DenseNetBC repeat this
order twice for each module and ResNet-B repeat this order three times for each module). The
order of the layers in a module in PyramidNet is: BN-Conv-BN-ReLU-Conv-BN-ReLU-Conv-BN.
Vanilla indicates that nothing was done to avoid over-fitting, mixup (Zhang et al., 2018a) and mani-
fold mixup (Verma et al., 2018) are used as the learning schemes, and MixFeat is located immediately
after each convolution layer. Overall, MixFeat improves the performance of all convolutional neural
network models.

Test error rate (%)

Dataset Model Depth #Params Vanilla Mixup
Manifold

mixup
MixFeat

(ours)

C10

ResNet 20 0.3M 7.33± 0.09 7.02± 0.12 7.68± 0.14 6.54± 0.24
ResNet 110 1.7M 5.18± 0.10 4.48± 0.15 4.95± 0.08 4.78± 0.18
ResNet-B 164 1.7M 4.61± 0.07 3.86± 0.11 3.96± 0.07 3.78± 0.04
DenseNet 40 1.0M 5.59± 0.20 5.12± 0.12 5.43± 0.16 4.82± 0.10
DenseNet-BC 100 0.8M 4.66± 0.12 4.17± 0.13 4.67± 0.19 3.91± 0.13
PyramidNet 272 26.0M 3.64± 0.15 - - 2.92± 0.06

C100

ResNet 20 0.3M 31.39± 0.26 30.35± 0.40 31.33± 0.39 29.67± 0.23
ResNet 110 1.7M 24.59± 0.13 22.63± 0.41 22.58± 0.23 23.58± 0.46
ResNet-B 164 1.7M 21.31± 0.23 19.50± 0.22 19.18± 0.27 19.92± 0.24
DenseNet 40 1.0M 26.40± 0.23 23.31± 0.19 24.17± 0.34 23.31± 0.28
DenseNet-BC 100 0.8M 22.98± 0.13 20.80± 0.22 20.85± 0.24 20.09± 0.16
PyramidNet 272 26.0M 17.74± 0.23 - - 16.03± 0.15
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Figure 3: Training and test error curves for PyramidNet (depth = 272, α = 200). Left: Training
curve on CIFAR-10. Right: Training curve on CIFAR-100. The discrepancy between the training
and test curves is suppressed by MixFeat.

Results are given in Table 2. The results obtained by the mixing methods are better than those
obtained by the non-mixing methods, and MixFeat achieves the best performances. Comparing the
MixFeat methods, the method that mixes features in each latent feature space is much better than the
method that only mixes features at the input stage, both in CIFAR-10 and CIFAR-100. The shake
methods seem to insufficiently converge even with 300 epochs of training, as mentioned in their
original papers (Gastaldi, 2017; Yamada et al., 2018).

3.3 OVER-FITTING AVOIDANCE PERFORMANCE

We present experimental results that demonstrate how well MixFeat avoids over-fitting. Addition-
ally, we experimentally confirm that MixFeat and mixup are different approaches to reduce over-
fitting.
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Table 2: Comparison of the results of various regularization methods on the CIFAR-10 and -100
datasets using a 20-layer ResNet (pre-activation). Vanilla indicates that nothing was done to avoid
over-fitting, mixup (Zhang et al., 2018a) and manifold mixup (Verma et al., 2018) are used as the
learning schemes, and MixFeat is located immediately after each convolution layer. Shake-shake
(Gastaldi, 2017), ShakeDrop (Yamada et al., 2018), and swapout (Singh et al., 2016) are shake meth-
ods. Moreover, shake-shake has parallel convolution layers and hence twice the number of param-
eters of the other methods. Input MixFeat mixes only input images (not labels) as a special case of
MixFeat. Overall, MixFeat achieves the best performance.

20-layer ResNets

Test error rate (%)

Method CIFAR-10 CIFAR-100

Vanilla 7.33± 0.09 31.39± 0.26
Mixup 7.02± 0.12 30.35± 0.40
Manifold mixup 7.68± 0.14 31.33± 0.39
MixFeat (ours) 6.54± 0.24 29.67± 0.23
Shake-shake 13.87± 0.44 51.31± 1.64
ShakeDrop 7.32± 0.15 31.49± 0.30
Swapout 8.17± 0.24 33.51± 0.40
Input MixFeat 6.96± 0.18 30.81± 0.05

3.3.1 WITH INCORRECT LABELS IN THE TRAINING DATASET

Incorrect labels in the training dataset degrade the test error rates because of over-fitting. We thus
compared the test error rates with and without MixFeat while changing the ratio of incorrect labels
in the training dataset. To construct a training dataset with a percentage p of incorrect labels from the
original CIFAR-10 training dataset, we randomly selected a percentage p samples of training dataset
and changed each label to another label that was randomly selected from the remaining nine classes.
Results are shown in Fig. 4. As shown in Fig. 4 (Left), increasing the ratio of incorrect labels in the
training data greatly magnifies the error rate without MixFeat whereas the increase in the error rate
is considerably suppressed when MixFeat is used. As shown in Fig. 4 (Center and Right), the test
curves degrade drastically after the peak without MixFeat whereas the test curves are kept low by
MixFeat.

Mixup demonstrates the behavior same as MixFeat, and the method combined MixFeat and mixup
has better performance than of each method, as shown in Fig. 4. The results confirm that MixFeat
and mixup are different approaches and even compatible each other.

3.3.2 WITH SMALL TRAINING DATASETS

In general, learning with a small training dataset causes over-fitting. We thus compared the test error
rates with and without MixFeat while reducing the size of the training dataset. In this experiment,
the number of parameter update iterations was kept equal by increasing the number of epochs in
inverse proportion to the training dataset size. Figure 5 (Left) shows that reducing the number of
training data greatly increases the error rate without MixFeat whereas the increase in the error rate
is considerably suppressed when MixFeat is used.

Mixup demonstrates the behavior same as MixFeat, and the method combined MixFeat and mixup
has better performance than of each method, as shown in Fig. 5. The results confirm that MixFeat
and mixup are different approaches and even compatible each other.

The results of these experiments indicate that MixFeat prevents deep neural networks from over-
fitting caused by poor quality training data.

6



Under review as a conference paper at ICLR 2019

0 10 20 30 40 50
Ratio of incorrect labels (%)

0

5

10

15

20

25

30

35

40

Er
ro
r r
at
e 
(%

)

vanilla
mixup
MixFeat
combine

0 50 100 150 200 250 300
iter.

0

10

20

30

40

50

Er
ro
r r
at
e 
(%

)

vanilla
mixup
MixFeat
combine

0 50 100 150 200 250 300
iter.

0.0

0.5

1.0

1.5

2.0

lo
ss

test (vanilla)
test (mixup)
test (MixFeat)
test (combine)

train (vanilla)
train (mixup)
train (MixFeat)
train (combine)

Figure 4: Results with incorrect labels in the training dataset without mixing, with MixFeat, with
mixup, and with the method combined MixFeat and mixup on CIFAR-10 using 20-layer ResNets
(pre-activation). Left: Test error (%) results for an increasing number of incorrect labels in the train-
ing dataset. The increase in the error rate as the number of incorrect labels increases is suppressed
by MixFeat and mixup. Additionally, the method combined those two has better performance than
of each method. Center: Test error curves for the training dataset with 50% incorrect labels. Right:
Training and test loss curves for the training dataset with 50% incorrect labels. The test curves de-
grade drastically after the peak without mixing whereas they are kept low by MixFeat and mixup.
Additionally, the method combined those two has better performance than of each method.
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Figure 5: Left: Test error (%) results when reducing the training dataset size without mixing,
with MixFeat, with mixup, and the method combined MixFeat and mixup on CIFAR-10 using 20-
layer ResNets (pre-activation). The increase in the error rate with data reduction is suppressed
with MixFeat and mixup. Additionally, the method combined those two has better performance
than of each method. Center: Comparison of the results of original MixFeat, i.i.d.-MixFeat, 1D-
MixFeat, inner-MixFeat, and Gaussian noise with changing hyperparameters σ or α on CIFAR-10
using 20-layer ResNets (pre-activation). The original MixFeat has the highest performance. Right:
Comparison of the results for various hyperparameter σ values in MixFeat for various settings. The
best value is σ = 0.2 in each setting.

3.4 ABLATION ANALYSIS

3.4.1 DIMENSIONS AND DIRECTION OF THE DISTRIBUTION

For perturbation factors a and b in Eq. 1, we can consider two types of distribution: one where the
perturbation quantity follows Gaussian distribution and another where the spatial extent of the per-
turbation follows Gaussian distribution. MixFeat adopts the former concept, and here we compare
to the latter concept as

a ∼ N(0, σ2), b ∼ N(0, σ2). (4)

We call this variation i.i.d.-MixFeat. Intuitively, the difference between the two concepts is that the
former perturbation distribution is concentrated near zero.
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Figure 6: Distribution of various perturbations: (a) MixFeat / i.i.d.-MixFeat, (b) 1D-MixFeat, (c)
inner-MixFeat, and (d) Gaussian noise.

Additionally, we can simply modify MixFeat as a one-dimensional version (1D-MixFeat) and inner-
division version (inner-MixFeat), as shown in Fig. 6. The forward training pass of 1D-MixFeat is
described as

Y = X + r⊙ (X − F (X)), (5)

whereas the backward training pass is described as

GX = GY + (r⊙GY − F−1(r⊙GY )), (6)

and the inference phase is the same as that of the original MixFeat.

Inner-MixFeat follows the mixing concept of the mixup method and BCL. The forward training pass
is described as

Y = X + r′ ⊙ (X − F (X)) where r′ = |B(α, α)− 0.5| − 0.5, (7)

where r′ is the mixing ratio based on a random vector with a beta distribution B(α, α) following
the mixup method. Note that we modified the mixing ratio to ensure consistency between the major
component of the mixed image and label. The backward training pass is described as

GX = GY + (r′ ⊙GY − F−1(r′ ⊙GY )) (8)

and the inference phase is

Y = (1 + Er′)X, (9)

where Er′ denotes the expected value of r′.

Finally, we also compared our MixFeat to a method that perturbs using isotropic Gaussian noise
to demonstrate the superiority of directional perturbation. The forward training pass of the above
perturbation (called Gaussian noise) is shown in Fig. 6 (d) and described as

Y = X + g (10)

g ∼ N(0, σ2) (11)

whereas the backward training pass is described as

GX = GY , (12)

and the inference phase is the same as that of MixFeat.

Figure 5 (Center) compares the test error rate with changing hyperparameter σ or α for the original
MixFeat, i.i.d.-MixFeat, 1D-MixFeat, inner-MixFeat, and Gaussian noise methods. The best results
for each variation of perturbations were 6.54%(σ = 0.2) for the original MixFeat, 6.66%(σ = 0.15)
for the i.i.d.-MixFeat, 6.77%(σ = 0.1) for 1D-MixFeat, 6.94%(α = 0.02) for inner-MixFeat, and
7.05%(σ = 0.1) for Gaussian noise. The original MixFeat thus has the highest performance.

3.4.2 LOCATION OF MIXFEAT IN THE NETWORK

We investigated the location of MixFeat in a commonly used pre-activation unit (He et al.,
2016b; Huang et al., 2017), which consists of convolution (Conv), batch normalization (BN)
(Ioffe & Szegedy, 2015), and a rectified linear unit (ReLU) (Nair & Hinton, 2010), referred to as
a -BN-ReLU-Conv- network. Table 3 shows that MixFeat improve results regardless of the location,
but the best location is after convolution. We therefore place MixFeat directly after each convolution.

3.4.3 REASONABLE HYPERPARAMETER VALUE σ
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Table 3: Comparison of MixFeat lo-
cations in a -(1)-BN-(2)-ReLU-(3)-Conv-
(4)- pre-activation unit. MixFeat is per-
formed regardless of the location, but the
best location is after convolution.

20-layer ResNet on CIFAR-10

MixFeat location Error rate (%)

(no MixFeat) 7.33

(1) 6.74
(2) 6.85
(3) 6.66
(4) 6.54

We investigated the standard deviation σ of the distribu-
tion of r in Eq. (1). This investigation thus elucidates
the optimal range of the distribution for effective pertur-
bation. Figure 5 (Right) compares the results. Here, a
value of σ that is too small does not improve the per-
formance while a value of σ that is too large decreases
the performance appreciably. That is to say, the major-
ity of input tensor components of Y are replaced in the
perturbation tensor if |r| is too large, and this range of
values thus does not work well. Although σ cannot be
theoretically determined, σ = 0.2 is the experimentally
determined optimal hyperparameter.

4 RELATIONSHIP WITH PREVIOUS WORK

We discuss the relationship between our approach and others that reduce the over-fitting of training
data. Our approach is related to a series of approaches based on perturbing training data. We describe
the differences between our approach and the others in the following.

Data augmentation methods for input images are widely used. The conventional data augmenta-
tion method (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015) adds perturbations to the input
images through geometric or value transformations. The cutout (DeVries & Taylor, 2017b) and
random erasing (Zhong et al., 2017) methods overwrite elements in randomly selected rectangular
regions with zeros or random values. These methods are intuitive and easily adjustable. Reason-
able perturbation on the input image is independent of our method and a synergistic effect can be
expected when using these methods together with our MixFeat method.

“Drop” perturbations are used for regularization and/or convergence acceleration. Dropout
(Srivastava et al., 2014) drops randomly selected elements of feature maps, Dropconnect (Wan et al.,
2013) drops randomly selected network connections, and ResDrop (Huang et al., 2016) drops ran-
domly selected residual paths in ResNets (He et al., 2016a). It seems these methods have not been
used much in recent times owing to their poor compatibility with batch normalization or their com-
plicated implementations. However, these methods can be used with MixFeat if needed.

“Shake” methods calculate randomly weighted sums of parallel network branches. Shake-shake
(Gastaldi, 2017) mixes the identity map and two residual branches with i.i.d. random weights for
forward and backward passes. ShakeDrop (Yamada et al., 2018) mixes the identity map and one
residual branch with independent (and not identically) random weights for forward and backward
pass. They acquire an ensemble effect in each “shake” block. However, these methods worsen
convergence speeds, as reported in Gastaldi (2017) and Yamada et al. (2018). These studies reported
that 1,800-epoch training was better on CIFAR datasets, compared with 300-epoch training, which
is a popular setting. This result is presumed to be because the parallel network branches are not on
the same mapping, which is different from MixFeat.

The following methods mix two images. Sample pairing (Inoue, 2018) repeats two learning
phases alternately, with one phase learning the average of two images and one of their labels and
the other phase learning the input image and label as they are. Augmentation in feature space
(DeVries & Taylor, 2017a) mixes two neighboring images in a pretrained feature space to expand
the distribution of the feature maps. MixFeat is considered to be an extension of these methods that
enables repeated mixing in several dynamic latent spaces.

Methods that mix two images and labels have recently been proposed. Mixup (Zhang et al., 2018a)
and BCL (Tokozume et al., 2018) mix two training examples (an image and label) with random
weights, and they are reported to reduce over-fitting appreciably. The manifold mixup method
(Verma et al., 2018) mixes two training examples, as does the mixup method, but mixes feature
maps randomly selected from some predetermined latent space instead of images. The difference
between MixFeat and these methods is described in 2.2.

Manifold adversarial training (MAT) (Zhang et al., 2018b) learns the most sensitive adversarial ex-
amples in each feature map through two-step learning for each mini batch. In the first step, the
most sensitive direction for each example in the given mini batch is found. In the second step, each
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example is shifted in the most sensitive direction in each feature map. MAT has the same purpose as
our method in that it makes a latent space that can distinguish each class, but the magnitude of the
perturbation cannot be determined reasonably because the perturbation vector is determined from
only the sensitive direction. Moreover, MAT increases the training time because of the two-step
learning process.

5 VISUALIZATION

Finally, we visualize the feature distributions learned with the vanilla and MixFeat methods in Fig. 7.
We trained a six-layer neural network with or without MixFeat on two-class toy data that have a
two-dimensional checkerboard distribution. The vanilla network architecture is a three-fold stack of
{fc(20) → tanh → fc(2)} while the MixFeat network architecture is a three-fold stack of {fc(20) →
tanh → MixFeat → fc(2)}, where fc(k) denotes the k-way fully connected layer. The figure shows
that each class is distinguished from the others in each latent feature space obtained with MixFeat
whereas, without MixFeat, each class is distinguished from the others only in the output spaces. We
conjecture that this is why the classification performance improved with MixFeat.

(a) (b) (c) (d)

Figure 7: Visualization of feature distributions after 1,200-epoch training with a six-layer neural
network on two-dimensional toy data. Top row shows the results without MixFeat, Bottom row
shows the results with MixFeat. (a) The input distribution, (b) intermediate distributions after the
second layers, (c) intermediate distributions after fourth layers, and (d) output distribution. In the
distributions obtained with learning using MixFeat, it is easier to distinguish each class at each
depth.

6 CONCLUSIONS

We proposed a novel method named MixFeat that mixes the feature maps in each latent space to
avoid over-fitting in training deep neural networks. As a result, training the repeatedly mixed fea-
ture reasonably expands the feature distribution in each latent space and improves generalization
performance. Our experimental results show that MixFeat appreciably improves the generalization
performance. We discussed the relationship between our approach and a series of previously re-
ported approaches and compared the MixFeat and mixup methods in detail. In future work, we are
interested in verifying robustness to adversarial examples and verifying the problem of “manifold
intrusion” as suggested in (Guo et al., 2018). Further studies are needed to extend MixFeat to tasks
that use only small mini-batches, such as object detection or semantic segmentation. Because the
MixFeat module can be easily added to various network models without additional computational
cost in the inference phase, we believe that it will become the de facto standard for methods of
reducing over-fitting.
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