
Under review as a conference paper at ICLR 2020

GENERALIZING DEEP MULTI-TASK LEARNING WITH
HETEROGENEOUS STRUCTURED NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many real applications show a great deal of interest in learning multiple tasks
from different data sources/modalities with unbalanced samples and dimensions.
Unfortunately, existing cutting-edge deep multi-task learning (MTL) approaches
cannot be directly applied to these settings, due to either heterogeneous input di-
mensions or the heterogeneity in the optimal network architectures of different
tasks. It is thus demanding to develop knowledge-sharing mechanism to handle
the intrinsic discrepancies among network architectures across tasks. To this end,
we propose a flexible knowledge-sharing framework for jointly learning multiple
tasks from distinct data sources/modalities. The proposed framework allows each
task to own its task (data)-specific network design, via utilizing a compact tensor
representation, while the sharing is achieved through the partially shared latent
cores. By providing more elaborate sharing control with latent cores, our frame-
work is effective in transferring task-invariant knowledge, yet also being efficient
in learning task-specific features. Experiments on both single and multiple data
sources/modalities settings display the promising results of the proposed method,
especially favourable in insufficient data scenarios.

1 INTRODUCTION

Multi-task learning (MTL) (Caruana, 1997; Maurer et al., 2016) is an approach for boosting the
overall performance of each individual task by learning multiple related tasks simultaneously. In
the deep learning setting, jointly fitting sufficiently flexible deep neural networks (DNNs) to data
of multiple tasks can be seen as adding an inductive bias to the deep models, which can facilitate
the learning of feature representations that are preferable by all tasks. Recently, the deep MTL has
been successfully explored in a broad range of applications, such as computer vision (Zhang et al.,
2014; Misra et al., 2016), natural language processing (Luong et al., 2015; Liu et al., 2017), speech
recognition (Wu et al., 2015; Huang et al., 2015) and so on.

Nevertheless, one key challenge in deep MTL remains largely unaddressed, that is, almost all exist-
ing deep MTL approaches (Yang & Hospedales, 2017; Long et al., 2017) restrict themselves only
to the setting of multi-label learning (or multi-output regression) (Zhang & Yang, 2017). In other
words, different tasks must be fed with input data from the same source (or domain). Such re-
quirement, however, seriously limits the applicability of those models to a more realistic scenario of
deep MTL, where the tasks involve distinct data sources (domains) with unbalanced sample sizes or
dimensions.

More specifically, tasks from some domains with abundant samples or small input dimensions are
relatively easy to handle, whereas tasks from other domains are quite challenging due to the insuf-
ficient training data and large dimensionality. For instance, classifying hand-written digits (MNIST
dataset (LeCun et al., 1998)) is somewhat similar to the recognition of hand-drawn characters (Om-
niglot dataset (Lake et al., 2015)). The Omniglot task is much harder than the MNIST task, as each
character in Omniglot has only 20 training samples, while the input dimensionality is about 15 times
larger than MNIST digit. As another example, predicting binary attributes (i.e., ‘young’, ‘bald’, ‘re-
ceding hairline’) from human face images (CelebA dataset (Liu et al., 2015)) ought to be related to
the age group classification using human photos taken in the wild (Adience dataset (Eidinger et al.,
2014)). The Adience task turns out to be the more difficult one since the wild images are not prepro-
cessed and 7.6 times fewer than CelebA samples. Hence, it makes good sense to jointly learn these

1



Under review as a conference paper at ICLR 2020

TN 
Prior

Task A Task B

MRN

TN 
Prior

DMTRL-Tucker

Task A Task B

DMTRL-TT

Task A Task B

TRMTL-General

Task A Task B

TRMTL-CNN

Task A Task B

H

W

I I

O

H

W

I

O

H

W

I

O

H

W

I

O

Task A’s latent core Task A’s latent vector

Shared latent matrix Shared latent core

Task B’s latent core 

H W Task A’s input/output latent core I O
I OH W

H W I O

Task B’s input/output latent core 

Shared input/output latent core 

Task A’s spatial latent core 

Task B’s spatial latent core 

Shared spatial latent core 

Task A’s matrix

Task B’s matrix

Shared matrix

Task B’s latent vector

O

H

W

I

O

H

W

I I

O O

Figure 1: The overall sharing mechanisms of multilinear relationship network (MRN), two variants of deep
multi-task representation learning (DMTRL) for CNN setting and our TRMTL (general setting and CNN set-
ting) w.r.t. two tasks. The shared portion is depicted in yellow. MRN: original weights are totally shared at the
lower layers and the relatedness between tasks at the top layers is modelled by tensor normal priors. DMTRL
(TT or Tucker): all layer-wise weights must be equal-shape so as to be stacked and decomposed into factors.
For each task, almost all the factors are shard at each layer except the very last 1D vector. Such pattern of shar-
ing is identical at all layers. TRMTL (General): layer-wise weights are separately encoded into TR-formats
for different tasks, and a subset of latent cores are selected to be tied across two tasks. The portions of sharing
can be different from layer to layer. TRMTL (CNN): spatial cores (height and width cores) in the tensorized
convolutional kernel are shared, while cores of input/output channels of the kernel are task-specific.

tasks to extract better feature representations, especially for the hard tasks, which could be achieved
through transferring domain-specific knowledge from easy tasks.

Unfortunately, existing cutting-edge deep MTL models are only suited for the multi-label learning
where different tasks share the same training inputs (i.e., Xi = Xj for i 6= j, where Xi denotes the
input for task Ti), and thus cannot be directly applied to above learning scenarios. This is due to those
models fail to provide knowledge-sharing mechanisms that can cope with the intrinsic discrepancies
among network architectures across tasks. Such discrepancies either arise from the heterogeneous
dimensions of input data or from the heterogeneous designs of layer-wise structures.

Conventionally, knowledge-sharing mechanisms of deep MTL can be hard or soft parameter sharing
(Ruder, 2017). Hard sharing models (Zhang et al., 2014; Yin & Liu, 2017) share all parameters at
the lower layers but with no parameters being shared at the upper layers across tasks. Soft sharing
models (Duong et al., 2015; Yang & Hospedales, 2016; Long & Wang, 2015), on the other hand,
learn one DNN per task with its own set of parameters, and the tasks are implicitly connected through
imposing regularization terms on the aligned weights. The common issue with above mechanisms
is that, for the sharing part, the network architectures of all tasks are strictly required to be identical.
It turns out that some of the tasks have to compromise on a sub-optimal network architecture, which
may lead to the deterioration in the overall performance. Ideally, at all potentially shared layers, each
task should be capable of encoding both task-specific and task-independent portions of variation.

To overcome this limitation, we propose a latent-subspace knowledge-sharing mechanism that al-
lows to associate each task with distinct source (domain) of data. By utilizing tensor representation,
different portions of parameters can be shared via latent cores as common knowledge at distinct
layers, so that each task can better convey its private knowledge. In this work, we realize our pro-
posed framework via tensor ring (TR) format (Zhao et al., 2016) and refer it as tensor ring multi-task
learning (TRMTL), as shown in Figure 1.

Our main contributions are twofold: (1) we offer a new distributed knowledge-sharing mechanism
that can address the discrepancies of network architectures among tasks. Compared to existing deep
MTL models that are only for multi-label learning, the joint learning of tasks from multi-datasets
(multi-domains) with heterogeneous architectures becomes feasible. (2) we provide a TR-based
implementation of the proposed framework, which further enhances the performance of deep MTL
models in terms of both compactness and expressive power.

2



Under review as a conference paper at ICLR 2020

N1

N2N4

N3

Tensor

N1 N2 N3 N4

TT

R1 = 1 R2 R3 R4 R5 = 1

N1

N2N3

N4

TR

R2

R3

R4

R5 = R1

Figure 2: The diagrams of a 4th-order tensor in TT and TR-format.

2 TENSOR PRELIMINARIES

High-order tensors (Kolda & Bader, 2009) are referred to as multi-way arrays of real numbers.
LetW ∈ RN1×···×ND be a Dth-order tensor in calligraphy letter, where D is called mode or way.
Some original work have successfully applied tensor decompositions to applications such as imaging
analysis and computer vision (Vasilescu & Terzopoulos, 2002; 2003). As a special case of tensor
networks, the recent TR decomposition (Zhao et al., 2016) decomposes a tensorW into a sequence
of 3rd-order latent cores that are multiplied circularly. An example of TR-format is illustrated in
Figure 2. In TR-format, any two adjacent latent cores are ‘linked’ by a common dimension of size
Rk+1, k ∈ {1, ..., D}. In particular, the last core is connected back to the first core by satisfying
the border rank condition RD+1 = R1. The collection of [R1, R2, ..., RD] is defined as TR-rank.
Under TR-format, merely

∑D
k=1NkRkRk+1 parameters are needed to represent the original tensor

W of size
∏D
k=1Nk. Compared with tensor train (TT) format (Oseledets, 2011), TR generalizes TT

by relaxing the border rank condition. (Zhao et al., 2016) concludes that TR is more flexible than
TT w.r.t. low-rank approximation. The authors observe the pattern of ranks distribution on cores
tend to be fixed in TT. In TT, the ranks of middle cores are often much larger than those of the side
cores, while TR-ranks has no such drawbacks and can be equally distributed on cores. The authors
find that, under the same approximation accuracy, the overall ranks in TR are usually much smaller
than those in TT, which makes TR a more compact model than TT.

3 METHODOLOGY

Our general framework learns one DNN per task by representing the original weight of each layer
with a tensor representation layer, i.e., utilizing a sequence of latent cores. Then, a subset of cores
are tied across multiple tasks to encode the task-independent knowledge, while the rest cores of each
task are treated as private cores for task-specific knowledge.

3.1 TENSOR REPRESENTATION LAYER IMPLEMENTED VIA TENSOR RING FORMAT

We start the section by describing the tensor representation layer, which lays a groundwork for
our deep MTL approach. Our TR-based implementation is called tensor ring representation layer
(TRRL). Following the spirit of TT-matrix (Novikov et al., 2015) representation, TR is able to rep-
resent a large matrix more compactly via TR-matrix format. Specifically, let W be a matrix of size
M ×N with M =

∏D
k=1Mk, N =

∏D
k=1Nk, which can be reshaped into a Dth-order tensorW ∈

RM1N1×M2N2···×MDND via bijective mappings φ(·) and ψ(·). The map φ(i) = (φ1(i), ..., φD(i))
transforms the row index i ∈ {1, ...,M} into a D-dimensional vector index (φ1(i), ..., φD(i)) with
φk(i) ∈ {1, ...,Mk}; similarly, the map ψ(·) converts the column index j ∈ {1, ..., N} also
into a D-dimensional vector index (ψ1(j), ..., ψD(j)) where ψk(j) ∈ {1, ..., Nk}. In this way,
one can establish a one-to-one correspondence between a matrix element W(i, j) and a tensor el-
ement W((φ1(i), ψ1(j)), ..., (φD(i), ψD(j))) using the compound index (φk(·), ψk(·)) for mode
k ∈ {1, ..., D}. We formulate the TR-matrix format as

W(i, j) =W((φ1(i), ψ1(j)), ..., (φD(i), ψD(j)))

=

R1∑
r1=1

R2∑
r2=1

· · ·
RD∑
rD=1

G(1)r1,(φ1(i),ψ1(j)),r2
G(2)r2,(φ2(i),ψ2(j)),r3

· · · G(D)
rD,(φD(i),ψD(j)),r1

=

R1∑
r1=1

g(1)Tr1
[(φ1(i), ψ1(j))]G(2)[(φ2(i), ψ2(j))] · · · g(D)

r1
[(φD(i), ψD(j))]

= Tr{G(1)[(φ1(i), ψ1(j))]G(2)[(φ2(i), ψ2(j))] · · ·G(D)[(φD(i), ψD(j))]},

(1)

3



Under review as a conference paper at ICLR 2020

where ‘Tr’ is the trace operation. G(k) denotes the kth latent core, while G(k)[(φk(i), ψk(j))] ∈
RRk×Rk+1 corresponds to the (φk(i), ψk(j))th slice matrix of G(k). g(1)T

r1 [(φ1(i), ψ1(j))] represents
the r1th row vector of the G(1)[(φ1(i), ψ1(j))] and g(D)

r1 [(φD(i), ψD(j))] is the r1th column vector
of G(D)[(φD(i), ψD(j))]. Notice that the third line in equation 1 implies TRRL is more powerful
than TT layer in terms of model expressivity, as TRRL can in fact be written as a sum of R1 TT
layers. In the deep MTL context, the benefits of tensorization in our TRRL are twofold : a sparser,
more compact tensor network format for each task and a potentially finer sharing granularity across
the tasks.

3.2 THE PROPOSED KNOWLEDGE-SHARING FRAMEWORK

3.2.1 THE GENERAL FORMULATION

Our sharing strategy is to partition each layer’s parameters into task-independent TR-cores as well as
task-specific TR-cores. More specifically, for some hidden layer of an individual task t ∈ {1, ..., T},
we begin with reformulating the layer’s weights Wt ∈ RUt×Vt in terms of TR-cores by means of
TRRL, where Ut =

∏Dt

k=1 U
k
t , Vt =

∏Dt

k=1 V
k
t . We thereafter reshape a layer’s input ht ∈ RUt into

a Dtth-order tensor Ht ∈ RU1
t ×···×UDt

t . Next, the layer’s input tensor Ht can be transformed into
layer’s output tensor Yt ∈ RV 1

t ×···×V Dt
t viaWt in TR-format. Finally, we have

Yt(v1, ..., vDt) =

U1∑
u1=1

· · ·
UDt∑
uDt=1

Ht(u1, ..., uDt)Tr{G(1)
com[(u1, v1)] · · ·G(p)

t [(up, vp)]

· · ·G(q)
com[(uq, vq)] · · ·G(r)

t [(ur, vr)] · · ·G(Dt)
com [(uDt

, vDt
)]}, (2)

where the common TR-cores subset {G(·)
com} has C elements which can be arbitrarily chosen from

the set of all Dt cores, leaving the rest cores {G(·)
t } as task-specific TR-cores. Pay attention that our

TRMTL neither restricts on which cores to share, nor restricts the shared cores to be in a consecutive
order. Finally, we reshape tensor Yt back into a vector output yt ∈ RVt . Note that the portion of
sharing, which is mainly measured byC, can be set to different values from layer to layer. According
to equation 2, TRMTL represents each weight element in weight matrix as function of a sequence
product of the slice matrices of the corresponding shared cores and private cores. Intuitively, this
strategy suggests the value of each weight element is partially determined by some common latent
factors, and meanwhile, also partially affected by some private latent factors. Thus, our sharing is
carried out in an distributed fashion. This is more efficient than conventional sharing strategies in
which each weight element is either 100% shared or 100% not shared.

Although we describe our general framework in terms of TR format, it is straightforward to im-
plement our framework with other tensor network representations, such as Tucker (Tucker, 1966),
TT (Novikov et al., 2015), projected entangled pair states (PEPS) and entanglement renormalization
ansatz (MERA) (Cichocki et al., 2016), as long as each layer-wise weight matrix is tensorized and
decomposed into a sequences latent cores.

3.2.2 SPECIAL CASE FOR CNN SETTING

Our model can be easily extended to convolutional kernel K ∈ RH×W×I×O, where H × W is
the spatial sizes and I and O are the input and output channels. Note that here TRRL is similar to
TR based weight compression Wang et al. (2018), but we use a different 4th-order latent cores in
TR-matrix. As one special case of our general framework (TRMTL-CNN), we just share the spatial
cores (height cores and width cores) in the tensorized kernel (via TRRL), while cores corresponding
to input/output channels may differ from task to task :

Kt(h,w, i, o) = Tr{G(1)
com[(h1, w1)] · · ·G(C)

com[(hC , wC)]G
(1)
t [(i1, o1)] · · ·G(Dt)

t [(iDt
, oDt

)]},
(3)

where C is typically 1 for small-sized spatial dimensions. Thus, there is no need to specify how
many and which cores to share for TRMTL-CNN.

4



Under review as a conference paper at ICLR 2020

Table 1: Performance and model complexity comparison on MNIST dataset.

Samples 1800 vs 1800 STL MRN DMTRL-Tucker DMTRL-TT Ours-410 Ours-420
A B A B A B A B A B A B

Accuracy 96.8 96.9 96.4 96.6 95.2 96.2 96.2 96.7 97.5 97.7 97.4 97.6
Number of parameters 6,060K 3,096K 1,194K 1,522K 16K 13K

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

We compare our TRMTL with single task learning (STL), MRN (Long et al., 2017), two variants
of DMTRL (Yang & Hospedales, 2017). We repeat the experiments 5 times and record the average
accuracy. The detailed settings and more experimental results are in the supplementary material.

4.1.1 TENSOR REPRESENTATION

Before the sharing, we first tensorize the layer-wise weight into a Dth-order tensor, whose D modes
have roughly the same dimensionality, such that the cores have approximately equal sizes if we
assume the same TR-ranks. In this manner, we may measure the fraction of knowledge sharing
by the number of shared cores. D is empirically set to be from 4 to 6 in most of our tests. For
simplicity, we assume TR-ranks to be identical for all TR-cores across layers for each task. We
choose TR-ranks by cross validation on a range of values among 5, 10 and 15. Note that there is
no tensorization step in DMTRL in (Yang & Hospedales, 2017), and DMTRL selects TT-ranks via
tensor decomposition according to some specified threshold.

4.1.2 SHARED CORES SELECTION

Our general TRMTL is highly flexible as we impose no restrictions on which cores to be shared
and where to share across tasks. In practical implementation, we may need to trade-off some model
flexibility for the ease of sharing-pattern selection by introducing some useful prior knowledge about
the domain. For instance, many vision tasks tend to share more cores at the lower layers than upper
layers. There are various strategies on how to select the shard cores w.r.t. both the location and
the number. Authors of (Zhao et al., 2017) discover that distinct cores control an image at different
scales of resolution. The authors demonstrate this by decomposing a tensorized 2D image and then
adding noise to one specific core at a time. They show the core in the first location controls small-
scale patches while the core in the last location influences on large-scale partitions. Motivated by
this, under the general formulation 3.2.1, we preferentially share the features from the detailed scale
to the coarse scale, which means we follow a natural left-to-right order in location to select different
C number of cores at distinct layers. C is needed to tune via cross validation. In practice, we apply a
greedy search onC layer by layer to effectively reduce the searching space. Another practical option
is to prune the searching space by following the very useful guidance that C tends to decrease as
the layers increase. For certain CNN based architectures, we adopt the special case TRMTL-CNN.
Since the cores produced by tensorized convolutional kernel have their specific roles, we just share
the cores that are associated to the spatial dimensions (height and width cores), leaving input/output
cores being task-specific. In our tests, C is just 1 due to the small spatial kernels, thus eliminating
the need of the tuning of this hyper-parameter.

4.2 DEEP MTL WITH SINGLE DOMAIN SOURCE

We begin our test with data from single domain source to validate the basic properties of our model.

4.2.1 EFFECT OF SHARING PATTERNS

Our first validation test is conducted on MNIST, where the task A is to classify the odd digits
and the task B is to classify the even ones. To see how sharing styles and hyper-parameter C
can affect the performance, we examine various patterns from three representative categories, as
shown in Figure 3. For instance, the patterns in ‘bottom-heavy’ category mean more parameters are
shared at the bottom layers than the top layers, while ‘top-heavy’ indicates the opposite style. The
validation is conducted on MNIST using multi-layer perceptron (MLP) with three tensorized hidden
layers, each of which is encoded using 4 TR-cores. The pattern ‘014’, for example, means the C
are 0, 1 and 4 from lower to higher layers, respectively. We gauge the transferability between tasks
with unbalanced training samples by the averaged accuracy on the small-sample tasks. Clearly, the

5



Under review as a conference paper at ICLR 2020

004 014 024 034 044 000 111 222 333 444 400 410 420 430 440
Sharing Pattern

0.75

0.8

0.85

0.9

A
v
e

ra
g

e
d

 A
c
c
u

ra
c
y

top-heavy

balanced

bottom-heavy

Figure 3: Validation test w.r.t sharing patterns and
‘C’. The averaged accuracy of two tasks involved
with 50 samples. The training samples for task A
vs task B are ‘1800 vs 50’ and ‘50 vs 1800’.

A A+ A A+ A A+ B B+ B B+ B B+ D D+ D D+ D D+ E E+ E E+ E E+

Task

25

30

35

40

45

50

A
cc

u
ra

cy

Task A B D and E 10%

TRMTL TRMTL+ MRN MRN+ DMTRL DMTRL+

Figure 4: Results of accuracy changes of task A,
B, D and E, when the faction of the data for train-
ing for task C is increased from 10% to 90%. ‘+’
corresponds to the results after the samples augmen-
tation of task C. 10% data for training for task A,
B, D and E. The best pattern of TRMTL is ‘432’.

‘bottom-heavy’ patterns achieve significantly better results than those from the other two categories.
The pattern ‘420’ is reasonable and obviously outperforms the pattern ‘044’ in Figure 3, since ‘044’
overlaps all weights at the top layers but shares nothing at the bottom layer. Within each category,
TRMTL is robust to small perturbation of C for pattern selection, both ‘410’ and ‘420’ obtain
similarly good performance.

4.2.2 EFFECT OF MODEL COMPLEXITY

We also examine the complexity of the compared models on MNIST. In Table 1, STL and MRN have
enormous 6, 060K and 3, 096K parameters, since they share weights in the original space. DMTRL-
Tucker and TT with pre-train trick (Yang & Hospedales, 2017) are parameterized by 1, 194K and
1, 522K parameters. In contrast, TRMTL achieves the best accuracies while the numbers of param-
eters are significantly down to 16K and 13K. The huge reduction is due to the tensorization and the
resulting more sparser TRRL with overall lower ranks.

4.2.3 EFFECT OF UNBALANCED SAMPLE SIZES

Our next validation is carried out on Omniglot dataset (Krizhevsky & Hinton, 2009) to verify efficacy
of knowledge transfer from data-abundance tasks to data-scarcity ones within one source of data
domain. Omniglot data Lake et al. (2015) consists of 1, 623 unique characters from 50 alphabets
with resolution of 105× 105. We divide the whole alphabets into 5 tasks (task A to task E), each
of which links to the alphabets from 10 languages. We now test a more challenging case, where only
1 task (task C) has sufficient samples while the samples of the other 4 tasks are limited. Figure 4
demonstrates the amount of the accuracy changes for each task, both with and without the aid of
the data-rich task. We observe our TRMTL is able to make the most of the useful knowledge from
task C and significantly boosts the accuracies of all other tasks.

4.2.4 VALIDATION ON RECURRENT NEURAL NETWORKS

In our last validation, we like to explore whether the proposed sharing mechanism also works for
recurrent neural networks. Hence, we test on UFC11 dataset (Liu et al., 2009) that contains 1, 651
Youtube video clips from 11 actions, which are converted to the resolution of 120 × 180 × 3. We
assign 5 actions (‘basketball’, ‘biking’, ‘diving’, ‘golf swinging’ and ‘horse back riding’) to the
task A and leave the rest 6 actions (‘soccer juggling’, ‘swinging’, ‘tennis swinging’, ‘trampoline
jumping’, ‘volleyball spiking’ and ‘walking’) as the task B. The RNN is implemented using one-
layer long short-term memory (LSTM) with input length of 190. The weights corresponding to the
input video are tensorized and encoded into 4 TR-cores, whose input and output dimensions are
[8, 20, 20, 18] and [4, 4, 4, 4], respectively. The TR-rank is set to [2, 2, 2, 2, 2]. Only one layer of
cores need to be shared and they are shared in a left-to-right order. The recognition precisions w.r.t.
the number of shared cores are recorded in Table 2. We find that sharing TR-cores between tasks
via our TRMTL significantly improves the performance comparing to no sharing case, and sharing
all 4 TR-cores achieves the best results for this RNN situation.

4.3 DEEP MTL WITH MULTIPLE DOMAIN SOURCES

In this section, we show the key advantage of our method in handling multiple tasks defined on
distinct data domains, where the optimal network architectures of the tasks could be different.

6



Under review as a conference paper at ICLR 2020

Table 2: Validation of TRMTL for RNN on UFC11.

UFC11 Number of Shared Cores
0 1 2 3 4

Task A (5 actions) 58.5 55.4 55.5 61.2 63.1
Task B (6 actions) 48.0 54.9 56.6 56.0 58.3

Table 3: Specification of network architecture of
TRMTL for the Omiglot-MNIST datasets.

Layer Omniglot (105×105) MNIST (28×28)

FC1 in modes [7, 7, 5, 5, 3, 3] [7, 7, 4, 4]
out modes [7, 7, 5, 5, 3, 3] [7, 7, 5, 5]

FC2 in modes [7, 7, 5, 5, 3, 3] [7, 7, 5, 5]
out modes [7, 7, 5, 5, 3, 3] [7, 7, 5, 5]

FC3 in modes [7, 7, 5, 5, 3, 3] [7, 7, 5, 5]
out modes [2, 2, 2, 2, 2, 2] [2, 2, 2, 2]

FC4 in modes [64] [16]
out modes [10] [10]

4.3.1 RESULTS ON HETEROGENEOUS MLPS

We first verify on Omniglot and MNIST combination, where task A is to classify hand-drawn
characters from first 10 alphabets, while task B is to recognize 10 hand-written digits. Task A
is much harder than task B, as each character in task A has a very fewer training samples (only
20 per character). Table 3 shows the architecture specification of TRMTL using 4 layers MLP, we
can see task A and task B possess their respective layer-wise network structures, while different
portions of cores could be partially shared across layers. In contrast, to apply DMTRL, one has to
first convert the heterogeneous inputs into equal-sized features using one hidden layer with totally
unshared weights, so that the weights in following layers with same shape can be stacked up. In
Table 4, TRMTL obtains similar results to its competitors for the easier MNIST task, while both
TRMTL-200 and 211 significantly outperform STL and DMTRL by a large margin for the more
difficult Omniglot task. The poor performance of DMTRL due to its architecture’s not being able to
share any feature at the bottom hidden layer but has to share almost all the features at upper layers.

Table 4: Performance comparison of STL, DMTRL and our TRMTL on Omniglot-MNIST datasets.

Omniglot A vs MNIST B STL DMTRL-Tucker DMTRL-TT TRMTL-200 TRMTL-211
A B A B A B A B A B

50% vs 100% 55.0 98.1 47.3 98.5 50.0 98.4 58.4 98.3 59.7 98.3
70% vs 100% 60.5 98.1 46.1 98.3 50.9 98.6 62.9 98.3 65.4 98.3
100% vs 100% 63.3 98.1 50.7 98.5 52.3 98.5 66.8 98.3 67.5 98.3

50% 60% 70% 80%
Fraction of Training Samples

0.34

0.38

0.42

0.46

0.50

0.54

0.58

A
c
c
u

ra
c
y

Office-Home Task A performance

50% 60% 70% 80%
Fraction of Training Samples

0.57

0.60

0.63

0.66

0.69

0.72

A
c
c
u

ra
c
y

Office-Home Average performance

TRMTL-HT
TRMTL-HM
DMTRL-TT
DMTRL-Tucker
STL

10% 50% 80%
Fraction of Training Samples

0.21

0.24

0.27

0.30

0.33

0.36

0.39

A
c
c
u

ra
c
y

Adience-CelebA Task A performance

10% 50% 80%
Fraction of Training Samples

0.53

0.56

0.59

0.62

0.65
A

c
c
u

ra
c
y

Adience-CelebA Average performance

TRMTL-HT
TRMTL-HM
DMTRL
STL

Figure 5: Left two figures: Performance comparison on Home-Office datasets with different fractions of train-
ing data. Right two figures: Performance comparison on Adience-CelebA datasets. In all figures, TRMTL-HT
and TRMTL-HM correspond to the heterogeneous architectures and homogeneous architectures, respectively.

We also conduct experiments on the challenging Office-Home dataset (Venkateswara et al., 2017)
to evaluate the effectiveness of TRMTL in handling data from distinct domains. The dataset con-
tains over 10,000 images collected from different domains including Art, Clipart, Product and Real
World, which forms task A to task D, respectively. Each task is assigned to recognize 65 object
categories presenting in offices or homes. The image styles and the levels of difficulty vary from task
to task, e.g., images from Product (task C) have empty backgrounds while images of Art (task
A) have complicated backgrounds. We train three FC layers on the features extracted from images
of each task using pre-trained VGG-16 (Simonyan & Zisserman, 2014). In Figure 5, our TRMTL
variants consistently outperform other competitors by a large margin, i.e., over 5% in accuracy for
the toughest task A when 80% samples are available. The noticeable improvements are mainly
credited to our sharing mechanism, which effectively shares the common signature of object iden-
tity across tasks regardless of their individual image styles. For TRMTL, we observe TRMTL-HT
exceeds TRMTL-HM by at least 2% in the averaged accuracy and by 1% in the hardest task A,
showing the efficacy of employing non-identical architectures on sharing high-level features.

4.3.2 RESULTS ON HETEROGENEOUS CNNS

To further illustrate the merit of sharing knowledge using heterogeneous architectures, we next apply
our TRMTL directly to the raw images via CNNs. We test on two large-scale human face datasets:

7



Under review as a conference paper at ICLR 2020

Table 5: Heterogeneous (left) and homogeneous (right) network architectures for Adience-CelebA datasets.

Layer Adience (227×227×3) CelebA (218×178×3)
in/out modes win/stride in/out modes win/stride

Conv1 [3] [7, 7] / 4 [3] [7, 7] / 2[6, 4, 4] [4, 4, 4]

Conv2 [6, 4, 4] [5, 5] / 1 [4, 4, 4] [5, 5] / 2[4, 4, 4, 4] [4, 4, 4, 2]

Conv3 [4, 4, 4, 4] [3, 3] / 2 [4, 4, 4, 2] [3, 3] / 2[4, 4, 4, 4] [4, 4, 4, 4]

FC1 [8, 8, 4, 4, 4] [164864]
[4, 4, 4, 4, 2] [40]

FC2 [4, 4, 4, 4, 2]
[4, 4, 4, 4, 2]

FC3 [512]
[8]

Layer Adience (227×227×3) CelebA (218×178×3)
in/out modes win/stride in/out modes win/stride

Conv1 [3] [7, 7] / 2 [3] [7, 7] / 2[4, 4, 4] [4, 4, 4]

Conv2 [4, 4, 4] [5, 5] / 2 [4, 4, 4] [5, 5] / 2[4, 4, 4, 2] [4, 4, 4, 2]

Conv3 [4, 4, 4, 2] [3, 3] / 2 [4, 4, 4, 2] [3, 3] / 2[4, 4, 4, 4] [4, 4, 4, 4]

FC1 [8, 8, 4, 4, 4] [164864]
[4, 4, 4, 4, 2] [40]

FC2 [4, 4, 4, 4, 2]
[4, 4, 4, 4, 2]

FC3 [512]
[8]

Adience Eidinger et al. (2014) and CelebA Liu et al. (2015). Adience dataset contains 26, 580
unfiltered 227 × 227 face photos taken in the wild with variation in appearance, pose, lighting and
etc; CelebA has a total number of 202, 599 preprocessed face images of resolution 218 × 178. For
this test, the task A assigned to Adience data is to predict the label of age group that a person
belongs to (8 classes), and we associate the task B to CelebA data to classify 40 binary facial
attributes. Note that task A is much harder than task B, as the number of samples in Adience
(with face images in the wild) is about 7.6 times fewer than that of CelebA (with cropped and
aligned face images). Since Adience bears similarity to CelebA, we are interested to see whether
the performance of the tough task (task A) can be enhanced by jointly learning on two domains of
data. The heterogeneous architectures of TRMTL-CNN are shown in Table 5, in which we adopt the
special case of TRMTL by sharing the spatial cores (e.g., [7, 7], [5, 5] and [3, 3]) in convolutional
kernel yet preserving the differences w.r.t. input and output channel cores.

We focus on comparing the heterogeneous case with the homogeneous case in Table 5 where the
shared structures are identical. As expected, in Figure 5, our TRMTL significantly outperforms
other methods on the hard task A. In the meantime, TRMTL obtains the best averaged accuracies
on two tasks in nearly all cases, indicating the data-scarcity task A has little harmful impact on the
data-abundant task B. For our TRMTL, we also observe TRMTL-HM exhibits worse accuracies
than TRMTL-HT, which implies that a comprise on an identical CNN design for all tasks, such as
input/output channel core and stride size, lead to deteriorated overall performance. The test also
shows the effectiveness of TRMTL in sharing low-level features with heterogeneous architectures.

5 DISCUSSION

Our general TRMTL framework relies on the manual selection of shared cores, i.e., one need to
specify the number of shared cores C at each layer if we choose to share the cores in a left-to-right
order across tasks. Although we can employ some efficient heuristics, the search space of this hyper-
parameter may grow rapidly as number of the layers increase. Besides the greedy search, a more
sophisticated and possible option is to automatically select sharable core pairs that have the highest
similarity. We may consider two cores as a candidate pair if the same perturbation of the two cores
induces similar changes in the errors of respective tasks. In this way, one can adaptively select most
similar cores from tasks according to a certain threshold, leaving the rest as private cores.

We should also point out that tensorization operation plays a key role in our proposed sharing mech-
anism. Due to the tensorization, the cores can be shared in a much finer granularity via our TRMTL
framework. Furthermore, tensorizing weight matrix into high-order weight tensor yields more com-
pact tensor network format (with much lower overall ranks), and thus a higher compression ratio for
parameters. In contrast, DMTRL tends to produce a lot more parameters without tensorization.

6 CONCLUSION

In this work, we have extended the conventional deep MTL to a broader paradigm where multiple
tasks may involve more than one source data domain. To resolve the issues caused by the discrep-
ancies among different tasks’ network structures, we have introduced a novel knowledge sharing
framework for deep MTL, by partially sharing latent cores via tensor network format. Our method
is empirically verified on various learning settings and achieves the state-of-the-art results in helping
tasks to improve their overall performance.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Rich Caruana. Multitask learning. Machine Learning, 1997.

Xiao Chu, Wanli Ouyang, Wei Yang, and Xiaogang Wang. Multi-task recurrent neural network for
immediacy prediction. In International Conference on Computer Vision, pp. 3352–3360, 2015.

Andrzej Cichocki, Namgil Lee, Ivan V Oseledets, A-H Phan, Qibin Zhao, and D Mandic. Low-rank
tensor networks for dimensionality reduction and large-scale optimization problems: Perspectives
and challenges part 1. arXiv preprint arXiv:1609.00893, 2016.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser. In Annual Meeting of the Association for
Computational Linguistics and International Joint Conference on Natural Language Processing,
volume 2, pp. 845–850, 2015.

Eran Eidinger, Roee Enbar, and Tal Hassner. Age and gender estimation of unfiltered faces. IEEE
Transactions on Information Forensics and Security, 9(12):2170–2179, 2014.

Zhen Huang, Jinyu Li, Sabato Marco Siniscalchi, I-Fan Chen, Ji Wu, and Chin-Hui Lee. Rapid adap-
tation for deep neural networks through multi-task learning. In Conference of the International
Speech Communication Association, 2015.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Ma-
chine learning, 2009.

Abhishek Kumar and Hal Daume III. Learning task grouping and overlap in multi-task learning.
arXiv preprint arXiv:1206.6417, 2012.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten
digits. http://yann.lecun.com/exdb/mnist/, 1998.

Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from videos. 2009.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task learning for text classifica-
tion. In Association for Computational Linguistics, volume 1, pp. 1–10, 2017.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In International Conference on Computer Vision, 2015.

Mingsheng Long and Jianmin Wang. Learning multiple tasks with deep relationship networks. arXiv
preprint arXiv:1506.02117, 2015.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and S Yu Philip. Learning multiple tasks with
multilinear relationship networks. In Advances in Neural Information Processing Systems, pp.
1594–1603, 2017.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task
sequence to sequence learning. arXiv preprint arXiv:1511.06114, 2015.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. The Journal of Machine Learning Research, 17(1):2853–2884, 2016.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In Conference on Computer Vision and Pattern Recognition, pp. 3994–4003.
IEEE, 2016.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In Advances in Neural Information Processing Systems, pp. 442–450, 2015.

9



Under review as a conference paper at ICLR 2020

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

Wanli Ouyang, Xiao Chu, and Xiaogang Wang. Multi-source deep learning for human pose estima-
tion. In Conference on Computer Vision and Pattern Recognition, pp. 2329–2336, 2014.

Bernardino Romera-Paredes, Hane Aung, Nadia Bianchi-Berthouze, and Massimiliano Pontil. Mul-
tilinear multitask learning. In International Conference on Machine Learning, pp. 1444–1452,
2013.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of image ensembles: Tensor-
faces. In European Conference on Computer Vision, pp. 447–460. Springer, 2002.

M Alex O Vasilescu and Demetri Terzopoulos. Multilinear subspace analysis of image ensembles.
In null, pp. 93. IEEE, 2003.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In (IEEE) Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compression:
tensor ring nets. In Conference on Computer Vision and Pattern Recognition, pp. 13–31. IEEE,
2018.

Kishan Wimalawarne, Masashi Sugiyama, and Ryota Tomioka. Multitask learning meets tensor
factorization : task imputation via convex optimization. In Advances in Neural Information Pro-
cessing Systems, pp. 2825–2833, 2014.

Zhizheng Wu, Cassia Valentini-Botinhao, Oliver Watts, and Simon King. Deep neural networks em-
ploying multi-task learning and stacked bottleneck features for speech synthesis. In International
Conference on Acoustics, Speech and Signal Processing, pp. 4460–4464. IEEE, 2015.

Yongxin Yang and Timothy Hospedales. Deep multi-task representation learning: a tensor factori-
sation approach. In International Conference on Learning Representations, 2017.

Yongxin Yang and Timothy M Hospedales. Trace norm regularised deep multi-task learning. arXiv
preprint arXiv:1606.04038, 2016.

Xi Yin and Xiaoming Liu. Multi-task convolutional neural network for pose-invariant face recogni-
tion. arXiv preprint arXiv:1702.04710, 2017.

Yu Zhang and Qiang Yang. A survey on multi-task learning. arXiv preprint arXiv:1707.08114,
2017.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection by
deep multi-task learning. In European Conference on Computer Vision, pp. 94–108. Springer,
2014.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring decom-
position. arXiv preprint arXiv:1606.05535, 2016.

Qibin Zhao, Masashi Sugiyama, Longhao Yuan, and Andrzej Cichocki. Learning efficient tensor
representations with ring structure networks. Workshop of International Conference on Learning
Representations, 2017.

10



Under review as a conference paper at ICLR 2020

DMTRL-TT

Tensor 
Representation
Generalization

TRMTL

Layer-wise
Equal-sized Weight

Generalization

Fixed Sharing Pattern
Generalization

Weight 
Tensorization
Generalization

Tasks Split

Tasks Stack G1

G2

G3G4

Figure 6: The demonstration of four types generalizations from DMTRL-TT to our TRMTL.

A RELATED WORK

The classical matrix factorization based MTL (Kumar & Daume III, 2012; Romera-Paredes et al.,
2013; Wimalawarne et al., 2014) requires the dimensionality of weight vectors {wt ∈ RM}Tt=1
of T tasks to be equal-sized, so that these weights could be stacked up into one weight matrix
W ∈ RM×T . The work (Kumar & Daume III, 2012) assumes W to be low-rank and factorizes it
as W = LS. Here, L ∈ RM×K consists of K task-independent latent basis vectors, whereas each
column vector of S ∈ RK×T is task-specific and contains the mixing coefficients of these common
latent bases. Yang & Hospedales (2017) extended this to its tensorial counterpart deep multi-task
representation learning (DMTRL) by making use of tensor factorization. Likewise, DMTRL starts
by putting the equal-shaped weight matrices {Wt ∈ RM×N}Tt=1 side by side along the ‘task’ mode
to form a 3rd-order weight tensor W ∈ RM×N×T . In the case of CNN, this weight tensor corre-
sponds to a 5th-order filter tensor K ∈ RH×W×U×V×T . DMTRL then factorizes W (or K), for
instance via TT-format, into 3 TT-cores (or 5 TT-cores for K) Yang & Hospedales (2017). Analo-
gously, the first 2 TT-cores (or the first 4 TT-cores) play exactly the same role as L for the common
knowledge; the very last TT-core is in fact a matrix (similar to S), with each column representing
the task-specific information.

The fundamental difference between our TRMTL and DMTRL is that ours can tailor heteroge-
neous network structures to various tasks. In contrast, DMTRL is not flexible enough to deal with
such variations with tasks. Specifically, our TRMTL differs widely with DMTRL and generalizes
DMTRL from a variety of aspects. In order to reach TRMTL from DMTRL-TT, one needs to take
four major types of generalizations (G1-G4), as shown in Figure 6. Firstly (in G1), TRMTL ten-
sorizes the weight into a higher-order weight tensor before factorizing it. By doing so, the weight
can be embedded into more latent cores than that of just 3 cores (or 5 cores) in DMTRL, which
yields a more compact model and makes the sharing at a finer granularity feasible. Secondly (in
G2), DMTRL stringently requires that the first D-1 cores (D is weight tensor’s order) must be
all shared at every hidden layer, only the last vector is kept for private knowledge. By contrast,
TRMTL allows for any sharing pattern at distinct layer. Thirdly (in G3), there is no need for layer-
wise weights to be equal-sized and stacked into one big tensor as in TRMTL, each task may have its
individual input domains. Finally (in G4), TRMTL further generalizes TT to TR-format. For each
task in DMTRL, the first core must be a matrix and the last core must be a vector (with both border
rank and outer mode size being 1). Notice that our TRMTL also conceptually subsumes DMTRL-
Tucker in terms of the first three aspects of generalizations (G1-G3). It is also worth mentioning that
(Wang et al., 2018) only applies TR-format for weight compression in a single deep net, whereas
ours incorporates a more general tensor network framework into the deep MTL context.

The authors of (Long et al., 2017) lately proposed multilinear relationship network (MRN) which in-
corporates tensor normal priors over the parameter tensors of the task-specific layers. However, like
methods (Zhang et al., 2014; Ouyang et al., 2014; Chu et al., 2015), MRN follows the architecture
where all the lower layers are shared, which is also not tailored for the extended MTL paradigm, and
may harm the transferability if tasks are not that tightly correlated. In addition, the relatedness of
tasks is captured by the covariance structures over features, classes and tasks. Constantly updating
these covariance matrices (via SVD in (Long et al., 2017)) becomes computationally prohibitive for
large scale networks. Compared to these non-latent-subspace methods, TRMTL is highly compact
and needs much fewer parameters, which is obviously advantageous in tasks with small sample size.

11



Under review as a conference paper at ICLR 2020

Table 6: Specification of network architecture and factorized TRRL representation on MNIST dataset.

MNIST Task A (Odd) Task B (Even)

FC1 input modes [7, 7, 4, 4] [7, 7, 4, 4]
output modes [6, 6, 6, 6] [6, 6, 6, 6]

FC2 input modes [6, 6, 6, 6] [6, 6, 6, 6]
output modes [6, 6, 6, 6] [6, 6, 6, 6]

FC3 input modes [6, 6, 6, 6] [6, 6, 6, 6]
output modes [4, 4, 4, 4] [4, 4, 4, 4]

FC4 input modes [256] [256]
output modes [10] [10]

Table 7: Performance comparison of STL, MRN, DMTRL and our TRMTL on MNIST dataset.

Samples A vs B STL MRN Tucker DMTRL-TT Ours-410 Ours-420
A B A B A B A B A B A B

1800 vs 1800 96.8 96.9 96.4 96.6 95.2 96.2 96.2 96.7 97.5 97.7 97.4 97.6
1800 vs 100 96.8 88.1 96.5 88.6 95.2 85.5 96.1 86.3 97.6 90.2 97.5 89.9
100 vs 1800 88.0 96.9 89.3 96.5 85.4 96.6 87.1 96.6 90.1 97.5 90.3 97.6
100 vs 100 88.0 88.1 88.2 88.4 84.3 84.8 86.8 86.0 88.7 89.6 89.2 89.5

Table 8: Specification of network architecture and factorized TRRL representation on Omniglot dataset.

Omniglot Kernel/Weight Task A Task B

Conv1 input modes window size [1] [3, 3] [1] [3, 3]output modes [8] [8]

Conv2 input modes window size [2, 2, 2] [3, 3] [2, 2, 2] [3, 3]output modes [4, 2, 2] [4, 2, 2]

Conv3 input modes window size [2, 2, 2, 2] [3, 3] [2, 2, 2, 2] [3, 3]output modes [4, 2, 2, 2] [4, 2, 2, 2]

FC1 input modes [18, 12, 12, 9] [18, 12, 12, 9]
output modes [4, 4, 4, 4] [4, 4, 4, 4]

FC2 input modes [256] [256]
output modes [10] [10]

B DETAILED SETTINGS AND MORE EXPERIMENTAL RESULTS

B.1 DEEP MTL WITH SINGLE DOMAIN SOURCE

B.1.1 EFFECT OF SHARING PATTERNS

The detailed specification of network architecture and factorized TRRL representation of the exper-
iments on MNIST dataset are recorded in Table 6. In Table 7, our TRMTL achieves the best results
and is robust to small perturbation of C for pattern selection, since both ‘410’ and ‘420’ patterns
obtain similarly good performance.

B.1.2 EFFECT OF UNBALANCED SAMPLE SIZES

For the Omniglot Dataset, we adopt a similar architecture as in the previous experiment for CNN
as (1 × 8C3) − (8 × 16C3) − (16 × 32C3) − (23, 328 × 256FC) − (256 × 50FC), where the
last two convolution layers and first fully connected layer are represented using TRRL with the
input/output feature modes of TR-cores being {2, 2, 2}, {4, 2, 2}, and {2, 2, 2, 2}, {4, 4, 2, 2}, and
{18, 12, 12, 9}, {4, 4, 4, 4}. Table 8 displays the details of network specification.

The best sharing pattern of our model is ‘432’. Figure 7 demonstrates the amount of the accuracy
changes for each task (for the case of 50% training data), both with and without the aid of the data-
rich task. Table 9 summarizes the performance of the compared methods when the distinct fractions
of data are used as training data. Our TRMTL obtains the best overall performance in both data-rich
and data-scarcity situations.

12



Under review as a conference paper at ICLR 2020

A A+ A A+ A A+ B B+ B B+ B B+ D D+ D D+ D D+ E E+ E E+ E E+

Task

55

60

65

70

75

80

A
cc

u
ra

cy

Task A B D and E 50%

Figure 7: The results of accuracy changes of task A, B, D and E, when the faction of the data for training for
task C is increased from 10% to 90%. ‘+’ corresponds to the results after the samples augmentation of task
C. 50% data for training for task A, B, D and E. The best sharing pattern of TRMTL is ‘432’.

5% 10% 50% 100%

Fraction of Training Samples of Task B

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
a

s
k
 B

 A
c
c
u

ra
c
y

Task A and C 100%

TRMTL

MRN

DMTRL

Tucker

TRMTL Avg

MRN Avg

DMTRL Avg

Tucker Avg

5% 10% 50% 100%

Fraction of Training Samples of Task C

0.8

0.85

0.9

0.95
T

a
s
k
 C

 A
c
c
u

ra
c
y

Task A and B 100%

5% 10% 50% 100%
Fraction of Training Samples of Task A

0.75

0.8

0.85

0.9

0.95

T
a
s
k
 A

 A
c
c
u
ra

c
y

Task B and C 100%

5% 10% 50% 100%

Fraction of Training Samples of Task B and C

0.6

0.7

0.8

0.9

T
a

s
k
 B

 a
n

d
 C

 A
c
c
u

ra
c
y

Task A 100%

TRMTL B

MRN B

DMTRL B

Tucker B

TRMTL C

MRN C

DMTRL C

Tucker C

5% 10% 50% 100%

Fraction of Training Samples of Task A and C

0.7

0.75

0.8

0.85

0.9

0.95

T
a

s
k
 A

 a
n

d
 C

 A
c
c
u

ra
c
y

Task B 100%

TRMTL A

MRN A

DMTRL A

Tucker A

TRMTL C

MRN C

DMTRL C

Tucker C

5% 10% 50% 100%

Fraction of Training Samples of Task A and B

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
a

s
k
 A

 a
n

d
 B

 A
c
c
u

ra
c
y

Task C 100%

TRMTL A

Tucker A

DMTRL A

MRN A

TRMTL B

MRN B

DMTRL B

Tucker B

Figure 8: Performance comparison of MRN, DMTRL-Tucker, DMTRL-TT and our TRMTL-4431 on CIFAR-
10 with different fractions of training data. Top row: 100% data for two of the three tasks, and show the
accuracy for the other one task (in solid lines) as well as the averaged accuracy of all three tasks (in dotted
lines). Bottom row: 100% data for one of the three tasks, and show the accuracies for the other two tasks (in
dashed and solid lines).

In this section, we also conduct more experiments on CIFAR-10 dataset. We assign 10 classes into
3 tasks, in which task A relates to non-animals; task B comprises 4 animal classes including
‘cat’, ‘dog’, ‘deer’ and ‘horse’; task C contains the remaining 2 classes. We like to verify the
performance of different models in transferring the useful knowledge from data-abundant task to
data-scarcity task within one source of data domain. To this end, we first test on CIFAR dataset
with settings where each task may have insufficient training samples like 5%, 10% or 50%. For this
test, we adopt the following architecture: (3× 64C3)− (64× 128C3)− (128× 256C3)− (256×
512C3) − (8192 × 1024FC) − (1024 × 512FC) − (512 × 10FC), where C3 stands for a 3 × 3
convolutional layer. We employ the general form of TRL on the last two CNN layers and first two
FC layers where the most of the parameters concentrate, yielding 4 TR-cores per layer.

Figure 8 illustrates how the accuracies of one task (two tasks) vary with sample fractions, given
the remaining two tasks (one task) get access to the full data. We observe the trends in which the
accuracies of our model exceed the other competitors by a relatively large margin (shown in solid
lines), in the cases of limited training samples, e.g., 5% or 10%. In the mean time, the advantage
of our TRMTL is still significant in terms of the averaged accuracies of three tasks (shown in dash
lines), which implies the data-scarcity task has little bad influence on the data-abundant tasks.

Table 10 reports the results of our two best patterns (‘4431’ and ‘4421’), as well as the one with
‘bad’ pattern ‘4444’. Clearly, TRMTL (‘4431’ and ‘4421’) outperforms other methods in nearly all
the cases. As for task A , for instance, the precision of TRMTL-4431 is increased by 1.7% when
the data of task C becomes 100%. Even more, such enhancement further grows up to 5.5% in the
situation that both task B and C’s training samples are fully available. This is in contrast to MRN
whose precision improvements are merely 0.4% and 3.0% in the corresponding scenarios. Again,

13



Under review as a conference paper at ICLR 2020

Table 9: Performance comparison of STL, MRN, DMTRL and our TRMTL on Omniglot dataset.

Samples A vs B vs C vs D vs E Task STL MRN DMTRL Tucker Ours-432

10% vs 10% vs 10% vs 10% vs 10%

A 30.4 31.2 30.5 28.9 31.6
B 32.4 35.4 35.3 32.9 38.9
C 47.5 47.8 44.1 47.9 48.2
D 29.2 29.5 27.8 28.4 29.9
E 40.5 41.2 38.7 43.0 42.7

Average 36.0 37.0 35.3 36.2 38.3

50% vs 50% vs 50% vs 50% vs 50%

A 61.1 70.1 63.6 59.0 73.6
B 66.4 71.7 69.5 67.3 73.0
C 73.1 77.8 75.3 70.9 80.5
D 55.8 62.1 56.8 55.8 61.0
E 68.8 73.0 70.9 71.0 75.4

Average 65.0 70.9 67.2 64.8 72.7

90% vs 90% vs 90% vs 90% vs 90%

A 72.2 78.6 74.0 75.5 80.5
B 75.4 80.7 77.9 76.4 79.5
C 82.7 86.5 81.7 82.5 88.7
D 60.5 69.7 65.3 62.7 72.2
E 74.9 82.1 76.7 75.4 80.7

Average 73.1 79.5 75.1 74.5 80.3

Table 10: Performance comparison of STL, MRN, DMTRL and our TRMTL on CIFAR-10 with unbalanced
training samples, e.g., ‘5% vs 5% vs 5%’ means 5% of training samples are available for the respective task
A, task B and task A. TR-ranks R = 10 for TRMTL.

Samples A vs B vs C Task STL MRN DMTRL Ours-4444 Ours-4431 Ours-4421

100% vs 100% vs 100%

A 91.4 91.8 92.2 90.6 92.1 92.2
B 80.9 82.3 82.3 81.6 83.0 82.6
C 91.8 93.9 92.3 93.4 94.1 93.9

Average 88.0 89.3 88.9 88.5 89.8 89.6

5% vs 5% vs 5%

A 72.7 72.9 73.7 72.4 74.4 74.7
B 57.0 60.3 55.5 59.0 61.3 61.5
C 80.6 82.7 79.5 82.7 82.9 84.4

Average 70.1 72.0 69.6 71.4 72.9 73.5

5% vs 5% vs 100%

A 72.7 73.3 74.2 73.6 76.1 76.4
B 57.0 61.2 56.3 60.2 62.3 63.0
C 91.8 92.1 91.5 91.8 93.1 93.0

Average 73.8 75.5 74.0 75.2 77.2 77.4

5% vs 100% vs 100%

A 72.7 75.9 74.3 76.9 79.9 79.8
B 80.9 80.2 79.7 79.5 81.2 .81.1
C 91.8 93.3 92.1 92.7 93.9 93.9

Average 81.8 83.1 82.0 83.0 85.0 84.9

the performance of TRMTL-4431 is superior to that of TRMTL-4444, indicating sharing all nodes
like ‘4444’ is not a desirable style.

It is also interesting to get an idea on what our model has learned via the visualization of the high
level features. Figure 9 illustrates the task-specific features of our TRMTL (and DMTRL) using t-
SNE for the dimensionality reduction. We can see a clear pattern of the clustered features produced
by our model that are separated for different classes, which could be more beneficial the down-
stream classification tasks.

B.1.3 EFFECT OF INPUTS WITH HETEROGENEOUS DIMENSIONS

In this section, we show the advantage of our method in handling tasks with heterogeneous inputs
within single source of data domain. For this test, the tasks are assigned to input images with
different spatial sizes or distinct channels (i.e. RGB or grayscale) on CIFAR-10 dataset. In order to
apply DMTRL, one has to first convert the heterogeneous inputs into equal-sized features using one
hidden layer with totally unshared weights, so that the weights in following layers can be stacked up
and factorized. To better show the influence of heterogeneous inputs on the competitors, we adopt
MLP with 4 hidden layers. The architectures for the heterogenous spatial sizes case and distinct
channels case are shown in Table 11 and 12, respectively. For a good pattern of our TRMTL, such

14



Under review as a conference paper at ICLR 2020

(a) DMTRL features in task A

Plane
Mobile
Ship
Truck

(b) DMTRL features in task B

Cat
Deer
Dog
Horse

(c) DMTRL features in task C

Bird
Frog

(e) TRMTL features in task A

Plane
Mobile
Ship
Truck

(f) TRMTL features in task B

Cat
Deer
Dog
Horse

(g) TRMTL features in task C

Bird
Frog

Figure 9: Features visualization of 2000 CIFAR-10 images. Task A, B and C correspond to three categories
in CIFAR-10, i.e., non-animals, animals with bird and frog excluded, bird and frog. Top row: DMTRL features.
Bottom row: our features.

Table 11: Specification of network architecture and factorized TRRL representation on heterogenous inputs
with distinct spatial sizes for CIFAR-10.

Heterogenous Spatial Sizes Task A (16×32) Task B (16×16) Task C (32×32)

FC1 input modes [4, 4, 4, 4, 3, 2] [4, 4, 4, 4, 3, 1] [4, 4, 4, 4, 3, 4]
output modes [4, 4, 4, 4, 3, 8] [4, 4, 4, 4, 3, 8] [4, 4, 4, 4, 3, 8]

FC2 input modes [8, 8, 6, 4, 4] [8, 8, 6, 4, 4] [8, 8, 6, 4, 4]
output modes [8, 8, 6, 4, 8] [8, 8, 6, 4, 8] [8, 8, 6, 4, 8]

FC3 input modes [8, 8, 6, 8, 4] [8, 8, 6, 8, 4] [8, 8, 6, 8, 4]
output modes [8, 8, 6, 8, 8] [8, 8, 6, 8, 8] [8, 8, 6, 8, 8]

FC4 input modes [8, 8, 6, 8, 8] [8, 8, 6, 8, 8] [8, 8, 6, 8, 8]
output modes [3, 3, 3, 3, 3] [3, 3, 3, 3, 3] [3, 3, 3, 3, 3]

FC5 input modes [243] [243] [243]
output modes [10] [10] [10]

as ‘5410’, the first hidden layer of each task is encoded into 6 TR-cores, 5 of which can be shared.
As recorded in Table 13, DMTRL based methods behave significantly worse than our TRMTL. The
poor performance of DMTRL is induced by fact that lowest features from related tasks cannot be
shared at all because of the heterogeneous input dimensionality.

B.2 DEEP MTL WITH MULTIPLE DOMAIN SOURCES

B.2.1 RESULTS ON HETEROGENEOUS MLPS

For the Office-Home experiment, Table 14 shows the details of network specification.

15



Under review as a conference paper at ICLR 2020

Table 12: Specification of network architecture and factorized TRRL representation on heterogenous inputs
with distinct channels (RGB and grayscale image) for CIFAR-10.

RGB and Grayscale Task A (RGB) Task B (Gray) Task C (Gray)

FC1 input modes [4, 4, 4, 4, 4, 3] [4, 4, 4, 4, 4, 1] [4, 4, 4, 4, 4, 1]
output modes [4, 4, 4, 4, 4, 6] [4, 4, 4, 4, 4, 6] [4, 4, 4, 4, 4, 6]

FC2 input modes [8, 8, 6, 4, 4] [8, 8, 6, 4, 4] [8, 8, 6, 4, 4]
output modes [8, 8, 6, 4, 8] [8, 8, 6, 4, 8] [8, 8, 6, 4, 8]

FC3 input modes [8, 8, 6, 8, 4] [8, 8, 6, 8, 4] [8, 8, 6, 8, 4]
output modes [8, 8, 6, 8, 8] [8, 8, 6, 8, 8] [8, 8, 6, 8, 8]

FC4 input modes [8, 8, 6, 8, 8] [8, 8, 6, 8, 8] [8, 8, 6, 8, 8]
output modes [3, 3, 3, 3, 3] [3, 3, 3, 3, 3] [3, 3, 3, 3, 3]

FC5 input modes [243] [243] [243]
output modes [10] [10] [10]

Table 13: The results of heterogenous input dimensionality on CIFAR-10. Top: each task associates with
RGB or grayscale image. Bottom: each task has input images of different spatial sizes.

Model RGB Gray Gray Gray RGB Gray Gray Gray RGB
A B C A B C A B C

STL 74.0 56.8 77.3 68.4 62.3 77.3 68.4 56.8 83.2
DMTRL-Tucker 72.8 55.2 76.6 66.6 61.6 77.2 66.3 55.4 82.6

DMTRL-TT 73.1 54.1 77.2 66.2 61.5 77.4 66.7 54.8 81.7
TRMTL-5410 79.4 59.3 82.9 73.5 64.9 83.5 74.4 59.4 88.9

Model 16×16 32×32 16×32 32×32 16×32 16×16 16×32 16×16 32×32
A B C A B C A B C

STL 73.9 62.3 82.2 74.0 62.0 83.1 74.3 62.4 82.2
DMTRL-Tucker 72.9 60.9 82.1 73.1 61.2 82.5 72.6 61.2 82.6

DMTRL-TT 72.3 61.9 82.5 73.1 62.2 82.2 73.4 61.5 82.8
TRMTL-5410 74.8 63.2 86.8 74.9 62.8 86.6 75.2 62.4 86.7

Table 14: Specifications of heterogenous FC network architectures in the Office-Home experiment.
Input images are processed by convolutional part of pre-trained VGG-16 before feeding to TRMTL.

Layer Art task Clipart task Product task Real World task Homogenous network

FC1 in modes [8, 8, 8, 7, 7]
out modes [4, 4, 4, 5, 5]

FC2 in modes [4, 4, 4, 5, 5] [4, 4, 4, 5, 5] [4, 4, 4, 5, 5] [4, 4, 4, 5, 5] [4, 4, 4, 5, 5]
out modes [4, 4, 4, 5, 5] [3, 4, 4, 5, 5] [2, 4, 4, 5, 5] [1, 4, 4, 5, 5] [1, 4, 4, 5, 5]

FC3 in modes [1600] [1200] [800] [400] [400]
out modes [65] [65] [65] [65] [65]

16


	introduction
	Tensor Preliminaries
	Methodology
	Tensor Representation Layer Implemented via Tensor Ring Format
	The Proposed Knowledge-Sharing Framework
	The general formulation
	Special case for CNN setting


	Experimental Results
	Experimental Settings
	Tensor representation
	Shared cores selection

	Deep MTL with Single Domain Source
	Effect of sharing patterns
	Effect of model complexity
	Effect of unbalanced sample sizes
	Validation on recurrent neural networks

	Deep MTL with Multiple Domain Sources
	Results on heterogeneous MLPs
	Results on heterogeneous CNNs


	Discussion
	Conclusion
	Related Work
	Detailed Settings and More Experimental Results
	Deep MTL with Single Domain Source
	Effect of sharing patterns
	Effect of unbalanced sample sizes
	Effect of inputs with heterogeneous dimensions

	Deep MTL with Multiple Domain Sources
	Results on heterogeneous MLPs



