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ABSTRACT

There is a rising interest in studying the robustness of deep neural network classi-
fiers against adversaries, with both advanced attack and defence techniques being
actively developed. However, most recent work focuses on discriminative classi-
fiers, which only model the conditional distribution of the labels given the inputs.
In this paper, we propose and investigate the deep Bayes classifier, which im-
proves classical naive Bayes with conditional deep generative models. We further
develop detection methods for adversarial examples, which reject inputs with low
likelihood under the generative model. Experimental results suggest that deep
Bayes classifiers are more robust than deep discriminative classifiers, and that the
proposed detection methods are effective against many recently proposed attacks.

1 INTRODUCTION

Deep neural networks have been shown to be vulnerable to adversarial examples (Szegedy et al.,
2013; Goodfellow et al., 2014). The latest attack techniques can easily fool a deep neural network
with imperceptible perturbations (Goodfellow et al., 2014; Papernot et al., 2016b; Carlini & Wagner,
2017a; Kurakin et al., 2016; Madry et al., 2018; Chen et al., 2017a), even in the black-box case,
where the attacker does not have access to the network’s weights (Papernot et al., 2017b; Chen
et al., 2017b; Alzantot et al., 2018a). Adversarial attacks are serious security threats to machine
learning systems, threatening applications beyond image classification (Carlini & Wagner, 2018;
Alzantot et al., 2018b).

To address this outstanding security issue, researchers have proposed defence mechanisms against
adversarial attacks. Adversarial training, which augments the training data with adversarially per-
turbed inputs, has shown moderate success at defending against recently proposed attack techniques
(Szegedy et al., 2013; Goodfellow et al., 2014; Tramèr et al., 2017; Madry et al., 2018). In addition,
recent advances in Bayesian neural networks have demonstrated that uncertainty estimates can be
used to detect adversarial attacks (Li & Gal, 2017; Feinman et al., 2017; Louizos & Welling, 2017;
Smith & Gal, 2018). Another notable category of defence techniques involves the usage of genera-
tive models. For example, Gu & Rigazio (2014) used an auto-encoder to denoise the inputs before
feeding them to the classifier. This denoising approach has been extensively investigated, and the
“denoisers” in usage include generative adversarial networks (Samangouei et al., 2018), PixelCNNs
(Song et al., 2018) and denoising auto-encoders (Kurakin et al., 2018). These developments rely on
the “off-manifold” conjecture, that is, that adversarial examples are far away from the data manifold,
although Gilmer et al. (2018) has challenged this observation with a synthetic example.

Surprisingly, much less recent work has investigated the robustness of generative classifiers (Ng &
Jordan, 2002) against adversarial attacks for multi-class classification, where such classifiers explic-
itly model the conditional distribution of the inputs given labels. Typically, a generative classifier
produces predictions by comparing between the likelihood of the labels for a given input, which is
closely related to the “distance” of the input to the data manifold associated with a class. There-
fore, generative classifiers should be robust to many recently proposed adversarial attacks if the
“off-manifold” conjecture holds for many real-world applications. Unfortunately, many generative
classifiers in popular use, including naive Bayes and linear discriminant analysis (Fisher, 1936),
perform poorly on natural image classification tasks, making it difficult to verify the “off-manifold”
conjecture and the robustness of generative classifiers with these tools. In recent work, k-nearest
neighbors (Cover & Hart, 1967), a method which shares many similarities with generative classi-
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�ers, has been signi�cantly improved in handling natural images by leveraging deep feature repre-
sentations (Papernot & McDaniel, 2018). To the best of our knowledge, an approach which targets
a similar contribution has not yet been proposed for generative classi�ers.

Are generative classi�ers more robust to recently proposed adversarial attack techniques? To an-
swer this, we improve the naive Bayes algorithm by using conditional deep generative models, and
evaluate the conjecture on the proposed generative classi�er. In summary, our contributions include:

� We proposedeep Bayesas an extension of naive Bayes, in which the conditional distribu-
tion of an input, given a label, is parameterised by a deep latent variable model (LVM).
We learn the LVM with the variational auto-encoder algorithm (Kingma & Welling, 2013;
Rezende et al., 2014), and approximate Bayes' rule using importance sampling.

� We propose three detection methods for adversarial perturbations. The �rst two use the
learned generative model as a proxy of the data manifold, and reject inputs that are far
away from it. The third computes statistics for the classi�er's output probability vector on
training data, and rejects inputs that lead to under-con�dent predictions.

� We evaluate the robustness of the proposed generative classi�er on the MNIST multi-class
and CIFAR binary classi�cation tasks. We also improve the robustness of deep neural
networks on CIFAR-10 multi-class classi�cation, by fusing discriminatively learned visual
feature representations with the proposed generative classi�ers. We further compare the
generative classi�ers with a number of discriminative classi�ers, including Bayesian neural
networks anddiscriminativelatent variable models.

2 DEEPBAYES: CONDITIONAL DEEP LVM AS A GENERATIVE CLASSIFIER

DenotepD (x ; y ) the data distribution for the inputx 2 RD and labely 2 f ycjc = 1 ; :::; Cg,
whereyc denotes the one-hot encoding vector for classc. For a givenx 2 RD we can de�ne the
ground-truth label by

y � pD (y jx ) if x 2 supp(pD (x )) : (1)

We assume the data distributionpD (x ; y ) follows themanifold assumption: for every classc, the
conditional distributionpD (x jyc) has a low-dimensional manifold supportM c = supp(pD (x jyc)) .
Therefore the training datasetD = f (x (n ) ; y (n ) )gN

n =1 is generated as the following:

(x (n ) ; y (n ) ) � pD (x ; y ) , y (n ) � pD (y ); x (n ) � pD (x jy ):

A (Bayesian) generative classi�er �rst builds agenerative modelp(x ; y ) = p(x jy )p(y ), and then,
in prediction time, predicts the labely � of a test inputx � using Bayes' rule,

p(y � jx � ) =
p(x � jy � )p(y � )

p(x � )
= softmaxCc=1 [logp(x � ; yc)] ;

where softmaxCc=1 denotes the softmax operator over thec axis. Therefore, the output probability
vector is computed analogously to many deep discriminative classi�ers which use softmax activation
in the output layer, so many existing attacks can be tested directly. However, unlike discriminative
classi�ers, the “logit” values prior to softmax activation have a clear meaning here, which is the
(approximated) log joint distributionlogp(x � ; yc) of input x � conditioned on a given labelyc.
Therefore, one can also analyse the logit values to determine whether the unseen pair(x � ; y � ) is
legitimate, a utility which will be discussed further in later sections.

Naive Bayesis perhaps the most well-known generative classi�er; it assumes a factorised distribution
for the conditional generator, i.e.p(x jy ) =

Q D
d=1 p(xd jy ). However, this factorisation assumption

is inappropriate for e.g. image and speech data. Fortunately, we can leverage the recent advances in
generative modelling and apply a deep generative model for the joint distributionp(x ; y ). We refer
to such generative classi�ers that use deep generative models asdeep Bayesclassi�ers.

In this paper, we consider a deep latent variable model (LVM)p(x ; z; y ), which will be used for
classi�cation. In this case, the conditional distribution isp(x jy ) =

R
p(x ;z ;y )dzR

p(x ;z ;y )dz dx : Importantly,
this leads to a conditional distributionp(x jy ) that isnot factorised (even whenp(x jz; y ) is), which
is much more powerful than naive Bayes. Since maximum likelihood is intractable, we follow
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Figure 1: A visualisation of the graphical models, including bothGenerative andDiscriminative
ones, as well asFully connected andBottleneck ones. The last character indicates the �rst node in
the topological order of the graph. The colour encoding is the same as those in experiments.

Kingma & Welling (2013) and Rezende et al. (2014) to introduce an amortised approximate posterior
q(zjx ; y ), and train bothp andq by maximising the variational lower-bound:

ED [L VI (x ; y )] =
1
N

NX

n =1

Eq

�
log

p(x n ; zn ; yn )
q(zn jx n ; yn )

�
: (2)

After training, the predicted class probability vectory � for a future inputx � is computed by an
approximation to Bayes' rule with importance sampling:

p(y � jx � ) � softmaxCc=1

"

log
1
K

KX

k=1

p(x � ; zk
c ; yc)

q(zk
c jx � ; yc)

#

; zk
c � q(zjx � ; yc): (3)

We evaluate the effect of the following factorisation structures on the robustness of the induced
classi�er from the generative modelp(x ; z; y ) (see Figure 1).

p(x ; z; y ) = p(z)p(y jz)p(x jz; y ) (GFZ)
p(x ; z; y ) = pD (y )p(zjy )p(x jz; y ) (GFY)
p(x ; z; y ) = p(z)p(y jz)p(x jz) (GBZ)
p(x ; z; y ) = pD (y )p(zjy )p(x jz) (GBY)

p(x ; z; y ) = pD (x )p(zjx )p(y jz; x ) (DFX)
p(x ; z; y ) = p(z)p(x jz)p(y jz; x ) (DFZ)
p(x ; z; y ) = pD (x )p(zjx )p(y jz) (DBX)

We use the initial character “G” to denote generative classi�ers and “D” to denote discriminative
classi�ers. Models with the second character as “F” have afully connectedgraph, while “B” models
enforce the usage of the latent codez as abottleneck. The last character of the model name indicates
the �rst node in topological order. Model DFZ is somewhat intermediate, as it builds a generative
model for the inputsx but also directly parameterises the conditional distributionp(y jx ; z). We
do not test other architectures under this nomenclature, as either the graph contains directed cycles
(e.g.x ! y ! z ! x ), or z is the last node in topological order (e.g.x ! y ; (x ; y ) ! z) so that
the marginalisation ofz does not affect classi�cation.

3 DETECTING ADVERSARIAL ATTACKS WITH GENERATIVE CLASSIFIERS

We propose detection methods for adversarial examples using generative classi�er's logit values.
As an illustrating example, consider a labelled dataset of “cat” and “dog” images. If an adversarial
image of a catx adv is incorrectly labelled as “dog”, then either this image is ambiguous, or, under a
perfectgenerative model, the logitlogp(x adv; “dog”) will be signi�cantly lower than normal. This
means we can detect attacks using the logitslogp(x � ; yc); c = 1 ; :::; C computed on a test inputx � ,
by comparing them with the logits computed on legitimate training inputs.

Concretely, the proposed detection algorithms are as follows. We aim to reject both unlabelled input
x that have low probability underpD (x ), and labelled data(x ; y ) that have lowpD (x ; y ) values.

� Marginal detection: rejecting inputs that are far away from the manifold.
One can select a threshold� and reject an inputx if � logp(x ) > � . To determine the
threshold� , we can compute�dD = Ex �D [� logp(x )] and� D =

p
Vx �D [logp(x )], then

set � = �dD + �� D . It is also possible to compute the statistics�dp; � p on the images
generated by the generative model accordingly.

� Logit detection: rejecting inputs using joint density.
Given a victim modely = F (x ), one can rejectx if � logp(x ; F (x )) > � y . We can use
the mean and variance statistics�dc; � c computed onlogp(x ; yc) and select� y c = �dc + �� c.
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Figure 2: Visualising detection mechanisms. The scattered dots are training data points, with dif-
ferent classes shown in different colours (red forc = 0 and blue forc = 1 ). Same labels are
manually assigned for inputs when the detection method requiresy . Decision regions are shown in
the corresponding colours. Input points in the shaded area are rejected by detection.

� Divergence detection: rejecting inputs with over- and/or under-con�dent predictions.
Denotep(x ) as aC-dimensional probability vector outputted by the classi�er. For each
classc, we �rst collect themean classi�cation probability vectorpc = E(x ;y c )2D [p(x )],
then compute the mean�dc and standard deviation� c on a selected divergence/distance
measureD[pcjjp(x )] for all (x ; yc) 2 D . A test inputx � with prediction labelc� =
arg maxp(x � ) is rejected ifD[pc� jjp(x � )] > �dc� + �� c� . Therefore, an examplex � will
be rejected if the classi�er is over-con�dent or under-con�dent (ambiguous inputs).
When D is selected as the KL-divergence, we call this detection methodKL detection.
Other divergence/distance measures such as total variation (TV) can also be used.

For better intuition, we visualise the detection mechanisms in Figure 2 with a synthetic “two rings”
binary classi�cation example. In this case we sample2 � 1000training data points as:

(x ; y ) � pD , y � Bern(0:5); � � Uniform(0; 2� ); x jy � N (x ; cy + r y [cos(� ); sin (� )]T; � 2I ):

We consider a generative classi�erp(x ; y ) = p(x jy )pD (y ) = N (x ; � y ; � 2I )Bern(0:5) with � y =
proj(x ; ringy ) = arg min x̂ 2 R2 ; jj x̂ � cy jj 2 = r y

jj x � x̂ jj2. The � thresholds are selected to achieve
10%false positive rates on training data. From the visualisations we see that inputs that are far away
from the model manifold are rejected by marginal/logit detection. At the same time, logit detection
rejects data points that are not on the manifold of the given class. KL/TV detection does not construct
manifold-aware acceptance regions, which is as expected since the proposed divergence detection
method does not require the classi�er to be generative. However, both detection methods have some
success in rejecting uncertain predictions, especially for TV, which also rejects ambiguous inputs
(see the ring-cross regions in the last two plots). Combining all three methods, we see that the
rejected inputs are either far away from the manifold, or are ambiguous. Again we emphasise that a
suitable generative model is required to make the detection methods work in practice, since the data
distributionpD (x ; y ) is approximated byp(x ; y ).

Detection methods using logit values have also been proposed in Li & Gal (e.g. 2017); Feinman et al.
(e.g. 2017). However it is unclear whether the logits values in discriminative classi�ers have a clear
semantic meaning, while the logit values in deep Bayes represent the log probability of generating
the inputx given the class labely = yc. Our approach is also distinct from previous “denoising”
approaches (e.g. Song et al., 2018; Samangouei et al., 2018; Kurakin et al., 2018) that require training
an additional generative model separately. The deep Bayes classi�ers share the same generative
model as the detection methods, meaning that detected adversarial examples are indeed far away
from the classi�er's manifold (which is also an approximation to the data manifold). Therefore the
claim “detection neural networks can be bypassed” (Carlini & Wagner, 2017a; Athalye et al., 2018)
does not directly transfer to our approach, and we can use the marginal and logit detection methods
to directly verify the “off-manifold” adversarial example conjecture.

4 EXPERIMENTS

We carry out a number of tests on the proposed deep Bayes classi�ers (3), whereq(zj�) andp(zj�)
are factorised Gaussians, and the conditional probabilityp(x j�), if required, is parameterised by an
`2 loss. Besides the LVM-based classi�ers, we further train a Bayesian neural network (BNN) with
Bernoulli dropout (dropout rate 0.3), as it has been shown in Li & Gal (2017) and Feinman et al.
(2017) that BNNs are more robust than their deterministic counterparts. The constructed BNN has
2x more channels than LVM-based classi�ers, making the comparison slightly “unfair”, as the BNN
layers have more capacity. We useK = 10 Monte Carlo samples for all the classi�ers.
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Figure 3: Accuracies (column 1), detection rates (columns 2-4) and minimum` inf perturbation
(column 6) againstwhite-box zero-knowledgè 1 attacks on MNIST. The higher the better. The
second from right most column visualises crafted adversarial examples on an image of digit “7”,
with `1 distortion� growing from 0.1 to 0.5.

The adversarial attacks in test include both`1 and`2 untargeted attacks from CleverHans 2.0 library
(Papernot et al., 2017a): fast gradient sign method (FGSM, Goodfellow et al., 2014), projected
gradient descent (PGD, Madry et al., 2018), momentum iterative attack (MIM, Dong et al., 2017)
and Carlini & Wagner̀ 2 (CW, Carlini & Wagner, 2017a). Two metrics are reported:accuracyof
the classi�er on crafted adversarial examples, anddetection rateon adversarial examples that have
successfully caused the classi�er to misclassify. This detection rate is de�ned as the true positive
(TP) rate of �nding an adversarial example, and the detection threshold is selected to achieve a5%
false positive rate on clean training data.

The experiments are performed under various threat model settings. We further evaluate the trans-
ferability of crafted adversarial examples across different classi�ers in the same way as done in
Papernot et al. (2016a). We only provide visualisations in the main text; full table results can be
found in the appendix. Readers are also referred to the appendix for further experiments, including
a quantitative analysis of the bottleneck effect on robustness and detection.

4.1 MNIST

The �rst set of experiments evaluate the robustness of generative classi�ers on MNIST. Here the
image pixel values are normalised to[0; 1], and the LVM-based classi�ers have dim(z) = 64 .
We �rst perform white-boxzero-knowledgeattacks, i.e. the attacker can differentiate through the
classi�er to craft adversarial examples, but he/she is not aware of the existence of the detector. Then
we perform white-boxperfect-knowledgeattacks, where the attacker can differentiate through both
the classi�er and the detector, and he/she knows the usage of randomz samples by the VAE-based
classi�ers (Biggio et al., 2013; Carlini & Wagner, 2017b). Lastly we consider grey-box and black-
box attacks, and evaluate the robustness of generative classi�ers against transferred attacks.

White-box attacks (zero-knowledge,̀ 1 ) Results for̀ 1 attacks are reported in Figure 3, and in
general generative classi�ers perform better in terms of victim accuracy and minimum perturbation
of the attacks.1 By contrast, DFX & DFZ are not robust to the weakest attack (FGSM) even when� =
0:2 (where the adversarial examples are still visually close to the original digit “7”). Interestingly,
DBX is the most robust against FGSM & MIM2, which agrees with the preliminary tests in Alemi
et al. (2017). But DBX is less robust to PGD, and here GBZ is a clear winner. These results show
that the bottleneck is sometimes bene�cial for better robustness of MNIST classi�ers.

For detection, generative classi�ers have successfully detected the adversarial examples with� �
0:3, which is reasonable as the visual distortion is already signi�cant. Importantly, generative clas-
si�er's victim accuracy decreases as the`1 distortion� increases, but at the same time the TP rates

1The minimum perturbation is computed across all� settings. If none of the attack is successful on an input,
we manually assign the minimum perturbation of that input as� max + 0 :1 (0.6 for MNIST).

2Note that MIM on DBX with� = 0 :9 achieves100%success rate (i.e. victim accuracy0%).
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Table 1: White-box zero-knowledgeCW-̀ 2
attack results. Here, accuracy (adv) measures
classifying the adversarial inputs to the origi-
nal classes.

acc. (clean) acc. (adv) `2 dist. TP KL
BNN 99:12% 24:40% 2:129 95:31
GFZ 98:55% 28:58% 2:663 95:37
GBZ 97:45% 81:51% 2:446 91:01
GFY 99:15% 28:64% 2:732 96:03
GBY 98:72% 32:72% 2:735 94:46
DFX 99:10% 20:31% 2:095 99:96
DBX 98:87% 30:19% 1:806 96:76
DFZ 99:10% 13:60% 2:188 99:57

(a) clean inputs (b) CW adv. inputs
Figure 4: Visualising the clean inputs and the
CW adversarial examples crafted on GFZ, digits
in red rectangles show signi�cant ambiguity.

for marginal and logit detection also increase. Therefore these`1 attacks fail to �nd near-manifold
adversarial examples that fool both the classi�er and the detection methods. DFZ, as an interme-
diate between generative and discriminative classi�ers, has worse robustness results, but has good
detection performance for the marginal and logit metrics. This is because with softmax activation,
the marginal distributionp(x ) is dropped, but in marginal/logit detectionp(x ) is still in use.

White-box attack (zero-knowledge, `2) For the CW `2 attack, we performed a hyper-
parameter search for the loss-balancing parameterc (`2 distortion increases with largerc) in
f 0:1; 1; 10; 100; 1000g on the �rst 100 test images, and we foundc = 10 returns the highest success
rate. Results are reported in Table 1. Although being successful on fooling many classi�ers, CW
failed on attacking GBZ. Also, the mean`2 distortions of the successful attacks on generative clas-
si�ers are signi�cantly larger. Furthermore, we found the success of the attack on other generative
classi�ers is mainly due to the ambiguity of the crafted adversarial images. As visualised in Figure 4
(also see Figure D.1 in appendix), the induced distortion from CW leads to ambiguous digits which
sit at the perceptual boundary between the original and the adversarial classes. With the KL detec-
tion method, all classi�ers achieve> 95%detection rates, which is as expected as the default CW
attack con�guration, by construction, generates adversarial examples that lead to minimal difference
between the logit values of the most and the second most probable classes.

White-box attack (perfect-knowledge, `1 ) The PGD-based perfect-knowledge`1 attack is
designed following (Carlini & Wagner, 2017b): we construct an (approximate) Bayes classi�er
pk (y jx ) using (3) for each set of samplesf zk

c gC
c=1 , and minimize the following with PGD:

L (� ) =
KX

k=1

logpk (y jx + � ) + � detectmax(0; �( x + � ; y ) � � ): (4)

The detection statistic�( x + � ; y ) is � logp(x + � ) for marginal detection, and� is the corre-
sponding threshold computed on training data. For logit/KL detection, the detection statistics and
thresholds are constructed accordingly. We label the three attacks against the marginal, logit and KL
based detection schemes '-PKM', '-PKL' and '-PKK' respectively. When we only have knowledge
of theK samples and not the detection method we call this attack '-PK0' (ie� detect=0 in Eq. 4).

Results are visualised in Figure 5. We see that although the attacker can reduce detection levels,
this comes with the trade-off of increasing accuracy, suggesting that a perfect-knowledge adversary
cannot break both the classi�er and detector working in tandem.

Sanity checks on gradient masking Athalye et al. (2018) claimed that if a successful defence
against white-box attacks is due to gradient masking, then this defence is likely to be less effective
against grey-box/black-box attacks, as they do not differentiate through the victim classi�er and
the defence mechanism (Papernot et al., 2017b). Therefore, we consider two transfer attacks based
on distilling the victim classi�er using a “student” CNN which has no gradient masking. The two
attacks differ in their threat models: in thegrey-box setting the attacker has access to the output
probability vectors of the classi�ers on the training data, while in theblack-box setting the attacker
has access to queried labels only. For the latter black-box setting, we follow Papernot et al. (2017b)
to train a substitute CNN using Jacobian-based dataset augmentation, and we refer to appendix B.1
for the detailed algorithm. The grey-box substitutes achieve> 99%agreement with the victims on
test data, and the black-box substitutes obtained� 96%accuracy on test data.
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Figure 5: Accuracy and detection rates of DBX, GBY, and GBZ against PGD-basedperfect-
knowledge attack (� = 0 :2) on MNIST. The solid area denotes accuracy and the hatched area
denotes detection rate with each considered detector. Zero knowledge attacks are labelled '-ZK',
other attack labels are described in the main text.

Figure 6: Accuracy and detection rates againstdistillation-basedattacks on MNIST. The higher the
better. We only present generative classi�ers' results here, for full results see appendix E.

Figure 6 shows the accuracy and detection metrics on transferred`1 attacks crafted on the substitute
models, with a comparison to their white-box counterparts. Note that these crafted attacks achieve�
100%success rates on fooling thesubstitute modelswhen� � 0:2 (see appendix E). However, they
do not transfer very well to the generative classi�ers. Importantly, for a �xed� setting, the white-
box attacks achieve signi�cantly higher success rates (i.e. lower victim accuracies) than their grey-
/black-box counterparts, and the gap is at least> 20%for � � 0:3 (see Table 2). We further present
the mean minimum̀1 perturbation in Table 2, and we see that the minimum perturbation obtained
by grey-/black-box attacks are signi�cantly higher than those obtained by white-box attacks.

All these results suggest that the robustness of generative classi�ers is unlikely to be caused by
gradient masking. Again on the detection side, the detection rates increase as the perturbation size
increase, and they are near100%for � = 0 :3. This means that most of the successfully transferred
adversarial images are off the generative classi�er's manifold (as a proxy to the data manifold).

SPSA (evolutionary strategies) We consider another black-box setting that only assumes access
to the logit values of the prediction given an input. We use the SPSA`1 attack (Uesato et al., 2018),
which is similar to the white-box zero-knowledge attacks, except that gradients are numerically

Table 2: Mean minimum̀1 perturbation (in red, computed on� 2 f 0:1; 0:2; 0:3; 0:4; 0:5g) and
victim accuracy (in blue, for� � 0:3) for `1 attacks on MNIST. We manually assign the min. per-
turbation� = 0 :6 to inputs that all attacks failed to �nd adversarial perturbations.

Attack GFZ GBZ GFY GBY
PGD(white-box) 0.23 / 7.71% 0.30 / 30.78% 0.21 / 5.52% 0.23 / 8.89%
MIM(white-box) 0.24 / 9.02% 0.21 / 4.97% 0.22 / 6.72% 0.21 / 1.54%

PGD(grey-box) 0.37 / 51.08% 0.36 / 50.64% 0.38 / 53.29% 0.36 / 48.66%
MIM(grey-box) 0.34 / 43.00% 0.33 / 40.94% 0.34 / 46.64% 0.33 / 40.06%

PGD(black-box) 0.40 / 61.93% 0.42 / 66.75% 0.38 / 56.35% 0.43 / 68.50%
MIM(black-box) 0.36 / 50.44% 0.38 / 59.86% 0.36 / 48.07% 0.39 / 61.78%
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