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ABSTRACT

There is a rising interest in studying the robustness of deep neural network classi-
fiers against adversaries, with both advanced attack and defence techniques being
actively developed. However, most recent work focuses on discriminative classi-
fiers, which only model the conditional distribution of the labels given the inputs.
In this paper, we propose and investigate the deep Bayes classifier, which im-
proves classical naive Bayes with conditional deep generative models. We further
develop detection methods for adversarial examples, which reject inputs with low
likelihood under the generative model. Experimental results suggest that deep
Bayes classifiers are more robust than deep discriminative classifiers, and that the
proposed detection methods are effective against many recently proposed attacks.

1 INTRODUCTION

Deep neural networks have been shown to be vulnerable to adversarial examples (Szegedy et al.,
2013; Goodfellow et al., 2014). The latest attack techniques can easily fool a deep neural network
with imperceptible perturbations (Goodfellow et al., 2014; Papernot et al., 2016b; Carlini & Wagner,
2017a; Kurakin et al., 2016; Madry et al., 2018; Chen et al., 2017a), even in the black-box case,
where the attacker does not have access to the network’s weights (Papernot et al., 2017b; Chen
et al., 2017b; Alzantot et al., 2018a). Adversarial attacks are serious security threats to machine
learning systems, threatening applications beyond image classification (Carlini & Wagner, 2018;
Alzantot et al., 2018b).

To address this outstanding security issue, researchers have proposed defence mechanisms against
adversarial attacks. Adversarial training, which augments the training data with adversarially per-
turbed inputs, has shown moderate success at defending against recently proposed attack techniques
(Szegedy et al., 2013; Goodfellow et al., 2014; Tramèr et al., 2017; Madry et al., 2018). In addition,
recent advances in Bayesian neural networks have demonstrated that uncertainty estimates can be
used to detect adversarial attacks (Li & Gal, 2017; Feinman et al., 2017; Louizos & Welling, 2017;
Smith & Gal, 2018). Another notable category of defence techniques involves the usage of genera-
tive models. For example, Gu & Rigazio (2014) used an auto-encoder to denoise the inputs before
feeding them to the classifier. This denoising approach has been extensively investigated, and the
“denoisers” in usage include generative adversarial networks (Samangouei et al., 2018), PixelCNNs
(Song et al., 2018) and denoising auto-encoders (Kurakin et al., 2018). These developments rely on
the “off-manifold” conjecture, that is, that adversarial examples are far away from the data manifold,
although Gilmer et al. (2018) has challenged this observation with a synthetic example.

Surprisingly, much less recent work has investigated the robustness of generative classifiers (Ng &
Jordan, 2002) against adversarial attacks for multi-class classification, where such classifiers explic-
itly model the conditional distribution of the inputs given labels. Typically, a generative classifier
produces predictions by comparing between the likelihood of the labels for a given input, which is
closely related to the “distance” of the input to the data manifold associated with a class. There-
fore, generative classifiers should be robust to many recently proposed adversarial attacks if the
“off-manifold” conjecture holds for many real-world applications. Unfortunately, many generative
classifiers in popular use, including naive Bayes and linear discriminant analysis (Fisher, 1936),
perform poorly on natural image classification tasks, making it difficult to verify the “off-manifold”
conjecture and the robustness of generative classifiers with these tools. In recent work, k-nearest
neighbors (Cover & Hart, 1967), a method which shares many similarities with generative classi-
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fiers, has been significantly improved in handling natural images by leveraging deep feature repre-
sentations (Papernot & McDaniel, 2018). To the best of our knowledge, an approach which targets
a similar contribution has not yet been proposed for generative classifiers.

Are generative classifiers more robust to recently proposed adversarial attack techniques? To an-
swer this, we improve the naive Bayes algorithm by using conditional deep generative models, and
evaluate the conjecture on the proposed generative classifier. In summary, our contributions include:

• We propose deep Bayes as an extension of naive Bayes, in which the conditional distribu-
tion of an input, given a label, is parameterised by a deep latent variable model (LVM).
We learn the LVM with the variational auto-encoder algorithm (Kingma & Welling, 2013;
Rezende et al., 2014), and approximate Bayes’ rule using importance sampling.

• We propose three detection methods for adversarial perturbations. The first two use the
learned generative model as a proxy of the data manifold, and reject inputs that are far
away from it. The third computes statistics for the classifier’s output probability vector on
training data, and rejects inputs that lead to under-confident predictions.

• We evaluate the robustness of the proposed generative classifier on the MNIST multi-class
and CIFAR binary classification tasks. We also improve the robustness of deep neural
networks on CIFAR-10 multi-class classification, by fusing discriminatively learned visual
feature representations with the proposed generative classifiers. We further compare the
generative classifiers with a number of discriminative classifiers, including Bayesian neural
networks and discriminative latent variable models.

2 DEEP BAYES: CONDITIONAL DEEP LVM AS A GENERATIVE CLASSIFIER

Denote pD(x,y) the data distribution for the input x ∈ RD and label y ∈ {yc|c = 1, ..., C},
where yc denotes the one-hot encoding vector for class c. For a given x ∈ RD we can define the
ground-truth label by

y ∼ pD(y|x) if x ∈ supp(pD(x)). (1)
We assume the data distribution pD(x,y) follows the manifold assumption: for every class c, the
conditional distribution pD(x|yc) has a low-dimensional manifold supportMc = supp(pD(x|yc)).
Therefore the training dataset D = {(x(n),y(n))}Nn=1 is generated as the following:

(x(n),y(n)) ∼ pD(x,y) ⇔ y(n) ∼ pD(y),x(n) ∼ pD(x|y).

A (Bayesian) generative classifier first builds a generative model p(x,y) = p(x|y)p(y), and then,
in prediction time, predicts the label y∗ of a test input x∗ using Bayes’ rule,

p(y∗|x∗) =
p(x∗|y∗)p(y∗)

p(x∗)
= softmaxCc=1 [log p(x∗,yc)] ,

where softmaxC
c=1 denotes the softmax operator over the c axis. Therefore, the output probability

vector is computed analogously to many deep discriminative classifiers which use softmax activation
in the output layer, so many existing attacks can be tested directly. However, unlike discriminative
classifiers, the “logit” values prior to softmax activation have a clear meaning here, which is the
(approximated) log joint distribution log p(x∗,yc) of input x∗ conditioned on a given label yc.
Therefore, one can also analyse the logit values to determine whether the unseen pair (x∗,y∗) is
legitimate, a utility which will be discussed further in later sections.

Naive Bayes is perhaps the most well-known generative classifier; it assumes a factorised distribution
for the conditional generator, i.e. p(x|y) =

∏D
d=1 p(xd|y). However, this factorisation assumption

is inappropriate for e.g. image and speech data. Fortunately, we can leverage the recent advances in
generative modelling and apply a deep generative model for the joint distribution p(x,y). We refer
to such generative classifiers that use deep generative models as deep Bayes classifiers.

In this paper, we consider a deep latent variable model (LVM) p(x, z,y), which will be used for
classification. In this case, the conditional distribution is p(x|y) =

∫
p(x,z,y)dz∫

p(x,z,y)dzdx
. Importantly,

this leads to a conditional distribution p(x|y) that is not factorised (even when p(x|z,y) is), which
is much more powerful than naive Bayes. Since maximum likelihood is intractable, we follow
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generative discriminative

Figure 1: A visualisation of the graphical models, including both Generative and Discriminative
ones, as well as Fully connected and Bottleneck ones. The last character indicates the first node in
the topological order of the graph. The colour encoding is the same as those in experiments.

Kingma & Welling (2013) and Rezende et al. (2014) to introduce an amortised approximate posterior
q(z|x,y), and train both p and q by maximising the variational lower-bound:

ED[LVI(x,y)] =
1

N

N∑
n=1

Eq

[
log

p(xn, zn,yn)

q(zn|xn,yn)

]
. (2)

After training, the predicted class probability vector y∗ for a future input x∗ is computed by an
approximation to Bayes’ rule with importance sampling:

p(y∗|x∗) ≈ softmaxCc=1

[
log

1

K

K∑
k=1

p(x∗, zkc ,yc)

q(zkc |x∗,yc)

]
, zkc ∼ q(z|x∗,yc). (3)

We evaluate the effect of the following factorisation structures on the robustness of the induced
classifier from the generative model p(x, z,y) (see Figure 1).

p(x, z,y) = p(z)p(y|z)p(x|z,y) (GFZ)
p(x, z,y) = pD(y)p(z|y)p(x|z,y) (GFY)
p(x, z,y) = p(z)p(y|z)p(x|z) (GBZ)
p(x, z,y) = pD(y)p(z|y)p(x|z) (GBY)

p(x, z,y) = pD(x)p(z|x)p(y|z,x) (DFX)
p(x, z,y) = p(z)p(x|z)p(y|z,x) (DFZ)
p(x, z,y) = pD(x)p(z|x)p(y|z) (DBX)

We use the initial character “G” to denote generative classifiers and “D” to denote discriminative
classifiers. Models with the second character as “F” have a fully connected graph, while “B” models
enforce the usage of the latent code z as a bottleneck. The last character of the model name indicates
the first node in topological order. Model DFZ is somewhat intermediate, as it builds a generative
model for the inputs x but also directly parameterises the conditional distribution p(y|x, z). We
do not test other architectures under this nomenclature, as either the graph contains directed cycles
(e.g. x→ y → z → x), or z is the last node in topological order (e.g. x→ y, (x,y)→ z) so that
the marginalisation of z does not affect classification.

3 DETECTING ADVERSARIAL ATTACKS WITH GENERATIVE CLASSIFIERS

We propose detection methods for adversarial examples using generative classifier’s logit values.
As an illustrating example, consider a labelled dataset of “cat” and “dog” images. If an adversarial
image of a cat xadv is incorrectly labelled as “dog”, then either this image is ambiguous, or, under a
perfect generative model, the logit log p(xadv, “dog”) will be significantly lower than normal. This
means we can detect attacks using the logits log p(x∗,yc), c = 1, ..., C computed on a test input x∗,
by comparing them with the logits computed on legitimate training inputs.

Concretely, the proposed detection algorithms are as follows. We aim to reject both unlabelled input
x that have low probability under pD(x), and labelled data (x,y) that have low pD(x,y) values.

• Marginal detection: rejecting inputs that are far away from the manifold.
One can select a threshold δ and reject an input x if − log p(x) > δ. To determine the
threshold δ, we can compute d̄D = Ex∼D[− log p(x)] and σD =

√
Vx∼D[log p(x)], then

set δ = d̄D + ασD. It is also possible to compute the statistics d̄p, σp on the images
generated by the generative model accordingly.

• Logit detection: rejecting inputs using joint density.
Given a victim model y = F (x), one can reject x if − log p(x, F (x)) > δy . We can use
the mean and variance statistics d̄c, σc computed on log p(x,yc) and select δyc = d̄c+ασc.

3



Under review as a conference paper at ICLR 2019

Figure 2: Visualising detection mechanisms. The scattered dots are training data points, with dif-
ferent classes shown in different colours (red for c = 0 and blue for c = 1). Same labels are
manually assigned for inputs when the detection method requires y. Decision regions are shown in
the corresponding colours. Input points in the shaded area are rejected by detection.

• Divergence detection: rejecting inputs with over- and/or under-confident predictions.
Denote p(x) as a C-dimensional probability vector outputted by the classifier. For each
class c, we first collect the mean classification probability vector pc = E(x,yc)∈D[p(x)],
then compute the mean d̄c and standard deviation σc on a selected divergence/distance
measure D[pc||p(x)] for all (x,yc) ∈ D. A test input x∗ with prediction label c∗ =
arg maxp(x∗) is rejected if D[pc∗ ||p(x∗)] > d̄c∗ + ασc∗ . Therefore, an example x∗ will
be rejected if the classifier is over-confident or under-confident (ambiguous inputs).
When D is selected as the KL-divergence, we call this detection method KL detection.
Other divergence/distance measures such as total variation (TV) can also be used.

For better intuition, we visualise the detection mechanisms in Figure 2 with a synthetic “two rings”
binary classification example. In this case we sample 2× 1000 training data points as:

(x,y) ∼ pD ⇔ y ∼ Bern(0.5), θ ∼ Uniform(0, 2π),x|y ∼ N (x; cy + ry[cos(θ), sin(θ)]T, σ2I).

We consider a generative classifier p(x,y) = p(x|y)pD(y) = N (x;µy, σ
2I)Bern(0.5) with µy =

proj(x, ringy) = arg minx̂∈R2, ||x̂−cy||2=ry ||x − x̂||2. The δ thresholds are selected to achieve
10% false positive rates on training data. From the visualisations we see that inputs that are far away
from the model manifold are rejected by marginal/logit detection. At the same time, logit detection
rejects data points that are not on the manifold of the given class. KL/TV detection does not construct
manifold-aware acceptance regions, which is as expected since the proposed divergence detection
method does not require the classifier to be generative. However, both detection methods have some
success in rejecting uncertain predictions, especially for TV, which also rejects ambiguous inputs
(see the ring-cross regions in the last two plots). Combining all three methods, we see that the
rejected inputs are either far away from the manifold, or are ambiguous. Again we emphasise that a
suitable generative model is required to make the detection methods work in practice, since the data
distribution pD(x,y) is approximated by p(x,y).

Detection methods using logit values have also been proposed in Li & Gal (e.g. 2017); Feinman et al.
(e.g. 2017). However it is unclear whether the logits values in discriminative classifiers have a clear
semantic meaning, while the logit values in deep Bayes represent the log probability of generating
the input x given the class label y = yc. Our approach is also distinct from previous “denoising”
approaches (e.g. Song et al., 2018; Samangouei et al., 2018; Kurakin et al., 2018) that require training
an additional generative model separately. The deep Bayes classifiers share the same generative
model as the detection methods, meaning that detected adversarial examples are indeed far away
from the classifier’s manifold (which is also an approximation to the data manifold). Therefore the
claim “detection neural networks can be bypassed” (Carlini & Wagner, 2017a; Athalye et al., 2018)
does not directly transfer to our approach, and we can use the marginal and logit detection methods
to directly verify the “off-manifold” adversarial example conjecture.

4 EXPERIMENTS

We carry out a number of tests on the proposed deep Bayes classifiers (3), where q(z|·) and p(z|·)
are factorised Gaussians, and the conditional probability p(x|·), if required, is parameterised by an
`2 loss. Besides the LVM-based classifiers, we further train a Bayesian neural network (BNN) with
Bernoulli dropout (dropout rate 0.3), as it has been shown in Li & Gal (2017) and Feinman et al.
(2017) that BNNs are more robust than their deterministic counterparts. The constructed BNN has
2x more channels than LVM-based classifiers, making the comparison slightly “unfair”, as the BNN
layers have more capacity. We use K = 10 Monte Carlo samples for all the classifiers.
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Figure 3: Accuracies (column 1), detection rates (columns 2-4) and minimum `inf perturbation
(column 6) against white-box zero-knowledge `∞ attacks on MNIST. The higher the better. The
second from right most column visualises crafted adversarial examples on an image of digit “7”,
with `∞ distortion ε growing from 0.1 to 0.5.

The adversarial attacks in test include both `∞ and `2 untargeted attacks from CleverHans 2.0 library
(Papernot et al., 2017a): fast gradient sign method (FGSM, Goodfellow et al., 2014), projected
gradient descent (PGD, Madry et al., 2018), momentum iterative attack (MIM, Dong et al., 2017)
and Carlini & Wagner `2 (CW, Carlini & Wagner, 2017a). Two metrics are reported: accuracy of
the classifier on crafted adversarial examples, and detection rate on adversarial examples that have
successfully caused the classifier to misclassify. This detection rate is defined as the true positive
(TP) rate of finding an adversarial example, and the detection threshold is selected to achieve a 5%
false positive rate on clean training data.

The experiments are performed under various threat model settings. We further evaluate the trans-
ferability of crafted adversarial examples across different classifiers in the same way as done in
Papernot et al. (2016a). We only provide visualisations in the main text; full table results can be
found in the appendix. Readers are also referred to the appendix for further experiments, including
a quantitative analysis of the bottleneck effect on robustness and detection.

4.1 MNIST

The first set of experiments evaluate the robustness of generative classifiers on MNIST. Here the
image pixel values are normalised to [0, 1], and the LVM-based classifiers have dim(z) = 64.
We first perform white-box zero-knowledge attacks, i.e. the attacker can differentiate through the
classifier to craft adversarial examples, but he/she is not aware of the existence of the detector. Then
we perform white-box perfect-knowledge attacks, where the attacker can differentiate through both
the classifier and the detector, and he/she knows the usage of random z samples by the VAE-based
classifiers (Biggio et al., 2013; Carlini & Wagner, 2017b). Lastly we consider grey-box and black-
box attacks, and evaluate the robustness of generative classifiers against transferred attacks.

White-box attacks (zero-knowledge, `∞) Results for `∞ attacks are reported in Figure 3, and in
general generative classifiers perform better in terms of victim accuracy and minimum perturbation
of the attacks.1 By contrast, DFX & DFZ are not robust to the weakest attack (FGSM) even when ε =
0.2 (where the adversarial examples are still visually close to the original digit “7”). Interestingly,
DBX is the most robust against FGSM & MIM2, which agrees with the preliminary tests in Alemi
et al. (2017). But DBX is less robust to PGD, and here GBZ is a clear winner. These results show
that the bottleneck is sometimes beneficial for better robustness of MNIST classifiers.

For detection, generative classifiers have successfully detected the adversarial examples with ε ≥
0.3, which is reasonable as the visual distortion is already significant. Importantly, generative clas-
sifier’s victim accuracy decreases as the `∞ distortion ε increases, but at the same time the TP rates

1The minimum perturbation is computed across all ε settings. If none of the attack is successful on an input,
we manually assign the minimum perturbation of that input as εmax + 0.1 (0.6 for MNIST).

2Note that MIM on DBX with ε = 0.9 achieves 100% success rate (i.e. victim accuracy 0%).
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Table 1: White-box zero-knowledge CW-`2
attack results. Here, accuracy (adv) measures
classifying the adversarial inputs to the origi-
nal classes.

acc. (clean) acc. (adv) `2 dist. TP KL
BNN 99.12% 24.40% 2.129 95.31
GFZ 98.55% 28.58% 2.663 95.37
GBZ 97.45% 81.51% 2.446 91.01
GFY 99.15% 28.64% 2.732 96.03
GBY 98.72% 32.72% 2.735 94.46
DFX 99.10% 20.31% 2.095 99.96
DBX 98.87% 30.19% 1.806 96.76
DFZ 99.10% 13.60% 2.188 99.57

(a) clean inputs (b) CW adv. inputs
Figure 4: Visualising the clean inputs and the
CW adversarial examples crafted on GFZ, digits
in red rectangles show significant ambiguity.

for marginal and logit detection also increase. Therefore these `∞ attacks fail to find near-manifold
adversarial examples that fool both the classifier and the detection methods. DFZ, as an interme-
diate between generative and discriminative classifiers, has worse robustness results, but has good
detection performance for the marginal and logit metrics. This is because with softmax activation,
the marginal distribution p(x) is dropped, but in marginal/logit detection p(x) is still in use.

White-box attack (zero-knowledge, `2) For the CW `2 attack, we performed a hyper-
parameter search for the loss-balancing parameter c (`2 distortion increases with larger c) in
{0.1, 1, 10, 100, 1000} on the first 100 test images, and we found c = 10 returns the highest success
rate. Results are reported in Table 1. Although being successful on fooling many classifiers, CW
failed on attacking GBZ. Also, the mean `2 distortions of the successful attacks on generative clas-
sifiers are significantly larger. Furthermore, we found the success of the attack on other generative
classifiers is mainly due to the ambiguity of the crafted adversarial images. As visualised in Figure 4
(also see Figure D.1 in appendix), the induced distortion from CW leads to ambiguous digits which
sit at the perceptual boundary between the original and the adversarial classes. With the KL detec-
tion method, all classifiers achieve > 95% detection rates, which is as expected as the default CW
attack configuration, by construction, generates adversarial examples that lead to minimal difference
between the logit values of the most and the second most probable classes.

White-box attack (perfect-knowledge, `∞) The PGD-based perfect-knowledge `∞ attack is
designed following (Carlini & Wagner, 2017b): we construct an (approximate) Bayes classifier
pk(y|x) using (3) for each set of samples {zkc }Cc=1, and minimize the following with PGD:

L(η) =

K∑
k=1

log pk(y|x+ η) + λdetect max(0,Φ(x+ η,y)− δ). (4)

The detection statistic Φ(x + η,y) is − log p(x + η) for marginal detection, and δ is the corre-
sponding threshold computed on training data. For logit/KL detection, the detection statistics and
thresholds are constructed accordingly. We label the three attacks against the marginal, logit and KL
based detection schemes ’-PKM’, ’-PKL’ and ’-PKK’ respectively. When we only have knowledge
of the K samples and not the detection method we call this attack ’-PK0’ (ie λdetect=0 in Eq. 4).

Results are visualised in Figure 5. We see that although the attacker can reduce detection levels,
this comes with the trade-off of increasing accuracy, suggesting that a perfect-knowledge adversary
cannot break both the classifier and detector working in tandem.

Sanity checks on gradient masking Athalye et al. (2018) claimed that if a successful defence
against white-box attacks is due to gradient masking, then this defence is likely to be less effective
against grey-box/black-box attacks, as they do not differentiate through the victim classifier and
the defence mechanism (Papernot et al., 2017b). Therefore, we consider two transfer attacks based
on distilling the victim classifier using a “student” CNN which has no gradient masking. The two
attacks differ in their threat models: in the grey-box setting the attacker has access to the output
probability vectors of the classifiers on the training data, while in the black-box setting the attacker
has access to queried labels only. For the latter black-box setting, we follow Papernot et al. (2017b)
to train a substitute CNN using Jacobian-based dataset augmentation, and we refer to appendix B.1
for the detailed algorithm. The grey-box substitutes achieve > 99% agreement with the victims on
test data, and the black-box substitutes obtained ∼ 96% accuracy on test data.
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DBX-ZK DBX-PK0 DBX-PKK GBY-ZK GBY-PK0 GBY-PKM GBY-PKL GBY-PKK GBZ-ZK GBZ-PK0 GBZ-PKM GBZ-PKL GBZ-PKK0
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Figure 5: Accuracy and detection rates of DBX, GBY, and GBZ against PGD-based perfect-
knowledge attack (ε = 0.2) on MNIST. The solid area denotes accuracy and the hatched area
denotes detection rate with each considered detector. Zero knowledge attacks are labelled ’-ZK’,
other attack labels are described in the main text.

Figure 6: Accuracy and detection rates against distillation-based attacks on MNIST. The higher the
better. We only present generative classifiers’ results here, for full results see appendix E.

Figure 6 shows the accuracy and detection metrics on transferred `∞ attacks crafted on the substitute
models, with a comparison to their white-box counterparts. Note that these crafted attacks achieve∼
100% success rates on fooling the substitute models when ε ≥ 0.2 (see appendix E). However, they
do not transfer very well to the generative classifiers. Importantly, for a fixed ε setting, the white-
box attacks achieve significantly higher success rates (i.e. lower victim accuracies) than their grey-
/black-box counterparts, and the gap is at least > 20% for ε ≤ 0.3 (see Table 2). We further present
the mean minimum `∞ perturbation in Table 2, and we see that the minimum perturbation obtained
by grey-/black-box attacks are significantly higher than those obtained by white-box attacks.

All these results suggest that the robustness of generative classifiers is unlikely to be caused by
gradient masking. Again on the detection side, the detection rates increase as the perturbation size
increase, and they are near 100% for ε = 0.3. This means that most of the successfully transferred
adversarial images are off the generative classifier’s manifold (as a proxy to the data manifold).

SPSA (evolutionary strategies) We consider another black-box setting that only assumes access
to the logit values of the prediction given an input. We use the SPSA `∞ attack (Uesato et al., 2018),
which is similar to the white-box zero-knowledge attacks, except that gradients are numerically

Table 2: Mean minimum `∞ perturbation (in red, computed on ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5}) and
victim accuracy (in blue, for ε ≤ 0.3) for `∞ attacks on MNIST. We manually assign the min. per-
turbation ε = 0.6 to inputs that all attacks failed to find adversarial perturbations.

Attack GFZ GBZ GFY GBY
PGD(white-box) 0.23 / 7.71% 0.30 / 30.78% 0.21 / 5.52% 0.23 / 8.89%
MIM(white-box) 0.24 / 9.02% 0.21 / 4.97% 0.22 / 6.72% 0.21 / 1.54%

PGD(grey-box) 0.37 / 51.08% 0.36 / 50.64% 0.38 / 53.29% 0.36 / 48.66%
MIM(grey-box) 0.34 / 43.00% 0.33 / 40.94% 0.34 / 46.64% 0.33 / 40.06%

PGD(black-box) 0.40 / 61.93% 0.42 / 66.75% 0.38 / 56.35% 0.43 / 68.50%
MIM(black-box) 0.36 / 50.44% 0.38 / 59.86% 0.36 / 48.07% 0.39 / 61.78%
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Table 3: Accuracy and detection rates against black-box SPSA attack (ε = 0.3), with a comparison
to white-box PGD on 1000 randomly sampled test datapoints. The higher the better.

GFZ GBZ GBY GFY DFX DBX DFZ
PGD victim acc 4.0% 29.7% 7.4% 2.3% 0.0% 5.4% 0.0%

SPSA victim acc 68.2% 79.0% 71.0% 55.9% 0.0% 46.3% 11.0%
SPSA TP logit 91.5% 92.4% 95.7% 98.5% N/A N/A 65.8%

Figure 7: Results on cross-model transfer attacks on MNIST. The horizontal axis corresponds to
the source victim that the adversarial examples are crafted on, and the vertical axis corresponds to
the target victim that the attacks are transferred to. The higher (i.e. the lighter) the better.

estimated using the logit values from the victim classifier. Results in Table 3 clearly show that
SPSA performs much worse on generative classifiers when compared to white-box PGD. Again
this means gradient masking is unlikely to be responsible for the improved robustness of generative
classifiers, as utilising the exact gradient yielded improved results.

Cross-model attack transferability Finally, we report in Figure 7 the transferability results of
the crafted adversarial examples between different models (Papernot et al., 2016a). Here we take
adversarial examples crafted in the white-box setting with PGD and MIM (ε = 0.3), and transfer
successful attacks to other classifiers. The transfer is effective between generative classifiers but not
from generative to discriminative (and vice versa). The attacks crafted on DBX do not transfer in
general, while at the same time, DBX is the least robust model in this case. Furthermore, the gen-
erative classifiers obtain very high detection rates on all transferred attacks (> 95%). In summary,
generative classifiers are more robust against the tested transfer attacks across different models.

4.2 CIFAR PLANE-VS-FROG BINARY CLASSIFICATION

We consider the same set of evaluations on CIFAR-10, in order to validate the robustness of gen-
erative classifiers on natural images (c.f. Carlini & Wagner, 2017b). Unfortunately, we failed to
train fully generative classifiers with comparable test accuracies to discriminative CNNs (typically
> 80%): the clean accuracies for GFZ & GFY are all < 50%. Even when using the conditional
PixelCNN++ (Salimans et al., 2017) (which uses much deeper networks), the clean accuracy on
the test data is 72.4%. Instead, we consider a simpler binary classification problem and construct
a dataset containing CIFAR images from the “airplane” and “frog” categories. The images in this
dataset are scaled to [0, 1]. On this dataset, the generative classifiers use dim(z) = 128 and obtain
> 90% clean test accuracy (see appendix). The attacks are performed on the test images that all
models initially correctly classify, leading to a test set of 1577 instances. Due to the page limit, we
only present white-box zero-knowledge attacks here, and discuss further attacks in the appendix.

White-box attacks (zero-knowledge, `∞) We present the white-box `∞ attack results in Figure
8, where the distortion strengths are selected as ε ∈ {0.01, 0.02, 0.05, 0.1, 0.2}. Again, generative
classifiers are more robust than the discriminative ones, and GBZ is the most robust, much better than
the others when ε ≥ 0.05. BNN is significantly better than other discriminative VAE-based classi-
fiers, presumably due to higher randomness. Detection results are less satisfactory: marginal/logit
detection fail to detect attacks with ε = 0.1 (which attain both high success rate and induce visually
perceptible distortion). KL detection performs better, and interestingly, discriminative classifiers
dominate in this metric. These results suggest that the `2 likelihood might not be best suited for
modelling natural images (c.f. Larsen et al., 2016; van den Oord et al., 2016). Still, the minimum
distortion required to fool generative classifiers are much higher than that for discriminative ones,
indeed the visual distortion of the adversarial examples on generative classifiers are more significant.
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Figure 8: Accuracy, detection rates and minimum `inf perturbations against white-box zero-
knowledge `∞ attacks on the CIFAR plane-vs-frog dataset. The higher the better. The second
from right most column visualises crafted adversarial examples on an image of a plane, with `∞
distortion ε ∈ {0.01, 0.02, 0.05, 0.1, 0.2}.

Figure 9: Accuracy and detection rates against white-box zero-knowledge CW attacks on the CI-
FAR plane-vs-frog dataset. The higher the better.

White-box attack (zero-knowledge, `2) As the test set is relatively small, we directly perform
CW attacks on the test data with c ∈ {0.1, 1, 10, 100, 1000}. Results are visualised in Figure 9. The
generative classifiers are significantly more robust than the others (with the best being GBZ), and the
mean `2 distortions computed on successful attacks are also significantly higher. The TP rates are
low for marginal and logit detection, which is reasonable as the crafted images are visually similar to
the clean ones. Note that the distortion for the attacks on generative classifiers is perceptible. These
results indicate that this CW attack is ineffective when attacking generative classifiers.

4.3 FULL CIFAR-10: COMBINING DEEP BAYES AND DISCRIMINATIVE FEATURES

The final experiment examines the robustness of CIFAR-10 multi-class classifiers, with the genera-
tive classifiers trained on discriminative visual features. To do this, we download a pretrained deep
convolutional net3 with VGG16-like architecture (Simonyan & Zisserman, 2014), and use its feature
representation φ(x) as the input to the VAE-based classifiers: p(y|x) = p(y|φ(x)). The classifiers
in test include GBZ, GBY and DBX. We use fully-connected neural networks for these classifiers,
and select from VGG16 the 9th convolution layer (CONV9) and the first fully connected layer after
convolution (FC1) as the feature layers to ensure ∼ 90% test accuracy (see appendix).

Results on white-box zero-knowledge `∞ attacks are visualised in Figure 10. Compared with
the VGG16 baseline, we see clear improvements in robustness and detection for all VAE-based
classifiers. In particular, the generative classifiers GBZ and GBY are overall better than DBX. More
importantly, generative classifiers based on CONV9 features are significantly more robust than those
based on FC1 features. In contrast, for DBX, which is discriminative, the robustness results are very
similar, indicating that the level of feature representation has little effect. These results suggest that
one can achieve both high clean accuracy and better robustness against adversaries by combining
discriminatively learned visual features and generative classifiers.

3https://github.com/geifmany/cifar-vgg, 93.59% test accuracy
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Figure 10: Accuracy and detection rates against white-box zero-knowledge `∞ attacks on CIFAR-
10. The higher the better. Note that results for the DBX classifiers are almost identical.

5 DISCUSSION

We have proposed deep Bayes as a generative classifier that uses deep latent variable models to
model the joint distribution of input-output pairs. We have given evidence, on multiple classification
tasks, that generative classifiers are more robust to adversarial attacks than discriminative classifiers.
Furthermore, the logit in generative classifiers has a well defined meaning and can be used to detect
attacks, even when the classifier is fooled.

Our results corroborate with the Bayesian neural network literature, in particular (Li & Gal, 2017;
Feinman et al., 2017; Carlini & Wagner, 2017b), in showing that modelling unobserved variables
are effective for defending against adversarial attacks4. Concurrent to us, Schott et al. (2018) also
demonstrated the robustness of generative classifiers on MNIST, in which the logits are computed by
a tempered version of the variational lower-bound. However, their approach requires thousands of
random z samples and tens of optimisation steps to approximate log p(x|y) for every input-output
pair (x,y), making it less scalable than our importance sampling technique to large datasets and
big architectures. Indeed, we have scaled our approach to CIFAR-10, a natural image dataset, and
the robustness results are consistent with those on MNIST. In addition, we have also shown that the
structure of the graphical model has a significant impact on robustness: deep LVM-based generative
classifiers generally outperform the (randomised) discriminative ones.

While we have given strong evidence to suggest that generative classifiers are more robust to current
adversarial attacks, we do not wish to claim that these models will be robust to all possible attacks.
Aside from many recent attacks being designed specifically for discriminative neural networks, there
is also evidence for the fragility of generative models; e.g. naive Bayes as a standard approach for
spam filtering is well-known to be fragile (Dalvi et al., 2004; Huang et al., 2011), and very recently
Tabacof et al. (2016); Kos et al. (2017); Creswell et al. (2017) also designed attacks for (uncondi-
tional) VAE-type models. However, generative classifiers can be made more robust too, to counter
these weaknesses. Dalvi et al. (2004) have shown that generative classifiers can be made more se-
cure if aware of the attack strategy, and Biggio et al. (2011; 2014) further improved naive Bayes’
robustness by modelling the conditional distribution of the adversarial inputs. These approaches are
similar to the adversarial training of discriminative classifiers, and efficient ways for doing so with
generative classifiers can be an interesting research direction.

But even with this note of caution, we believe this work offers exciting avenues for future work.
Using generative classifiers offers an interesting way to evaluate generative models and can drive
improvements in their ability to tackle high-dimensional datasets, where traditionally generative
classifiers have been less accurate than discriminative classifiers (Efron, 1975; Ng & Jordan, 2002).
In addition, the combination of generative and discriminative models investigated in this paper is a
compelling direction for future research. Overall, we believe that progress on generative classifiers
can inspire better designs of attack, defence and detection techniques.

4In Bayesian neural networks, the network weights are treated as unobserved/latent variables.
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A MODEL ARCHITECTURES

MNIST experiments The VAEs are constructed with convolutional encoders and deconvolutional
generators. More specifically, the encoder network for q(z|x,y) is the same across all VAE-based
classifiers. It starts with a 3-layer convolutional neural network with 5 × 5 filters and 64 channels,
with a max-pooling operation after each convolution. Then, the convolutional network is followed
by a MLP with 2 hidden layers, each with 500 units, to produce the mean and variance parameters
of q. The label y is injected into the MLP at the first hidden layer, as a one hot encoding (i.e. for
MNIST, the first hidden layer has 500+10 units). The latent dimension is dim(z) = 64.

The p models’ architectures are the following:

GFZ: For p(y|z) we use a MLP with 1 hidden layer composed of 500 units. For p(x|y, z) we
used an MLP with 2 hidden layers, each with 500 units, and 4× 4× 64 dimension output,
followed by a 3-layer deconvolutional network with 5× 5 kernel size, stride 2 and [64, 64,
1] channels.

GFY: We use an MLP with 1 hidden layer composed of 500 units for p(z|y), and the same
architecture as GFZ for p(x|y, z).

DFZ: We use almost the same deconvolutional network architecture for p(x|z) as GFZ’s
p(x|y, z) network, except that the input is z only. For p(y|x, z) we use almost the same
architecture as q(z|x,y) except that the injected input to the MLP is z and the MLP output
is the set of logit values for y.

DFX: We use the same architecture as G3 for p(y|x, z). The network for p(z|x) is almost identi-
cal except that there is no injected input to the MLP, and the network returns the mean and
variance parameters for q(z|x).

DBX: We use GFZ’s architecture for p(y|z) and DFX’s architecture for p(z|x).

GBY: We use GFY’s architecture for p(z|y) and DFZ’s architecture for p(x|z).

GBZ: We use GFZ’s architecture for p(y|z) and DFZ’s architecture for p(x|z).

The BNN has almost the same architecture as the encoder network q, except that it uses 2x the
hidden units/channels, and the last layer is 10 dimensions. Note that here we used dropout as it is
convenient to implement, and we expect better approximate inference methods (such as stochastic
gradient MCMC) to return better results for robustness and detection.

CIFAR plane-vs-frog experiments The model architectures are almost the same as used in
MNIST experiments, except that the hidden layer dimensions for the MLP layers are increased
to 1000. For the encoder q, the channels are increased to [64, 128, 256]. For the p models, the
deconvolutional networks have different channel values, [128, 64, 3], and the MLP before the de-
convolution outputs a 4× 4× 256 vector (before reshaping). The BNN has 2x the channels but still
uses 1000 hidden units.

CIFAR-10 experiments The pre-trained VGG16 network is downloaded from https://
github.com/geifmany/cifar-vgg, where the CONV9 and FC1 layers correspond to:

CONV9: https://github.com/geifmany/cifar-vgg/blob/master/
cifar10vgg.py#L82

FC1: https://github.com/geifmany/cifar-vgg/blob/master/
cifar10vgg.py#L109

The VAE-based classifiers build fully connected networks on top of the extracted features, and use
dim(z) = 128 for bottleneck. The encoder q(z|φ(x),y) has the network architectures [dim(φ(x))
+ dim(y), 1000, 1000, dim(z) × 2], and we use the same encoder architecture across all classifiers.
The decoder architectures are as follows:

DBX: We use an MLP of layers [dim(z), 1000, dim(y)] for p(y|z) and an MLP of layers
[dim(φ(x)), 1000, 1000, dim(z) × 2] for p(z|φ(x)).
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GBZ: We use an MLP of layers [dim(z), 1000, 1000, dim(y)] for p(y|z) and an MLP of layers
[dim(z), 1000, 1000, dim(φ(x))] for p(φ(x)|z).

GBY: We use an MLP of layers [dim(y), 1000, dim(z) × 2] for p(z|y) and GBZ’s architecture
for p(φ(x)|z).

B ATTACK SETTINGS

We use the Cleverhans package to perform attacks. We use the default hyper-parameters, if not
specifically stated.

PGD: We perform the attack for 40 iterations with step-size 0.01.

MIM: We perform the attack for 40 iterations with step-size 0.01 and decay factor 1.0.

CW-`2: We use learning rate 0.01 and confidence 0, and we optimise the loss for 1000 iterations.

SPSA: We use almost the same hyper-parameters as in Uesato et al. (2018) except for the number of
samples for gradient estimates. In detail, we perform the attack for 100 iterations with perturbation
size 0.01, Adam learning rate 0.01, stopping threshold -5.0 and 2000 samples for each gradient
estimate.

B.1 JACOBIAN-BASED DATASET AUGMENTATION

The black-box distillation attack is based on Papernot et al. (2017b), which trains a substitute CNN
using Jacobian-based dataset augmentation. Assume y = F (x) is the output one-hot vector of
the victim, and p(x) is the probability vector output of the substitute model, then at the tth outer-
loop, we train the substitute CNN on dataset Dt = {(xn,yn)} with queried yn for 10 epochs, and
augment the dataset by

Dt+1 = Dt ∪ {(x̂, F (x̂)) | x̂ = x+ λ∇xp(x)Ty, (x,y) ∈ Dt}. (5)

We initialise D1 with 200 × 10 datapoints from the MNIST test set, select λ = 0.1, and run the
algorithm for 6 outer-loops. On MNIST, this results in 64, 000 queried inputs, and ∼ 96% accuracy
of the substitute model on test data. On CIFAR binary classification, we use 200 × 2 datapoints
for the inital query set D1, resulting in 12, 800 queries in total. The substitutes achieved almost the
same accuracy as their corresponding victim models on clean test datapoints.

C FURTHER EXPERIMENTS

C.1 FURTHER EXPERIMENTS ON CIFAR BINARY CLASSIFICATION

White-box attack (perfect-knowledge, `∞) Figure C.1 shows the perfect knowledge attack on
the CIFAR binary classification task. Again we see that although the attack is effective for the
detection schemes, it comes with the price of decreased mis-classification rates. Interestingly GBY
seems to be robust to this attack, where the accuracies on the crafted adversarial examples increase.

Sanity checks on gradient masking We conducted the same sets of transferred `∞ attack ex-
periments, and presents the results in Figure C.2 and Table C.1. Again that these crafted attacks
achieve ∼ 100% success rates on fooling the substitute models when ε ≥ 0.1. Similar to the
MNIST experiments, these adversarial examples do not transfer very well to the generative classi-
fiers, and for a fixed ε setting, the white-box attacks achieve significantly higher success rates than
their grey-/black-box counterparts (with the gap at ε ≤ 0.1 around 30%). Furthermore, the mini-
mum perturbation obtained by grey-/black-box attacks are significantly higher than those obtained
by white-box attacks. For detection, the detection rates are relatively low at ε ≤ 0.1 (where the
classifiers achieved high accuracy). But the detection rates increase significantly for ε = 0.2, where
the victim accuracies also drop.

All these results suggest that the robustness of generative classifiers is unlikely to be caused by
gradient masking. Also most of the successfully transferred adversarial images are off the generative
classifier’s manifold (as a proxy to the data manifold).
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Figure C.1: Accuracy and detection rates of DBX, GBY, and GBZ against PGD-based perfect-
knowledge attack (ε = 0.1) on CIFAR binary task. The solid area denotes accuracy and the hatched
area denotes detection rate with each considered detector. Zero knowledge attacks are labelled ’-
ZK’, other attack labels are the same as for the MNIST plot (Figure 5).

Figure C.2: Accuracy and detection rates against distillation-based attacks on CIFAR plane-vs-frog
binary classification. The higher the better. We only present generative classifiers’ results here, for
full results see appendix E.

Table C.1: Mean minimum `∞ perturbation (in red, computed on ε ∈ {0.01, 0.02, 0.05, 0.1, 0.2})
and victim accuracy (in blue, for ε ≤ 0.1) for `∞ attacks on CIFAR plane-vs-frog binary classifi-
cation. We manually assign the min. perturbation ε = 0.3 to inputs that all attacks failed to find
adversarial perturbations.

Attack GFZ GBZ GFY GBY
PGD(white-box) 0.11 / 21.81% 0.20 / 65.63% 0.11 / 25.81% 0.11 / 25.24%
MIM(white-box) 0.09 / 15.22% 0.13 / 37.60% 0.10 / 16.4%9 0.09 / 14.39%

PGD(grey-box) 0.15 / 50.48% 0.23 / 77.30% 0.16 / 54.66% 0.17 / 57.96%
MIM(grey-box) 0.15 / 47.62% 0.21 / 75.71% 0.15 / 51.11% 0.16 / 53.84%

PGD(black-box) 0.19 / 68.36% 0.23 / 79.45% 0.20 / 70.13% 0.19 / 67.98%
MIM(black-box) 0.18 / 66.39% 0.23 / 78.38% 0.19 / 68.42% 0.19 / 66.52%
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Table C.2: Accuracy and detection rates against black-box SPSA attack (ε = 0.05) on CIFAR
plane-vs-frog, with a comparision to white-box PGD. The higher the better.

GFZ GBZ GBY GFY DFX DBX DFZ
PGD victim acc 67.7% 83.9% 67.9% 67.3% 0.3% 4.2% 0.4%

SPSA victim acc 96.4% 95.2% 96.4% 96.3% 0.4% 87.5% 5.1%
SPSA TP logit 10.0% 17.1% 15.5% 10.0% N/A N/A 4.5%

Figure C.3: Results on cross-model transfer attacks on the CIFAR plane-vs-frog dataset. The
horizontal axis corresponds to the source victim, and the vertical axis corresponds to the target
victim. The higher (lighter) the better.

SPSA (evolutionary strategies) Similarly we perform the SPSA attack (Uesato et al., 2018) on
the CIFAR binary classification task. The results for ε = 0.05 are presented in Table C.2, with
a comparison to the white-box PGD attacks. Again we see that SPSA fails to attack generative
classifiers, and the bottleneck discriminative classifier DBX is significantly more robust than the
discriminative ones with fully-connected graphical models.

Cross-model attack transferability Finally, we present the CIFAR cross-model attack transfer-
ability results in Figure C.3, and here we select ε = 0.1 instead. Again, transferred attacks are less
effective across the victim models. However, the TP rates for logit detection are significantly lower
than in the MNIST case (also see Figure 8). Nevertheless, the detection rates for the “discriminative
to generative” transfer are considerably higher. Combined with the accuracy results, we see that
discriminative models as substitutes are ineffective in the transferred attack setting.

C.2 QUANTIFYING THE EFFECT OF THE BOTTLENECK LAYER

We see from the main text that classifiers with bottleneck structure may be preferred for resisting
adversarial examples. To quantify this bottleneck effect, we train on MNIST models DBX, GBZ
and GBY with z dimensions in {16, 32, 64, 128} (the main text experiments use dim(z) = 64).The
clean test accuracy is shown in Table C.3, showing that all models in test perform reasonably well.

Table C.3: Clean test accuracy on MNIST classification (with varied bottleneck layer sizes).

dim(z) = 16 dim(z) = 32 dim(z) = 64 dim(z) = 128
DBX 99.11% 99.01% 98.98% 98.91%
GBZ 97.11% 97.08% 97.45% 96.62%
GBY 98.82% 98.95% 98.72% 98.75%

We repeat the same white-box zero-knowledge `∞ attack experiments as done in the main text,
where results are presented in Figure C.4 and Tables E.25, E.26 and E.27. It is clear that for dis-
criminative classifiers, DBX, the models become less robust as the bottleneck dimension dim(z)
increases. Interestingly DBX classifiers seem to be very robust against FGSM attacks, which agrees
with the results in Alemi et al. (2017). For the generative ones, we also observe similar trends (al-
though much less significant) of decreased robustness for GBY classifiers, and for GBZ the trend
is unclear, presumably due to local optimum issues in optimisation. In summary, GBZ classifiers
are generally more robust compared to GBY classifiers. More importantly, when the accuracy of
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Figure C.4: Accuracy and detection rates against white-box zero-knowledge `∞ attacks on MNIST,
with varied bottleneck layer sizes.

Table D.1: Clean test accuracy on CIFAR plane-vs-frog classification.

BNN GFZ GFY DFZ DFX DBX GBZ GBY
97.00% 91.60% 91.20% 94.85% 95.65% 96.00% 89.35% 90.65

generative classifiers on adversarial images decreases to zero, the detection rates with marginal/logit
detection increases to 100%. This clearly shows that the three attacks tested here cannot fool the
generative classifiers without being detected.

D ADDITIONAL RESULTS

We visualise in Figure D.1 the crafted adversarial images using white-box CW attack.

We present in Table D.1 the clean accuracy on CIFAR plane-vs-frog test images (2000 in total).

We present in Table D.2 the clean accuracy on CIFAR-10 test images.

Table D.2: Clean test accuracy on CIFAR-10 classification.

VGG16 GBZ-FC1 GBY-FC1 DBX-FC1 GBZ-CONV9 GBY-CONV9 DBX-CONV9
93.59% 92.55% 93.21% 93.49% 91.76% 88.33% 93.21%
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(a) clean inputs (b) adv. inputs (BNN) (c) adv. inputs (GFZ)

(d) adv. inputs (GFY) (e) adv. inputs (DFZ) (f) adv. inputs (DFX)

(g) adv. inputs (DBX) (h) adv. inputs (GBZ) (i) adv. inputs (GBY)

Figure D.1: Visualising the clean inputs of MNIST and the CW adversarial examples crafted on all
the classifiers.
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E RESULTS IN TABLES

We present in tables the full results of the experiments.

See Tables E.1 to E.9 for the white-box attacks.

See Tables E.10 to E.15 for the grey-box attacks.

See Tables E.16 to E.21 for the black-box attacks.

See Tables E.22 to E.24 for CIFAR-10 results with VGG-based classifiers.

See Tables E.25 to E.27 for bottleneck effect quantification results.
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Table E.1: FGSM white-box zero-knowledge attack results on MNIST.

acc. (adv) TP marginal TP logit TP KL
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

BNN 92.4 67.8 40.5 26.2 20.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.0 94.2 95.4 95.5 96.5
GFZ 94.2 74.5 38.9 12.9 5.7 43.6 79.8 100.0 100.0 100.0 56.4 89.6 99.9 100.0 100.0 89.2 91.7 92.2 92.5 92.2
GBZ 92.5 80.3 62.0 42.4 27.2 37.0 81.7 100.0 100.0 100.0 57.6 93.5 100.0 100.0 100.0 91.6 90.9 90.3 91.1 91.5
GFY 94.3 74.8 46.5 21.7 10.5 53.1 92.6 100.0 100.0 100.0 66.2 97.9 100.0 100.0 100.0 90.8 93.1 93.8 94.2 94.2
GBY 93.6 76.4 47.5 22.3 10.7 41.9 84.5 100.0 100.0 100.0 57.7 92.5 100.0 100.0 100.0 89.3 92.7 92.8 92.9 92.9
DFX 70.1 14.8 1.0 0.4 0.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.6 93.8 93.8 93.5 94.3
DBX 91.6 77.8 58.1 44.5 36.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.6 93.6 95.2 96.3 97.0
DFZ 75.2 19.0 2.4 1.1 1.0 12.6 50.6 100.0 100.0 100.0 26.9 65.7 100.0 100.0 100.0 93.1 95.1 94.5 94.9 94.8

Table E.2: PGD white-box zero-knowledge attack results on MNIST.

acc. (adv) TP marginal TP logit TP KL
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

BNN 83.2 12.0 0.5 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.1 92.1 88.7 20.4 0.2
GFZ 86.7 37.7 7.7 1.2 0.3 43.2 71.8 91.4 99.4 100.0 55.8 77.1 94.8 99.6 100.0 90.3 92.1 90.9 90.4 89.7
GBZ 85.1 57.4 32.5 19.3 11.6 33.7 50.3 84.4 99.7 100.0 52.2 66.3 91.5 99.8 100.0 90.0 91.5 91.5 91.7 91.8
GFY 79.7 27.4 5.6 1.2 0.3 58.1 87.9 98.0 100.0 100.0 68.7 92.2 99.3 100.0 100.0 92.6 92.5 90.7 90.7 85.4
GBY 86.7 35.9 9.0 1.7 0.4 45.3 76.1 94.6 99.7 100.0 56.9 79.3 95.6 99.9 100.0 90.1 92.1 91.6 91.7 91.4
DFX 47.6 0.7 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.8 89.8 13.3 31.4 42.8
DBX 58.0 18.3 6.0 1.3 0.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.7 94.0 94.1 93.7 84.8
DFZ 49.6 1.0 0.0 0.0 0.0 11.8 44.3 94.1 100.0 100.0 25.9 57.6 94.5 99.9 100.0 93.9 89.8 12.1 22.9 28.0

Table E.3: MIM white-box zero-knowledge attack results on MNIST.

acc. (adv) TP marginal TP logit TP KL
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

BNN 82.0 7.2 0.1 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.2 91.1 72.0 64.5 7.1
GFZ 87.0 40.4 9.0 1.2 1.2 43.5 83.8 98.4 99.4 99.4 57.6 89.3 98.6 99.2 99.2 91.5 92.3 92.0 90.6 90.6
GBZ 79.6 27.4 5.6 1.5 0.5 36.1 86.3 100.0 100.0 100.0 53.5 93.1 99.9 100.0 100.0 91.3 91.4 91.9 92.2 92.7
GFY 80.8 30.1 6.8 1.4 1.4 56.0 93.7 99.8 100.0 100.0 68.1 96.6 99.9 100.0 100.0 90.9 92.4 92.0 91.6 91.6
GBY 84.9 22.9 1.5 0.1 0.0 47.4 91.2 99.9 100.0 100.0 59.8 92.8 99.9 100.0 100.0 91.4 92.1 91.2 86.8 29.0
DFX 48.4 0.8 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.2 89.6 9.2 17.5 17.5
DBX 66.7 28.7 19.7 17.2 17.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.5 94.3 94.6 94.7 94.7
DFZ 50.5 1.2 0.0 0.0 0.0 11.9 50.7 99.4 100.0 100.0 26.4 63.2 99.0 100.0 100.0 94.3 89.8 11.5 17.3 17.3
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Table E.4: Perfect knowledge attacks on MNIST. This is done using the PGD attack with ε = 0.2. ‘ZK’ stands for zero knowledge, ‘PK0’ where you have
knowledge of the K samples but not of the detection system. ‘PKM’, ‘PKL’, and ‘PKK’ are attacks where you have knowledge of the K samples and of the
marginal, logit and KL detection mechanisms respectively.

ZK PK0 PKM PKL PKK
acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL

DBX 18.3 N/A N/A 94 17 N/A N/A 93.1 N/A N/A N/A N/A N/A N/A N/A N/A 35.9 N/A N/A 93.9
GBZ 57.4 50.3 66.3 91.5 35.5 82.2 90.7 91.4 47.9 36.5 67.4 91.3 44.6 50.5 69.9 91.0 45 73.0 84.8 91.5
GBY 35.9 76.1 79.3 92.1 22 90.8 91.9 92.1 43.8 47.0 61.9 91.1 52.0 56.4 66.9 90.6 32.8 89.2 91.8 93.3

Table E.5: FGSM white-box zero-knowledge attack results on CIFAR plane-vs-frog binary classification.

acc. (adv) TP marginal TP logit TP KL
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

BNN 98.2 93.2 58.5 14.5 6.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 58.6 55.1 65.5 54.0 58.5
GFZ 97.1 94.7 81.8 56.4 31.4 11.4 10.1 5.9 17.4 99.3 11.4 10.4 6.8 17.2 99.3 58.6 40.1 35.9 41.0 50.6
GBZ 95.1 93.5 87.1 74.9 62.0 26.0 18.6 15.5 38.6 99.6 26.3 20.3 19.1 41.9 99.6 35.5 41.5 47.0 43.7 45.6
GFY 96.5 94.2 80.7 56.7 32.0 9.6 9.2 6.9 18.8 99.0 17.6 13.1 8.1 20.8 99.1 46.6 43.7 36.1 39.5 49.3
GBY 96.1 92.9 82.0 60.5 36.3 17.2 15.1 8.1 28.5 99.2 20.2 18.1 10.0 31.1 99.2 49.7 48.0 39.2 38.7 47.3
DFX 83.8 42.2 0.7 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 63.3 66.6 48.4 97.7 100.0
DBX 90.9 78.6 50.7 31.7 18.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 50.7 58.7 56.8 59.7 57.2
DFZ 83.9 52.1 2.9 0.0 0.0 6.6 3.8 2.2 3.9 60.6 6.9 4.2 2.4 3.3 60.4 57.5 62.3 54.8 66.7 99.8

Table E.6: PGD white-box zero-knowledge attack results on CIFAR plane-vs-frog binary classification.

acc. (adv) TP marginal TP logit TP KL
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

BNN 97.9 86.7 19.7 1.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 41.7 59.4 55.7 68.4 98.9
GFZ 98.0 93.9 67.7 21.7 3.5 3.3 6.6 5.6 7.8 32.9 5.0 9.5 6.0 8.2 33.0 37.5 45.1 34.5 44.0 57.7
GBZ 94.6 93.7 83.9 67.4 52.8 19.8 17.9 12.8 14.3 43.1 22.8 19.5 17.4 17.0 44.3 32.1 39.3 40.2 37.1 33.2
GFY 98.4 95.0 67.9 25.8 4.1 4.2 6.7 6.4 7.8 35.7 3.1 8.2 7.6 7.8 33.8 31.2 43.6 32.9 39.6 53.3
GBY 96.4 92.9 67.3 25.7 6.9 11.1 8.4 7.9 11.6 41.4 13.1 11.5 9.2 12.2 40.3 43.0 43.0 33.6 39.1 52.2
DFX 82.7 35.7 0.3 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 64.1 64.7 69.6 100.0 100.0
DBX 83.3 34.6 4.2 0.7 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 59.8 59.5 65.1 78.7 93.4
DFZ 82.4 36.9 0.4 0.0 0.0 4.9 3.8 5.1 12.3 91.1 6.5 4.1 5.5 12.3 91.3 56.3 60.3 54.7 99.7 100.0
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Table E.7: MIM white-box zero-knowledge attack results on CIFAR plane-vs-frog binary classification.

acc. (adv) TP marginal TP logit TP KL
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

BNN 96.9 84.6 18.7 0.9 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 35.9 54.7 56.3 62.4 78.8
GFZ 96.9 91.5 58.1 15.2 1.9 6.5 6.2 6.4 10.6 86.1 10.0 8.3 6.6 11.3 84.5 31.0 39.0 32.1 47.2 77.1
GBZ 92.5 89.4 71.5 40.4 17.9 15.0 13.2 11.0 24.0 95.9 16.4 14.8 12.8 25.1 96.0 42.5 37.5 31.0 37.4 55.0
GFY 97.6 92.3 59.5 16.5 2.3 5.6 6.9 6.3 13.3 88.1 5.7 6.2 6.8 13.8 87.6 23.8 41.4 33.8 43.9 74.6
GBY 95.1 88.8 56.5 14.6 1.3 15.1 9.5 8.6 19.2 97.3 15.3 10.7 9.9 18.5 97.0 51.1 43.2 31.7 46.7 87.6
DFX 82.5 35.2 0.3 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 65.5 67.1 69.6 100.0 100.0
DBX 82.5 38.8 6.1 1.2 0.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 54.6 60.0 61.5 78.8 88.5
DFZ 81.5 36.1 0.4 0.0 0.0 5.4 3.9 5.0 13.4 96.9 6.2 4.1 5.5 13.8 96.8 61.1 58.5 55.3 99.9 100.0

Table E.8: CW white-box zero-knowledge attack results on CIFAR plane-vs-frog binary classification.

acc. (adv) TP marginal TP logit TP KL
ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00

BNN 93.7 66.2 37.3 32.3 47.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 60.9 80.3 82.2 72.0 80.0
GFZ 99.5 95.6 76.5 77.9 78.3 0.0 4.5 2.6 3.0 3.4 0.0 4.6 3.0 3.6 4.2 29.2 30.4 25.6 27.1 29.0
GBZ 96.0 93.6 88.9 88.7 89.0 16.7 11.5 7.8 7.7 7.9 18.9 13.7 9.3 9.1 9.4 41.1 51.4 40.4 34.7 32.0
GFY 99.8 95.9 78.8 80.0 80.5 0.0 6.6 4.1 4.7 5.1 0.0 6.6 4.8 4.9 5.4 75.0 37.3 26.0 26.4 31.1
GBY 97.5 93.1 76.7 77.3 78.0 15.8 14.6 6.0 7.1 7.3 18.9 13.9 6.0 7.0 7.9 42.6 34.3 27.2 31.6 29.0
DFX 82.6 44.2 34.3 6.1 0.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 100.0 100.0 100.0 82.5 95.0
DBX 96.5 72.2 26.3 6.3 16.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 61.6 79.4 85.2 62.2 67.9
DFZ 94.5 72.3 29.9 6.3 17.9 7.3 5.8 4.3 4.1 4.2 14.1 6.9 5.0 4.4 4.4 82.6 97.3 97.1 83.0 80.2

Table E.9: Perfect knowledge attacks on CIFAR binary task. This is done using the PGD attack with ε = 0.1. ‘ZK’ stands for zero knowledge, ‘PK0’ where you
have knowledge of the K samples but not of the detection system. ‘PKM’, ‘PKL’, and ‘PKK’ are attacks where you have knowledge of the K samples and of the
marginal, logit and KL detection mechanisms respectively.

ZK PK0 PKM PKL PKK
acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL acc. TP marg. TP logit TP KL

DBX 0.7 N/A N/A 78.7 0.7 N/A N/A 82.5 N/A N/A N/A N/A N/A N/A N/A N/A 0.6 N/A N/A 82.6
GBZ 67.4 14.3 17.0 37.1 57 40.6 45.1 49 58.4 9.6 18.5 46.9 58.5 1.8 7.8 47.8 59.9 25.5 27.6 42.4
GBY 25.7 11.6 12.2 39.1 28.5 22.0 22.6 49 29.5 5.6 7.6 45.9 29.2 0.8 1.8 45.4 27.9 15.6 15.9 45
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Table E.10: Grey-box PGD attack results on MNIST.

substitute acc victim acc TP logit
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

GFZ 86.7 14.3 0.0 0.0 0.0 96.6 83.3 51.3 26.8 17.2 49.5 73.8 99.7 100.0 100.0
GBZ 81.2 9.1 0.0 0.0 0.0 93.5 80.1 55.3 35.0 25.2 46.7 73.3 99.6 100.0 100.0
GFY 84.8 6.4 0.0 0.0 0.0 96.7 82.3 55.2 33.5 24.0 58.7 88.8 100.0 100.0 100.0
GBY 86.7 15.0 0.0 0.0 0.0 95.8 81.6 51.0 27.5 18.1 50.1 78.5 99.9 100.0 100.0
DFX 74.2 5.2 0.5 0.0 0.0 91.7 57.7 19.6 4.3 1.4 N/A N/A N/A N/A N/A
DBX 80.6 5.1 0.0 0.0 0.0 93.2 59.2 22.5 10.9 8.2 N/A N/A N/A N/A N/A
DFZ 69.6 3.4 0.3 0.0 0.0 91.9 57.2 21.4 6.3 2.6 33.6 55.1 91.7 100.0 100.0

Table E.11: Grey-box MIM attack results on MNIST.

substitute acc victim acc TP logit
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

GFZ 87.2 16.1 0.0 0.0 0.0 96.5 82.4 42.8 14.2 3.7 50.6 82.5 100.0 100.0 100.0
GBZ 81.8 9.1 0.0 0.0 0.0 93.3 78.6 45.3 17.0 5.2 46.2 81.7 100.0 100.0 100.0
GFY 85.2 6.9 0.0 0.0 0.0 96.6 80.8 48.0 18.9 7.4 59.8 96.0 100.0 100.0 100.0
GBY 87.0 15.9 0.0 0.0 0.0 95.7 79.9 41.8 13.0 4.0 51.4 87.1 100.0 100.0 100.0
DFX 76.5 12.3 3.6 2.1 2.1 91.5 56.1 22.2 9.9 9.9 N/A N/A N/A N/A N/A
DBX 85.1 19.9 0.6 0.1 0.1 93.4 57.0 14.1 6.3 6.3 N/A N/A N/A N/A N/A
DFZ 70.9 3.2 0.0 0.0 0.0 91.8 54.6 16.4 2.7 0.3 34.5 63.8 98.9 100.0 100.0

Table E.12: Grey-box CW attack results on MNIST.

substitute acc victim acc TP logit
ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00

GFZ 98.4 4.6 0.0 0.0 0.0 98.8 96.9 96.0 93.4 90.2 53.4 44.2 41.6 40.6 43.7
GBZ 98.4 63.2 0.0 0.0 0.0 97.4 95.4 92.9 88.6 84.5 45.9 39.7 33.0 31.2 38.6
GFY 98.1 0.9 0.0 0.0 0.0 99.0 97.6 97.0 95.7 94.0 61.0 55.2 49.2 49.5 52.7
GBY 98.3 5.3 0.0 0.0 0.0 98.7 96.8 96.0 93.8 91.2 54.2 41.5 37.6 38.7 43.6
DFX 85.1 0.0 0.0 0.0 0.0 97.6 93.3 91.2 90.4 89.8 N/A N/A N/A N/A N/A
DBX 97.3 46.0 0.4 0.0 0.0 98.7 93.9 88.4 85.5 76.3 N/A N/A N/A N/A N/A
DFZ 80.5 0.0 0.0 0.0 0.0 97.2 94.6 92.3 91.5 91.2 32.9 28.6 28.1 36.5 44.5
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Table E.13: Grey-box PGD attack results on CIFAR plane-vs-frog binary classification.

substitute acc victim acc TP logit
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

GFZ 96.7 88.1 41.7 4.5 0.1 97.0 94.9 84.0 48.3 8.3 8.4 11.2 6.1 7.5 49.8
GBZ 92.9 83.1 37.8 5.5 0.0 95.3 94.8 91.8 83.1 65.6 15.5 12.8 10.9 19.9 79.8
GFY 96.9 88.1 33.7 3.3 0.1 96.9 95.9 85.3 54.2 12.7 2.6 2.0 5.0 8.5 61.2
GBY 95.2 85.6 32.4 2.8 0.1 96.8 95.3 86.4 59.8 18.5 21.8 14.3 10.5 12.5 75.2
DFX 95.7 80.8 10.1 0.2 0.0 99.1 96.7 79.4 28.3 0.9 N/A N/A N/A N/A N/A
DBX 95.7 80.5 30.5 1.7 0.0 99.5 98.2 91.1 65.1 21.8 N/A N/A N/A N/A N/A
DFZ 96.5 81.9 10.5 0.3 0.0 99.1 96.9 76.9 26.2 1.3 4.5 16.5 6.1 8.5 59.6

Table E.14: Grey-box MIM attack results on CIFAR plane-vs-frog binary classification.

substitute acc victim acc TP logit
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

GFZ 96.3 87.9 42.1 4.7 0.1 97.1 94.8 83.0 44.8 4.9 8.7 11.1 5.8 8.5 75.1
GBZ 92.9 82.5 36.9 4.9 0.0 95.5 94.7 91.4 81.7 49.5 14.8 12.6 13.9 21.9 97.8
GFY 96.8 87.9 34.1 3.5 0.1 96.9 95.6 84.6 49.1 6.9 2.6 2.0 6.7 10.3 81.1
GBY 95.1 85.5 32.0 2.6 0.1 96.8 95.5 85.7 56.2 10.9 21.8 14.8 9.2 13.4 97.6
DFX 95.5 80.5 10.5 0.2 0.0 99.1 96.5 77.3 24.0 0.2 N/A N/A N/A N/A N/A
DBX 95.6 81.1 34.5 2.2 0.0 99.5 98.3 89.3 58.9 9.9 N/A N/A N/A N/A N/A
DFZ 96.3 81.5 10.7 0.5 0.0 99.1 96.9 74.9 21.9 0.3 4.5 16.6 6.4 9.9 80.2

Table E.15: Grey-box CW attack results on CIFAR plane-vs-frog binary classification.

substitute acc victim acc TP logit
ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00

GFZ 98.7 61.9 0.0 0.0 0.0 98.6 95.8 94.3 93.8 93.2 11.7 10.2 10.9 9.9 8.5
GBZ 96.3 69.8 3.3 0.0 0.0 95.9 95.7 94.7 94.7 94.5 13.5 12.7 12.3 13.7 14.4
GFY 98.4 54.4 0.0 0.0 0.0 98.1 96.1 95.3 95.1 94.3 0.0 2.2 3.7 4.6 7.6
GBY 97.6 52.9 2.2 0.0 0.0 97.7 95.6 94.5 94.3 93.7 25.8 15.7 14.2 13.7 18.0
DFX 64.4 0.0 0.0 0.0 0.0 98.5 97.2 97.1 96.7 95.5 N/A N/A N/A N/A N/A
DBX 91.3 56.2 0.3 0.0 0.0 99.7 99.0 99.0 98.9 98.1 N/A N/A N/A N/A N/A
DFZ 80.3 0.0 0.0 0.0 0.0 99.2 97.9 97.5 97.3 95.4 0.0 15.7 14.6 8.8 6.1
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Table E.16: Black-box PGD attack results on MNIST.

substitute acc victim acc TP logit
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

GFZ 44.2 0.7 0.0 0.0 0.0 97.3 88.4 62.7 33.8 21.8 48.7 61.0 92.3 99.8 100.0
GBZ 7.4 0.0 0.0 0.0 0.0 94.8 87.1 70.7 52.9 41.3 51.0 68.6 97.7 100.0 100.0
GFY 49.4 0.8 0.0 0.0 0.0 97.4 86.5 58.1 31.9 21.0 52.5 70.8 97.4 99.8 100.0
GBY 21.7 0.0 0.0 0.0 0.0 96.9 89.3 70.0 49.7 37.8 51.2 70.8 98.2 100.0 100.0
DFX 49.2 1.3 0.0 0.0 0.0 91.4 52.1 13.9 2.2 0.7 N/A N/A N/A N/A N/A
DBX 43.1 0.7 0.0 0.0 0.0 95.0 67.0 26.2 9.7 6.5 N/A N/A N/A N/A N/A
DFZ 53.8 1.7 0.0 0.0 0.0 92.9 56.3 15.2 3.4 1.5 34.7 52.8 94.0 99.9 100.0

Table E.17: Black-box MIM attack results on MNIST.

substitute acc victim acc TP logit
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

GFZ 45.5 2.8 0.0 0.0 0.0 97.2 86.6 50.3 17.0 17.0 51.1 68.0 97.5 99.5 99.5
GBZ 8.4 0.0 0.0 0.0 0.0 94.7 85.9 63.5 35.2 17.1 51.2 74.4 99.0 100.0 100.0
GFY 53.1 2.5 0.3 0.1 0.1 97.2 83.7 49.2 20.1 20.1 55.1 80.6 99.0 99.9 99.9
GBY 24.5 0.0 0.0 0.0 0.0 96.8 88.3 62.8 31.7 13.3 49.3 77.6 99.9 100.0 100.0
DFX 51.3 2.3 0.1 0.0 0.0 91.4 51.7 13.3 1.9 1.9 N/A N/A N/A N/A N/A
DBX 47.8 1.6 0.1 0.0 0.0 94.8 67.0 23.2 7.6 7.6 N/A N/A N/A N/A N/A
DFZ 56.1 2.9 0.1 0.0 0.0 92.7 56.0 13.1 2.8 2.8 35.2 59.9 97.6 100.0 100.0

Table E.18: Black-box CW attack results on MNIST.

substitute acc victim acc TP logit
ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00

GFZ 65.2 0.3 0.0 0.0 0.0 98.8 98.7 97.4 94.3 92.0 52.3 50.8 39.6 44.7 55.3
GBZ 76.6 0.4 0.0 0.0 0.0 97.3 97.2 95.9 92.7 90.4 45.7 46.1 41.5 40.3 45.7
GFY 88.4 3.8 0.0 0.0 0.0 99.0 98.9 98.0 94.8 92.0 60.0 59.2 51.9 47.6 57.2
GBY 76.0 1.3 0.0 0.0 0.0 98.7 98.6 97.3 95.1 93.5 53.4 52.2 41.8 39.7 46.7
DFX 82.4 0.0 0.0 0.0 0.0 98.8 96.8 92.4 86.2 84.9 N/A N/A N/A N/A N/A
DBX 82.5 0.6 0.0 0.0 0.0 98.9 98.4 95.5 85.2 83.1 N/A N/A N/A N/A N/A
DFZ 86.5 0.2 0.0 0.0 0.0 98.8 94.5 89.3 81.5 79.3 42.9 25.5 22.3 27.7 38.2
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Table E.19: Black-box PGD attack results on CIFAR plane-vs-frog binary classification.

substitute acc victim acc TP logit
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

GFZ 95.5 89.9 45.5 6.8 0.1 97.6 95.6 88.7 68.8 29.7 6.2 6.7 6.0 10.8 71.8
GBZ 92.0 84.1 33.8 3.5 0.0 95.6 94.9 92.7 85.0 65.9 16.7 14.6 12.8 17.9 76.8
GFY 95.3 89.1 38.7 2.5 0.0 97.3 96.6 90.0 72.9 35.5 0.0 2.3 6.8 10.4 72.3
GBY 91.8 80.5 29.7 6.1 0.2 97.2 95.9 90.2 70.8 30.3 21.8 16.4 9.6 13.6 77.3
DFX 89.1 74.5 19.1 0.9 0.0 99.7 98.7 92.6 64.8 9.9 N/A N/A N/A N/A N/A
DBX 85.5 76.4 42.5 4.5 0.0 99.6 99.0 94.8 77.5 24.5 N/A N/A N/A N/A N/A
DFZ 85.5 73.5 21.1 1.5 0.0 99.5 99.2 93.8 70.1 15.1 0.0 5.0 8.9 15.9 85.1

Table E.20: Black-box MIM attack results on CIFAR plane-vs-frog binary classification.

substitute acc victim acc TP logit
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

GFZ 95.5 89.7 46.4 7.7 0.2 97.5 95.7 88.5 66.5 20.5 6.2 6.7 5.9 12.7 82.7
GBZ 91.8 84.0 33.1 3.4 0.0 95.6 94.9 92.3 85.1 60.7 16.7 15.5 14.2 21.6 97.9
GFY 95.3 88.9 40.5 3.1 0.0 97.3 96.7 89.5 70.6 31.9 0.0 2.4 7.6 12.5 88.0
GBY 91.7 80.2 29.5 5.9 0.1 97.3 95.9 89.6 69.0 26.1 22.2 16.1 9.7 14.0 95.9
DFX 89.0 74.5 19.4 0.9 0.0 99.6 98.7 92.1 63.0 10.9 N/A N/A N/A N/A N/A
DBX 85.5 76.3 42.7 4.5 0.0 99.6 99.0 95.1 76.5 27.2 N/A N/A N/A N/A N/A
DFZ 85.3 73.4 21.4 1.6 0.0 99.6 99.1 92.9 67.7 14.9 0.0 4.5 7.5 14.2 91.9

Table E.21: Black-box CW attack results on CIFAR plane-vs-frog binary classification.

substitute acc victim acc TP logit
ε 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00 0.10 1.00 10.00 100.00 1000.00

GFZ 96.3 41.5 0.5 0.0 0.0 98.7 94.7 93.4 93.3 92.3 13.3 8.6 7.7 7.7 8.9
GBZ 94.9 73.3 1.4 0.0 0.0 95.9 95.3 94.6 94.5 94.5 13.5 11.8 11.8 13.2 13.1
GFY 96.4 62.0 1.3 0.0 0.0 98.1 96.7 94.8 94.7 94.1 0.0 2.8 6.5 6.1 6.8
GBY 93.5 33.6 1.7 0.0 0.0 97.7 95.9 95.4 95.4 95.0 25.8 16.4 15.9 18.6 19.8
DFX 90.3 10.9 0.0 0.0 0.0 99.9 98.8 98.5 98.5 97.9 N/A N/A N/A N/A N/A
DBX 87.2 31.8 0.0 0.0 0.0 99.9 97.1 94.5 93.9 94.7 N/A N/A N/A N/A N/A
DFZ 84.9 22.7 0.0 0.0 0.0 99.9 99.0 98.3 98.3 97.8 0.0 3.8 2.3 2.3 11.0

27



U
nderreview

as
a

conference
paperatIC

L
R

2019

Table E.22: FGSM white-box zero-knowledge attack results on CIFAR-10.

acc. (adv) TP marginal TP logit TP KL
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

VGG16 44.5 25.8 16.6 11.9 10.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 95.1 95.7 97.0 97.5 97.1
GBZ-FC1 63.7 49.7 34.3 18.9 12.7 60.0 62.4 80.6 90.9 94.1 63.7 65.0 80.6 95.0 98.4 90.1 90.8 92.3 92.6 92.6
GBY-FC1 64.9 50.0 36.1 19.5 11.3 52.2 59.0 80.4 90.1 92.5 54.6 61.9 80.3 95.6 98.4 90.7 91.3 92.1 92.4 90.3
DBX-FC1 57.3 45.7 31.8 16.3 10.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.8 93.2 94.0 94.3 92.8

GBZ-CONV9 81.6 74.1 58.5 48.9 45.8 13.7 17.0 28.4 76.0 90.2 18.3 20.6 31.7 64.3 71.6 91.7 91.5 91.7 93.3 86.4
GBY-CONV9 75.8 66.0 39.7 22.5 17.5 14.0 18.2 29.4 74.4 88.9 17.7 20.8 25.8 55.2 68.9 89.6 89.9 90.0 89.1 89.2
DBX-CONV9 59.0 45.7 31.8 17.8 11.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.7 94.1 94.9 95.2 93.7

Table E.23: PGD white-box zero-knowledge attack results on CIFAR-10.

acc. (adv) TP marginal TP logit TP KL
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

VGG16 18.8 0.6 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.9 91.8 67.4 69.9 66.4
GBZ-FC1 37.7 6.1 0.1 0.0 0.0 30.7 22.2 76.0 92.0 94.1 33.5 24.9 77.0 91.7 90.2 90.8 93.7 97.3 98.5 95.9
GBY-FC1 31.2 8.5 2.6 1.5 0.6 32.0 20.3 82.3 95.1 97.6 36.6 29.5 84.1 93.7 90.4 90.3 94.1 97.7 97.3 96.9
DBX-FC1 23.4 1.7 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.9 91.0 5.6 7.4 5.9

GBZ-CONV9 61.1 38.3 24.2 10.2 2.3 19.2 60.3 96.7 98.9 99.6 20.1 60.3 96.8 98.3 98.7 90.3 93.1 97.7 98.7 99.6
GBY-CONV9 66.5 26.6 3.2 0.4 0.0 17.0 55.6 95.7 99.2 99.6 17.8 52.7 95.3 98.6 97.6 89.6 91.8 98.7 99.4 96.9
DBX-CONV9 24.0 3.0 0.3 0.1 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.3 93.1 99.3 99.6 99.2

Table E.24: MIM white-box zero-knowledge attack results on CIFAR-10.

acc. (adv) TP marginal TP logit TP KL
ε 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20 0.01 0.02 0.05 0.10 0.20

VGG16 13.1 0.4 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.2 92.4 72.3 77.1 79.0
GBZ-FC1 24.5 2.7 0.1 0.0 0.0 34.8 40.9 88.5 95.8 96.0 38.8 44.0 90.4 96.4 96.6 91.3 95.0 95.7 97.9 96.8
GBY-FC1 33.0 19.6 11.8 7.2 4.9 29.1 38.7 95.7 99.1 99.3 38.4 49.2 96.3 99.3 99.4 90.7 95.0 97.8 97.9 97.9
DBX-FC1 17.3 0.9 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.1 89.6 9.6 14.5 16.0

GBZ-CONV9 57.6 43.5 29.1 24.1 22.6 27.4 78.5 99.4 99.6 99.7 29.1 78.3 99.6 99.7 99.8 90.2 94.4 97.5 98.0 98.2
GBY-CONV9 39.1 18.1 4.3 1.9 1.5 25.6 70.4 98.6 99.6 99.8 28.2 71.1 98.6 99.7 99.8 89.6 94.5 99.4 99.8 99.7
DBX-CONV9 19.2 3.2 0.5 0.4 0.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.1 96.7 99.9 100.0 100.0
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Table E.25: FGSM white-box zero-knowledge attack results on MNIST (with varied bottleneck layer sizes).

acc. (adv) TP marginal TP logit TP KL
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

DBX-16 92.6 85.6 76.4 64.7 52.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 90.3 92.4 92.3 92.7 94.2
DBX-32 92.6 84.4 71.1 57.2 46.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.2 92.3 92.8 94.9 95.0
DBX-64 91.6 77.8 58.1 44.5 36.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.6 93.6 95.2 96.3 97.0

DBX-128 87.8 47.6 20.1 12.7 10.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 94.4 97.6 97.8 97.1 96.4
GBZ-16 92.0 75.8 52.5 34.0 21.7 28.7 71.5 99.9 100.0 100.0 49.2 86.3 99.9 100.0 100.0 90.8 90.6 92.0 91.9 90.9
GBZ-32 91.1 74.4 52.4 33.4 21.6 26.5 73.5 99.7 100.0 100.0 49.4 87.2 99.9 100.0 100.0 91.0 90.6 91.8 91.4 91.6
GBZ-64 92.5 80.3 62.0 42.4 27.2 37.0 81.7 100.0 100.0 100.0 57.6 93.5 100.0 100.0 100.0 91.6 90.9 90.3 91.1 91.5

GBZ-128 90.8 76.8 57.5 38.9 24.8 26.6 63.0 99.6 100.0 100.0 44.9 78.7 99.8 100.0 100.0 87.9 90.1 90.7 91.1 90.6
GBY-16 94.2 77.7 49.4 23.9 12.1 41.9 84.1 100.0 100.0 100.0 52.9 91.9 100.0 100.0 100.0 86.6 92.0 93.0 93.1 92.6
GBY-32 94.5 76.9 45.4 20.0 9.6 41.4 83.3 100.0 100.0 100.0 56.3 92.8 100.0 100.0 100.0 89.0 91.6 93.3 93.2 93.0
GBY-64 93.6 76.4 47.5 22.3 10.7 41.9 84.5 100.0 100.0 100.0 57.7 92.5 100.0 100.0 100.0 89.3 92.7 92.8 92.9 92.9

GBY-128 93.0 72.9 42.2 18.5 9.0 37.4 71.6 100.0 100.0 100.0 50.1 81.9 99.9 100.0 100.0 90.7 91.4 91.8 91.4 92.0

Table E.26: PGD white-box zero-knowledge attack results on MNIST (with varied bottleneck layer sizes).

acc. (adv) TP marginal TP logit TP KL
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

DBX-16 69.8 36.6 16.0 5.9 1.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.2 91.9 92.8 93.3 93.7
DBX-32 63.5 26.8 12.5 6.2 2.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.5 92.1 92.7 92.9 93.5
DBX-64 58.0 18.3 6.0 1.3 0.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 92.7 94.0 94.1 93.7 84.8
DBX-128 42.3 3.0 1.1 0.3 0.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 97.1 97.1 98.4 98.4 98.6
GBZ-16 88.3 62.8 37.4 23.1 15.5 27.1 35.8 71.9 98.9 100.0 46.3 53.0 82.3 99.3 100.0 89.6 91.7 92.3 91.4 91.8
GBZ-32 87.1 61.9 40.2 28.0 20.4 24.0 39.1 76.7 98.9 100.0 41.5 56.4 85.4 99.7 100.0 91.3 91.0 91.1 91.3 91.1
GBZ-64 85.1 57.4 32.5 19.3 11.6 33.7 50.3 84.4 99.7 100.0 52.2 66.3 91.5 99.8 100.0 90.0 91.5 91.5 91.7 91.8

GBZ-128 84.4 57.5 36.8 25.2 16.8 25.4 35.4 66.1 96.6 100.0 41.5 50.5 76.4 97.7 100.0 88.6 90.4 90.4 90.0 90.6
GBY-16 90.4 49.7 15.0 4.2 1.6 42.6 64.7 89.9 99.3 100.0 51.1 70.8 92.8 99.5 100.0 91.9 93.1 91.9 90.7 91.0
GBY-32 88.4 39.8 9.5 1.8 0.6 45.6 74.3 92.8 99.5 100.0 56.8 78.2 94.8 99.8 100.0 90.8 92.2 91.7 91.0 90.6
GBY-64 86.7 35.9 9.0 1.7 0.4 45.3 76.1 94.6 99.7 100.0 56.9 79.3 95.6 99.9 100.0 90.1 92.1 91.6 91.7 91.4

GBY-128 83.3 35.1 8.7 2.3 0.8 39.1 63.9 86.7 98.3 100.0 51.7 69.1 89.2 98.9 100.0 89.8 90.7 90.4 89.7 89.5
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Table E.27: MIM white-box zero-knowledge attack results on MNIST (with varied bottleneck layer sizes).

acc. (adv) TP marginal TP logit TP KL
ε 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

DBX-16 72.2 37.1 20.7 14.7 11.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.8 92.3 92.8 93.4 93.9
DBX-32 66.7 27.6 16.8 12.5 10.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 91.8 92.5 92.4 93.2 93.5
DBX-64 66.7 28.7 19.7 17.2 17.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 93.5 94.3 94.6 94.7 94.7

DBX-128 42.3 1.3 0.2 0.1 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 97.2 97.6 98.6 98.9 99.1
GBZ-16 83.8 36.4 8.9 2.3 0.9 26.9 79.8 99.7 100.0 100.0 43.3 88.0 99.8 100.0 100.0 91.6 92.1 91.2 91.6 92.6
GBZ-32 82.7 35.5 9.5 3.0 1.1 26.6 83.2 99.7 100.0 100.0 45.8 90.0 99.8 100.0 100.0 90.3 91.7 91.4 92.5 92.6
GBZ-64 79.6 27.4 5.6 1.5 0.5 36.1 86.3 100.0 100.0 100.0 53.5 93.1 99.9 100.0 100.0 91.3 91.4 91.9 92.2 92.7

GBZ-128 79.2 32.1 8.7 2.6 1.2 26.1 68.5 99.2 100.0 100.0 41.2 79.1 99.4 100.0 100.0 89.7 91.5 91.4 91.4 92.5
GBY-16 89.2 34.6 3.5 0.2 0.0 44.8 88.1 99.8 100.0 100.0 55.9 91.7 99.7 100.0 100.0 89.4 92.5 91.0 90.6 36.9
GBY-32 86.7 25.8 1.6 0.1 0.0 45.1 91.2 100.0 100.0 100.0 58.6 94.0 100.0 100.0 100.0 90.9 91.8 91.1 68.6 31.1
GBY-64 84.9 22.9 1.5 0.1 0.0 47.4 91.2 99.9 100.0 100.0 59.8 92.8 99.9 100.0 100.0 91.4 92.1 91.2 86.8 29.0

GBY-128 82.1 23.7 1.9 0.0 0.0 40.4 83.0 99.7 100.0 100.0 51.7 87.5 99.6 100.0 100.0 91.2 91.2 89.8 82.8 44.4
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