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Abstract

We present Matrix Krasulina, an algorithm for online k-PCA, by generalizing
the classic Krasulina’s method [1] from vector to matrix case. We show, both
theoretically and empirically, that the algorithm naturally adapts to data low-
rankness and converges exponentially fast to the ground-truth principal subspace.
Notably, our result suggests that despite various recent efforts to accelerate the
convergence of stochastic-gradient based methods by adding a O(n)-time variance
reduction step, for the k-PCA problem, a truly online SGD variant suffices to
achieve exponential convergence on intrinsically low-rank data.

1 Introduction

Principal Component Analysis (PCA) is ubiquitous in statistics, machine learning, and engineering
alike: For a centered d-dimensional random vector X ∈ Rd, the k-PCA problem is defined as finding
the “optimal” projection of the random vector into a subspace of dimension k so as to capture as
much of its variance as possible; formally, we want to find a rank k matrix W such that

max
W∈Rk×d,WW>=Ik

Var
(
W>WX

)
In the objective above, W>W = W>(WW>)−1W is an orthogonal projection matrix into the
subspace spanned by the rows of W . Thus, the k-PCA problem seeks matrix W whose row-space
captures as much variance of X as possible. This is equivalent to finding a projection into a subspace
that minimizes variance of data outside of it:

min
W∈Rk×d,WW>=Ik

E ‖X −W>WX‖2 (1.1)

Likewise, given a sample of n centered data points {Xi}ni=1, the empirical version of problem (1.1)
is

min
W∈Rk×d,WW>=Ik

1

n

n∑
i=1

‖Xi −W>WXi‖2 (1.2)

The optimal k-PCA solution, the row space of optimal W , can be used to represent high-dimensional
data in a low-dimensional subspace (k � d), since it preserves most variation from the original data.
As such, it usually serves as the first step in exploratory data analysis or as a way to compress data
before further operation.

The solutions to the nonconvex problems (1.1) and (1.2) are the subspaces spanned by the top k
eigenvectors (also known as the principal subspace) of the population and empirical data covariance

∗A major part of this work was done prior to the author joining Amazon when she was a student at George
Washington University.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



matrix, respectively. Although we do not have access to the population covariance matrix to directly
solve (1.1), given a batch of samples {xi}ni=1 from the same distribution, we can find the solution to
(1.2), which asymptotically converges to the population k-PCA solution [2]. Different approaches
exist to solve (1.2) depending on the nature of the data and the computational resources available:

SVD-based solvers When data size is manageable, one can find the exact solution to (1.2) via a
singular value decomposition (SVD) of the empirical data matrix in min{O(nd2), O(n2d)}-time and
O(nd)-space, or in case of truncated SVD in O(ndk)-time (O(nd log k) for randomized solver [3]).

Power method For large-scale datasets, that is, both n and d are large, the full data may not fit in
memory. Power method [4, p.450] and its variants are popular alternatives in this scenario; they have
less computational and memory burden than SVD-based solvers; power method approximates the
principal subspace iteratively: At every iteration, power method computes the inner product between
the algorithm’s current solution and n data vectors {xi}ni=1, an O(nds)-time operation, where ds is
the average data sparsity. Power method converges exponentially fast [5]: To achieve ε accuracy, it
has a total runtime of O(nds log 1

ε ). That is, power method requires multiple passes over the full
dataset.

Online (incremental) PCA In real-world applications, datasets might become so large that even
executing a full data pass is impossible. Online learning algorithms are developed under an abstraction
of this setup: They assume that data come from an “endless stream” and only process one data point
(or a constant sized batch) at a time. Online PCA mostly fall under two frameworks: 1. The online
worst-case scenario, where the stream of data can have a non-stationary distribution [6–8]. 2. The
stochastic scenario, where one has access to i.i.d. samples from an unknown but fixed distribution
[5, 9–11].

In this paper, we focus on the stochastic setup: We show that a simple variant of stochastic gradient
descent (SGD), which generalizes the classic Krasulina’s algorithm from k = 1 to general k ≥ 1, can
provably solve the k-PCA problem in Eq. (1.1) with an exponential convergence rate. It is worth
noting that stochastic PCA algorithms, unlike batch-based solvers, can be used to optimize both the
population PCA objective (1.1) and its empirical counterpart (1.2).

Oja’s method and VR-PCA While SGD-type algorithms have iteration-wise runtime independent
of the data size, their convergence rate, typically linear in the number of iterations, is significantly
slower than that of batch gradient descent (GD). To speed up the convergence of SGD, the seminal
work of Johnson and Zhang [12] initiated a line of effort in deriving Variance-Reduced (VR) SGD
by cleverly mixing the stochastic gradient updates with occasional batch gradient updates. For
convex problems, VR-SGD algorithms have provable exponential convergence rate. Despite the
non-convexity of k-PCA problem, Shamir [5, 13] augmented Oja’s method [14], a popular stochastic
version of power method, with the VR step, and showed both theoretically and empirically that the
resulting VR-PCA algorithm achieves exponential convergence. However, since a single VR iteration
requires a full-pass over the dataset, VR-PCA is no longer an online algorithm.

Minimax lower bound In general, the tradeoff between convergence rate and iteration-wise com-
putational cost is unavoidable in light of the minimax information lower bound [15, 16]: Let ∆n

(see Definition 1) denote the distance between the ground-truth rank-k principal subspace and the
algorithm’s estimated subspace after seeing n samples. Vu and Lei [15, Theorem 3.1] established
that there exists data distribution (with full-rank covariance matrices) such that the following lower
bound holds:

E [∆n] ≥ Ω(
σ2

n
) for σ2 ≥ λ1λk+1

(λk − λk+1)2
, (1.3)

Here λk denotes the k-th largest eigenvalue of the data covariance matrix. This immediately implies a
Ω(σ

2

t ) lower bound on the convergence rate of online k-PCA algorithms, since for online algorithms
the number of iterations t equals the number of data samples n. Thus, sub-linear convergence rate is
impossible for online k-PCA algorithms on general data distributions.
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1.1 Our result: escaping minimax lower bound on intrinsically low rank data

Despite the discouraging lower bound for online k-PCA, note that in Eq. (1.3), σ equals zero when
the data covariance has rank less than or equal to k, and consequently, the lower bound becomes
un-informative. Does this imply that data low-rankness can be exploited to overcome the lower bound
on the convergence rate of online k-PCA algorithms?

Our result answers the question affirmatively: Theorem 1 suggests that on low-rank data, an online k-
PCA algorithm, namely, Matrix Krasulina (Algorithm 1), produces estimates of the principal subspace
that converges to the ground-truth in order O(exp (−Ct)), where t is the number of iterations (the
number of samples seen) and C is a constant. Our key insight is that Krasulina’s method [1], in
contrast to its better-studied cousin Oja’s method [14], is stochastic gradient descent with a self-
regulated gradient for the PCA problem, and that when the data is of low-rank, the gradient variance
vanishes as the algorithm’s performance improves.

2 Preliminaries

We consider the following online stochastic learning setting: At time t ∈ N \ {0}, we receive a
random vector Xt ∈ Rd drawn i.i.d from an unknown centered probability distribution with a finite
second moment. We denote by X a generic random sample from this distribution. Our goal is to
learn W ∈ Rk′×d so as to optimize the objective in Eq (1.1).

Notations We let Σ∗ denote the covariance matrix of X , Σ∗ := E
[
XX>

]
. We let {ui}ki=1

denote the top k eigenvectors of covariance matrix Σ∗, corresponding to its largest k eigenvalues,
λ1 ≥, . . . ,≥ λk. Given that Σ∗ has rank r, we can represent it as: Σ∗ :=

∑r
i=1 λiuiu

>
i . We let

U∗ :=
∑k
i=1 uiu

>
i . That is, U∗ is the orthogonal projection matrix into the subspace spanned by

{ui}ki=1. For any integer p > 0, we let Ip denote the p-by-p identity matrix. We denote by ‖ · ‖F the
Frobenius norm, by tr(·) the trace operator. For two square matrices A and B of the same dimension,
we denote by A � B if A− B is positive semidefinite. We use curly capitalized letters such as G
to denote events. For an event G, we denote by 1G its indicator random variable; that is, 1G = 1 if
event G occurs and 0 otherwise.

Optimizing the empirical objective We remark that our setup and theoretical results apply not
only to the optimization of population k-PCA problem (1.1) in the infinite data stream scenario, but
also to the empirical version (1.2): Given a finite dataset, we can simulate the stochastic optimization
setup by sampling uniformly at random from it. This is, for example, the setup adopted by Shamir
[13, 5].

Assumptions In the analysis of our main result, we assume that Σ∗ has low rank and that the data
norm is bounded almost surely; that is, there exits b and k such that

P
(

sup
X
‖X‖2 > b

)
= 0 and rank(Σ∗) = k (2.4)

2.1 Oja and Krasulina

In this section, we introduce two classic online algorithms for 1-PCA, Oja’s method and Krasulina’s
method.

Oja’s method Let wt ∈ Rd denote the algorithm’s estimate of the top eigenvector of Σ∗ at time t.
Then letting ηt denote learning rate, and X be a random sample, Oja’s algorithm has the following
update rule:

wt ← wt−1 + ηt(XX>wt−1) and wt ← wt

‖wt‖
We see that Oja’s method is a stochastic approximation algorithm to power method. For k > 1,
Oja’s method can be generalized straightforwardly, by replacing wt with matrix W t ∈ Rk′×d, and by
replacing the normalization step with row orthonormalization, for example, by QR factorizaiton.
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Krasulina’s method Krasulina’s update rule is similar to Oja’s update but has an additional term:

wt ← wt−1 + ηt(XX>wt−1 − wt−1(X>
wt−1

‖wt−1‖
)2)

In fact, this is stochastic gradient descent on the objective function below, which is equivalent to Eq
(1.1):

E ‖X − wt(wt)>

‖wt‖2
X‖2

2.2 Gradient variance in Krasulina’s method

Our key observation of Krasulina’s method is as follows: Let w̃t := wt

‖wt‖ ; Krasulina’s update can be
re-written as

wt ← wt−1 + ‖wt‖ηt(XX>w̃t−1 − w̃t−1(X>w̃t−1)2)

Let
st := (w̃t)>X (projection coefficient)

and
rt := X> − st(w̃t)> = X> − (w̃t)>X(w̃t)> (projection residual)

Krasulina’s algorithm can be further written as:

wt ← wt−1 + ‖wt‖ηtst−1(rt−1)>

The variance of the stochastic gradient term can be upper bounded as:

‖wt‖2 Var
(
st−1(rt−1)>

)
≤ ‖wt‖2 sup

X
‖X‖2 E ‖rt‖2

Note that

E ‖rt‖2 = E ‖X − wt(wt)>

‖wt‖2
X‖2

This reveals that the variance of the gradient naturally decays as Krasulina’s method decreases the
k-PCA optimization objective. Intuitively, as the algorithm’s estimated (one-dimensional) subspace
wt gets closer to the ground-truth subspace u1, (wt)>X will capture more and more of X’s variance,
and E ‖rt‖2 eventually vanishes.

In our analysis, we take advantage of this observation to prove the exponential convergence rate of
Krasulina’s method on low rank data.

3 Related Works

Stochastic optimization for PCA Theoretical guarantees of stochastic optimization traditionally
require convexity [17]. However, many modern machine learning problems, especially those arising
from deep learning and unsupervised learning, are non-convex; PCA is one of them: The objective in
(1.1) is non-convex in W . Despite this, a series of recent theoretical works have proven stochastic
optimization to be effective for PCA, mostly variants of Oja’s method [18, 19, 13, 5, 20, 21, 9].
Krasulina’s method [1] was much less studied than Oja’s method; a notable exception is the work
of Balsubramani et al. [9], which proved O(1/t) rate in expectation for both Oja’s and Krasulina’s
algorithm for 1-PCA. We also noticed a recent pre-print [22] that analyzes Krasulina’s algorithm,
which establishes O(1/

√
t) convergence with high probability.

Stochastic optimization for k-PCA There were very few theoretical analysis of stochastic k-PCA
algorithms with k > 1, with the exception of Allen-Zhu and Li [18], Shamir [13], Balcan et al.
[23], Li et al. [24]. All had focused on variants of Oja’s algorithm, among which Shamir [13] was
the only previous work, to the best of our knowledge, that provided a local exponential convergence
rate guarantee of Oja’s algorithm for k ≥ 1. Their result holds for general data distribution, but their
variant of Oja’s algorithm, VR-PCA, requires several full passes over the datasets, and thus not fully
online.
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Algorithm 1 Matrix Krasulina

Input: Initial matrix W o ∈ Rk′×d; learning rate schedule (ηt); number of iterations, T ;
while t ≤ T do

1. Sample Xt i.i.d. from the data distribution

2. Orthonormalize the rows of W t−1 (e.g., via QR factorization)

3. W t ←W t−1 + ηtW t−1Xt(Xt − (W t−1)>W t−1Xt)>

end while
Output: W>

The machine learning and computer science community has studied the PCA problem without
imposing strong assumptions on data. A typical assumption would be a gap on the eigenvalues
[9, 21, 13, 24, 23]; recent work of Allen-Zhu and Li [18] has even removed this assumption. The
subspace tracking literature has approached the problem from a different angle (see Balzano et al.
[25] for an overview).

Subspace tracking Under a generative model assumption, X = Ūs, where Ū ∈ Rd×k is a basis of
a k-dimensional subspace and Cov(s) = Ik [26, Condition 1], Zhang and Balzano [26] established
the global convergence (in a different subspace distance metric than ours) of a subspace tracking
algorithm called GROUSE [27]. However, no theoretical guarantee on GROUSE was provided
without the generative model assumption, which also implies data low-rankness.

Our Theorem 1 shows that when the data is of low-rank Matrix Krasulina can achieve local exponential
convergence, and Theorem 2 shows that without low-rank assumption Matrix Krasulina has O( 1

t )
local convergence rate. Our Theorem 3 provides preliminary results on how to make the convergence
global.

4 Main results

Generalizing vector wt ∈ Rd to matrix W t ∈ Rk′×d as the algorithm’s estimate at time t, we derive
Matrix Krasulina (Algorithm 1), so that the row space ofW t converges to the k-dimensional subspace
spanned by {u1, . . . , uk}.

4.1 Matrix Krasulina

Inspired by the original Krasulina’s method, we design the following update rule for the Matrix
Krasulina (Algorithm 1): Let

st := W t−1Xt and rt := Xt − (W t−1)>(W t−1(W t−1)>)−1W t−1Xt ,

Since we impose an orthonormalization step in Algorithm 1, rt is simplified to

rt := Xt − (W t−1)>W t−1Xt ,

Then the update rule of Matrix Krasulina can be re-written as

W t ←W t−1 + ηtst(rt)> ,

For k′ = 1, this reduces to Krasulina’s update with ‖wt‖ = 1. The self-regulating variance argument
for the original Krasulina’s method still holds, that is, we have

E ‖st(rt)>‖2 ≤ bE ‖rt‖2 = bE ‖X − (W t)>W tX‖2 ,
where b is as defined in Eq (2.4). We see that the last term coincides with the objective in Eq. (1.1).

4.1.1 Loss measure

Given the algorithm’s estimate W t at time t, we let P t denote the orthogonal projection matrix into
the subspace spanned by its rows, {W t

i,?}k
′

i=1, that is,

P t := (W t)>(W t(W t)>)−1W t = (W t)>W t ,

In our analysis, we use the following loss measure to track the evolvement of W t:
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Definition 1 (Subspace distance). Let S and Ŝt be the ground-truth principal subspace and its
estimate of Algorithm 1 at time t with orthogonal projectors U∗ and P t, respectively. We define the
subspace distance between S and Ŝt as ∆t := tr(U∗(I − P t)) = k − tr(U∗P t).

Note that ∆t in fact equals the sum of squared canonical angles between S and Ŝt, and coincides with
the subspace distance measure used in related theoretical analyses of k-PCA algorithms [18, 13, 15].

4.2 Convergence rates of Matrix Krasulina

This section presents our convergence results; proofs are deferred to the Appendix. Our first theorem
proves the exponential convergence rate of Matrix Krasulina measured by ∆t.
Theorem 1 (Exponential convergence with constant learning rate). Suppose assumption Eq. (2.4)
holds. Suppose the initial estimate W o ∈ Rk′×d (k′ ≥ k) in Algorithm 1 satisfies that, for some
τ ∈ (0, 1),

∆o ≤ 1− τ ,

Suppose for any δ > 0, we choose a constant learning rate ηt = η such that

η ≤ min

{√
2− 1

b
,

λkτ

λ1b(k + 3)
,

2λkτ
8

1−τ ln 1
δ (b+ ‖Σ∗‖F )2 + b(k + 1)λ1

}
,

Then there exists event Gt such that P (Gt) ≥ 1− δ , and

E
[
∆t|Gt

]
≤ 1

1− δ
exp (−tητλk) .

On a high level, Theorem 1 is proved in the following steps (all proofs are deferred to the Appendix):

In section A.2 We show that if the algorithm’s iterates, W t, stay inside the basin of attraction,
which we formally define as event Gt, Gt := {∆i ≤ 1− τ,∀i ≤ t} , then a suitable transformation of
the stochastic process (∆t) forms a supermartingale.

In section A.3 Using martingale concentration inequality, we show that provided a good initializa-
tion, it is likely that the algorithm’s outputs W 1, . . . ,W t stay inside the basin of attraction.

In section A.4 We show that at each iteration t, conditioning on Gt, ∆t+1 ≤ β∆t for some β < 1
if we set the learning rate ηt to be a properly chosen constant.

In section D We iteratively apply this recurrence relation to prove Theorem 1.

From Theorem 1, we observe that (a). The convergence rate of Algorithm 1 on strictly low-rank data
does not depend on the data dimension d, but only on the intrinsic dimension k. This is verified by our
experiments (see Sec. 5). (b). We see that the learning rate should be of order O( λk

kλ1
): Empirically,

we found that setting η to be roughly 1
10λ1

gives us the best convergence result. Note, however, this
learning rate setup is not practical since it requires knowledge of eigenvalues.

Comparison between Theorem 1 and Shamir [13, Theorem 1] (1). The result in Shamir [13]
does not rely on the low-rank assumption of Σ∗. Since the variance of update in Oja’s method is
not naturally decaying, they use VR technique inspired by Johnson and Zhang [12] to reduce the
variance of the algorithm’s iterate, which is computationally heavy: the block version of VR-PCA
converges at rate O(exp (−CT )), where T denotes the number of data passes. (2). Our result has
a similar learning rate dependence on the data norm bound b as that of Shamir [13, Theorem 1].
(3). The initialization requirement in Theorem 1 is comparable to Shamir [13, Theorem 1]. (4).
Conditioning on the event of successful convergence, their exponential convergence rate result holds
deterministically, whereas our convergence rate guarantee holds in expectation.

While our main focus is on taking advantage of low-rank data, the next theorem shows that on
full-rank datasets, if we tune the learning rate to decay at order O( 1

t ), then the algorithm achieves
O( 1

t ) convergence.
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Algorithm 2 Warm-start with Matrix Krasulina

Input: Epoch budget N ; inner loop budget T , learning rate η; number of rows in initial matrix k′;
shrinkage factor ρ;
Set ko ← k′ and initialize W o

o ∈ Rko×d with entries (W o
o )ij ∼ N (0, 1).

while i < N do
while t < T do

Update W t+1
i ←W t

i by running Matrix Krasulina iteration with learning rate schedule η
end while
Set ki+1 ← ki(1− ρ), and construct W o

i+1 by randomly sampling ki+1 rows from WT−1
i .

end while

Theorem 2 (Linear convergence on full rank data). Suppose P
(
sup ‖X‖2 > b

)
= 0. Suppose the

initial estimateW o ∈ Rk×d in Algorithm 1 satisfies ∆o ≤ 1−τ
2 , for some τ ∈ (0, 1). Let the learning

rate schedule be ηt = c
to+t

, for some constants c, to, and let B := max
(
8(b + ‖Σ∗‖F )2k, (kb +

2cb2 + c2b3)λ1(d− k)
)
. If we choose c, to such that

c ≥ 1

(λk − λk+1)τ
and to ≥ max{

64Bc2 ln 1
δ

(∆o)2
, 1} ,

Then for any δ ∈ (0, 1e ), there exists event Gt such that P (Gt) ≥ 1− δ , and E [∆t|Gt] ≤ O( 1
t ).

Theorem 2 generalizes the result of [9], where linear convergence rate of Krasulina’s algorithm is
established for the 1-PCA problem on full-rank data. The linear convergence rate on full-rank data
matches that of the minimax lower bound in Eq (1.3) up to constants (note that here the initialization
condition is more strict than Theorem 1; whether this is an artifact of our analysis is left to future
work).

4.3 Random initialization guarantee of W o

Theorem 1 focuses on the convergence rate of Matrix Krasulina from a good initialization point. Next,
we show that if we are willing to use k′ > k rows in W o, then randomly initializing the weights in
W o is sufficient to guarantee the initialization requirement, ∆o ≤ 1− τ .
Theorem 3 (Success guarantee of an over-complete initialization). Let ε, t > 0 be any constants. If
we choose k′ ≥ 1+t

1−ε (1− 1−τ
k )d , then with probability at least 1− 2k exp

(
−(ε2 − ε3)k′/4

)
− k′+1

dt2 ,

∆o ≤ 1− τ .

The proof is a simple application of Lemma 4 in Section F.

How large should k′ be given d, k? In the special case of k = 1, we can choose τ = 1
d
1−ε
1+t , and

then we get the lower bound k′ ≥ 1. We need to choose a larger k′ as the intrinsic rank k gets larger.
In general, k′ is of order Ω(d− d

k ).

A phase-wise warm start with over-complete random initialization As seen from previous
discussion, using vanilla random initialization is only reasonable if the ratio k

d is small. Otherwise,
the number of rows in W o, k′, can almost be as large as d. To deal with this drawback, inspired by
Oja++ of Allen-Zhu and Li [18], we propose a warm-start strategy as Algorithm 2. The main insight
is captured by the following lemma:
Lemma 1. For any i > 0, at the end of i-th epoch of Algorithm 2,

E [tr(U∗P (W o
i ))] ≥ ki

ki−1
E
[
tr(U∗P (WT−1

i−1 ))
]

Note that the error of the first iterate at the i-th epoch is ∆(W o
i ) = k − tr(U∗P (W o

i )). So Lemma 1
quantifies how much the error is increased between the last iterate of epoch i− 1 and the first iterate
of epoch i, due to the row-sampling step at the end of i−1-th epoch. Based on Lemma 1, the intuition
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of why Algorithm 2 works is as follows: At the initial epoch, we choose ko to be large enough to
satisfy the condition of Theorem 3. Then Theorem 1 implies that after T inner loop iterations, the
expected error will decrease in order O(−ητλkT ); now if we choose a suitable shrinkage factor ρ,
then we can guarantee that the error ofW o

1 , although larger thanWT−1
o , will still satisfy the condition

in Theorem 3. Thus, applying Theorem 1, we can decrease the error of W o
1 rapidly again, and so on.

Eventually, after O(log ko
k ) epochs, we will obtain a matrix of O(k) number of rows, while satisfying

the condition of Theorem 3. We leave the formal analysis and empirical evaluation of Algorithm 2 to
future work.

4.4 Open question: extending our result to effectively low-rank data

Many real-world datasets are not strictly low-rank, but effectively low-rank (see, for example,
Figure 2): Informally, we say a dataset is effectively low-rank if there exists k � d such that∑

i>k λi∑
j≤k λj

is small , We conjecture that our analysis can be adapted to show theoretical guarantee of
Algorithm 1 on effectively low-rank datasets as well. In Section 5, our empirical results support
this conjecture. Formally characterizing the dependence of convergence rate on the “effective low-
rankness” of a dataset can provide a smooth transition between the linear convergence lower bound
[15] and our result in Theorem 1.

5 Experiments

In this section, we present our empirical evaluation of Algorithm 1 to understand its convergence
property on low-rank or effectively low-rank datasets. We first verified its performance on simulated
low-rank data and effectively low-rank data, and then we evaluated its performance on two real-world
effectively low-rank datasets.

k = 1, d = 100 k = 10, d = 100 k = 50, d = 100

k = 1, d = 500 k = 10, d = 500 k = 50, d = 500

Figure 1: log-convergence graph of Algorithm 1: ln(∆t) vs t at different levels of noise-over-signal
ratio (

∑
i>k λi∑
j≤k λj

)

5.1 Simulations

The low-rank data is generated as follows: we sample i.i.d. standard normal on the first k coordinates
of the d-dimensional data (the rest d− k coordinates are zero), then we rotate all data using a random
orthogonal matrix (unknown to the algorithm).

Simulating effectively low-rank data In practice, hardly any dataset is strictly low-rank but many
datasets have sharply decaying spectra (recall Figure 2). Although our Theorem 1 is developed under
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Figure 2: top 6 eigenvalues ex-
plains 80% of the data variance.

MNIST (d = 784; k′ = 44) VGG (d = 2304; k′ = 6); red
vertical line marks a full pass over
the dataset

a strict low-rankness assumption, here we empirically test the robustness of our convergence result
when data is not strictly low rank but only effectively low rank. Let λ1,≥ · · · ≥ λd ≥ 0 be the
spectrum of a covariance matrix. For a fixed k ∈ [d], we let noise-over-signal :=

∑
i>k λi∑
j≤k λj

. The
noise-over-signal ratio intuitively measures how “close” the matrix is to a rank-k matrix: The smaller
the number is, the shaper the spectral decay; when the ratio equals zero, the matrix is of rank at most
k. In our simulated data, we perturb the spectrum of a strictly rank-k covariance matrix and generate
data with full-rank covariance matrices at the following noise-over-signal ratios, {0, 0.01, 0.1, 0.5}.

Results Figure 1 shows the log-convergence graph of Algorithm 1 on our simulated data: We
initialized Algorithm 1 with a random matrix W o and ran it for one or a few epochs, each consists of
5000 iterations. (1). We verified that, on strictly low rank data (noise-over-signal= 0), the algorithm
indeed has an exponentially convergence rate (linear in log-error); (2). As we increase the noise-over-
signal ratio, the convergence rate gradually becomes slower; (3). The convergence rate is not affected
by the actual data dimension d, but only by the intrinsic dimension k, as predicted by Theorem 1.

5.2 Real effectively low-rank datasets

We take a step further to test the performance of Algorithm 1 on two real-world datasets: VGG [28]
is a dataset of 10806 image files from 2622 distinct celebrities crawled from the web, with d = 2304.
For MNIST [29], we use the 60000 training examples of digit pixel images, with d = 784. Both
datasets are full-rank, but we choose k′ such that the noise-over-signal ratio at k′ is 0.25; that is, the
top k′ eigenvalues explain 80% of data variance. We compare Algorithm 1 against the exponentially
convergent VR-PCA: we initialize the algorithms with the same random matrix and we train (and
repeated for 5 times) using the best constant learning rate we found empirically for each algorithm.
We see that Algorithm 1 retains fast convergence even if the datasets are not strictly low rank, and
that it has a clear advantage over VR-PCA before the iteration reaches a full pass; indeed, VR-PCA
requires a full-pass over the dataset before its first iterate.
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