
Under review as a conference paper at ICLR 2020

ATTENTION PRIVILEGED REINFORCEMENT LEARNING
FOR DOMAIN TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

Applying reinforcement learning (RL) to physical systems presents notable chal-
lenges, given requirements regarding sample efficiency, safety, and physical con-
straints compared to simulated environments. To enable transfer of policies
trained in simulation, randomising simulation parameters leads to more robust
policies, but also significantly extends training time. In this paper, we exploit
access to privileged information (such as environment states) often available in
simulation, in order to improve and accelerate learning over randomised envi-
ronments. We introduce Attention Privileged Reinforcement Learning (APRiL),
which equips the agent with an attention mechanism and makes use of state infor-
mation in simulation, learning to align attention between state- and image-based
policies while additionally sharing generated data. During deployment we can
apply the image-based policy to remove the requirement of access to additional
information. We experimentally demonstrate accelerated and more robust learn-
ing on a number of diverse domains, leading to improved final performance for
environments both within and outside the training distribution. 1.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has recently provided significant successes in a range of areas,
including video games (Mnih et al., 2015), board games (Silver et al., 2017), simulated continu-
ous control tasks (Lillicrap et al., 2015), and robotic manipulation (Haarnoja et al., 2018; Haarnoja,
2018; Riedmiller et al., 2018; OpenAI et al., 2018; Schwab et al., 2019; Andrychowicz et al., 2017).
However, application to physical systems has proven to be challenging in general, due to expen-
sive and slow data generation as well as safety challenges when running untrained policies. A
common approach to circumvent these issues is to transfer models trained in simulation to the real
world (Tobin et al., 2017; Rusu et al., 2016; Held et al., 2017). However, simulators only repre-
sent approximations of a physical system. Due to physical, visual, and behavioural discrepancies,
naively transferring RL agents trained in simulation onto the real world can be challenging.

To bridge the gap between simulation and the real world, we can either aim to align both do-
mains (Ganin et al., 2016; Bousmalis et al., 2016; Wulfmeier et al., 2017) or ensure that the real
system is covered by the distribution of simulated training data (OpenAI et al., 2018; Tobin et al.,
2017; Pinto et al., 2018; Sadeghi & Levine, 2016; Viereck et al., 2017). However, training under a
distribution of randomised visual attributes of the simulator, such as textures and lighting (Sadeghi
& Levine, 2016; Viereck et al., 2017), as well as physics (OpenAI et al., 2018), can be substantially
more difficult and slower due to the increased variability of the learning domain (OpenAI et al.,
2018; Tobin et al., 2017).

The more structured and informative the input representation is with respect to the task, the quicker
the agent can be trained. A clear example of this effect can be found when an agent is trained with
image inputs, versus training with access to the exact simulator states (Tassa et al., 2018; Pinto et al.,
2018). However, visual perception is more general and access to more compressed representations
can often be limited. When exact states are available during training but not deployment, we can
make use of information asymmetric actor-critic methods (Pinto et al., 2018; Schwab et al., 2019)
to train the critic faster via access to the state while providing only images for the actor.

1Videos comparing the policy behaviours of APRiL to the asymmetric DDPG baseline can be found here

1

https://sites.google.com/view/april-domain-randomisation/home


Under review as a conference paper at ICLR 2020

By introducing Attention Privileged Reinforcement Learning (APRiL), we aim to further leverage
access to exact states. APRiL leverages states not only to train the critic, but indirectly also for
an image-based actor. Extending asymmetric actor-critic methods, APRiL concurrently trains two
actor-critic systems (one symmetric, state-based agent, and another asymmetric agent with image-
dependent actor). Both actors utilise an attention mechanism to filter input data and by having access
to the simulation rendering system, we can optimise image and state based attention masks to align.

By additionally sharing the replay buffer between both agents, we can accelerate the learning process
of the image-based actor by training on better performing states that are more quickly discovered by
the state-based actor due to its lower dimensional input that is invariant to visual randomisation.

The key benefits of APRiL lie in its application to domain transfer. When training with domain
randomisation for transfer, bootstrapping via asymmetric information has displayed crucial bene-
fits (Pinto et al., 2018). Visual randomisation substantially increases the complexity of the image-
based actor’s task. Under this setting, the attention network can support invariance with respect to
the irrelevant, but highly varying, parts of the image. Furthermore, the convergence of the state-
space actor remains unaffected by visual randomisation.

We experimentally demonstrate considerable improvements regarding learning convergence and
more robust transfer on a set of continuous action domains including: 2D navigation, 2D locomotion
and 3D robotic manipulation.

2 PROBLEM SETUP

Before introducing Attention Privileged Reinforcement Learning (APRiL), this section provides a
background for the RL algorithms used. For a more in-depth introduction please refer to Lillicrap
et al. (2015) and Pinto et al. (2018).

2.1 REINFORCEMENT LEARNING

We describe an agent’s environment as a Partially Observable Markov Decision Process which is
represented as the tuple (S,O,A, P, r, γ, s0), where S denotes a set of continuous states, A denotes
a set of either discrete or continuous actions, P : S×A×S → {x ∈ R|0 ≤ x ≤ 1} is the transition
probability function, r : S × A → R is the reward function, γ is the discount factor, and s0 is the
initial state distribution. O is a set of continuous observations corresponding to continuous states
in S. At every time-step t, the agent takes action at = π(·|st) according to its policy π : S → A.
The policy is optimised as to maximize the expected return Rt = Es0 [

∑∞
i=t γ

i−tri|s0]. The agent’s
Q-function is defined as Qπ(st, at) = E[Rt|st, at].

2.2 ASYMMETRIC DEEP DETERMINISTIC POLICY GRADIENTS

Asymmetric Deep Deterministic Policy Gradients (asymmetric DDPG) (Pinto et al., 2018) repre-
sents a type of actor-critic algorithm designed specifically for efficient learning of a deterministic,
observation-based policy in simulation for sim-to-real transfer. This is achieved by leveraging ac-
cess to more compressed, informative environment states, available in simulation, to speed up and
stabilise training of the critic.

The algorithm maintains two neural networks: an observation-based actor or policy πθ : O → A
(with parameters θ) used during training and test time, and a state-based Q-function (also known as
critic) Qπφ : S ×A→ R (with parameters φ) which is only used during training.

To enable exploration, the method (like its symmetric version (Silver et al., 2014)) relies on a noisy
version of the policy (called behavioural policy), e.g. πb(o) = π(o) + z where z ∼ N (0, 1)
(see Appendix C for our particular instantiation). The transition tuples (st, ot, at, rt, st+1, ot+1)
encountered during training are stored in a replay buffer (Mnih et al., 2015). Training exam-
ples sampled from the replay buffer are used to optimize the critic and actor. By minimizing the
Bellman error loss Lcritic = (Q(st, at) − yt)

2, where yt = rt + γQ(st+1, π(ot+1)), the critic
is optimized to approximate the true Q values. The actor is optimized by minimizing the loss
Lactor = −Es,o∼πb(o)[Q(s, π(o))].

2



Under review as a conference paper at ICLR 2020

Figure 1: Attention Privileged Reinforcement Learning model structure. Dashed lines indicate at-
tention alignment process. The ∼ operator signifies that experiences are evenly sampled from both
agents. The ⊗ operator represents element-wise multiplication.

3 ATTENTION PRIVILEGED REINFORCEMENT LEARNING (APRIL)

APRiL proposes to improve the performance and sample efficiency of an observation-based agent
by using a quicker learning actor that has access to exact environment states, sharing replay buffers,
and aligning attention mechanisms between both actors. While we focus in the following sections on
extending asymmetric DDPG (Pinto et al., 2018), these ideas are generally applicable to off-policy
actor-critic methods (Konda & Tsitsiklis, 2000).

APRiL is comprised of three modules as displayed in Figure 1. The first two modules, As and Ao,
are actor-critic algorithms with an attention network incorporated over the input to each actor. For
the state-based module As we use standard symmetric DDPG, while the observation-based module
Ao builds on asymmetric DDPG. Finally, the third partAT represents the alignment process between
attention mechanisms of both actor-critic agents to more effectively transfer knowledge between the
quicker and slower learners, As and Ao, respectively.

As consists of three networks: Qπs , πs, hs (respectively critic, actor, and attention) with parameters
{φs, θs, ψs}. Given input state st, the attention network outputs a soft gating mask ht of same
dimensionality as the input, with values ranging between [0, 1]. The input to the actor is an attention-
filtered version of the state, sat = hs(st)�st. To encourage a sparse masking function, we found that
training this attention module on both the traditional DDPG loss as well as an entropy loss helped:

Lhs
= −Es∼πb

[Qs(s, πs(s
a))− βH(hs(s))], (1)

where β is a hyperparameter to weight the additional entropy objective, and πb is the behaviour pol-
icy used to obtain experience (in this case from a shared replay buffer). The actor and critic networks
πs and Qs are trained with the symmetric DDPG actor and Bellman error losses respectively.

Within AT , the state-attention obtained in As is converted to corresponding observation-attention T
to act as a self-supervised target for the observation-based agent in Ao. This is achieved in a two-
step process. First, state-attention hs(s) is converted into object-attention c, which specifies how
task-relevant each object in the scene is. Second, object-attention is converted to observation-space
attention by performing a weighted sum over object-specific segmentation maps:

c =M · hs(s) (2) T =

N−1∑
i=0

ci · zi (3)

Here, M ∈ {0, 1}N×ns (where ns is the dimensionality of s) is an environment-specific, predefined
adjacency matrix that maps the dimensions of s to each corresponding object, and c ∈ [0, 1]N is

3



Under review as a conference paper at ICLR 2020

then an attention vector over the N objects in the environment. ci corresponds to the ith object
attention value. zi ∈ {0, 1}W×H is the binary segmentation map2 of the ith object segmenting the
object with the rest of the scene, and has the same dimensions as the image observation. zi assigns
values of 1 for pixels in the image occupied by the ith object, and 0 elsewhere. T ∈ [0, 1]W×H is
the converted state-attention to observation-space attention to act as a target to train the observation-
attention network ho on.

The observation-based module Ao also consists of three networks: Qπo , πo, ho (respectively critic,
actor, and attention) with parameters {φo, θo, ψo}. The structure of this module is the same as As
except the actor and critic now have asymmetric inputs. The input to the actor is the attention-
filtered version of the observation, oat = ho(ot) � ot3.The actor and critic networks πo and Qo are
trained with the standard asymmetric DDPG actor and Bellman error losses respectively defined in
Section 2.2. The main difference between Ao and As is that the observation attention network ho is
trained on both the actor loss and an object-weighted mean squared error loss:

Lho
= Eo,s∼πb

1

2

∑
ij

1

wij
(ho(o)− T )ij

2

− νQo(s, πo(oa))

 , (4)

where weights wij correspond to the fraction of the partial observation o that the object present in
oi,j,1:3 occupies, and ν represents the relative weighting of both loss components. The weight terms,
w, ensure that the attention network becomes invariant to the size of objects during training and does
not simply fit to the most predominant object in the scene. Combining the self-supervised attention
loss and the RL loss leverages efficient state-space learning unaffected by visual randomisation.

During training, experiences are collected evenly from both state and observation based agents and
stored in a shared replay buffer (similar to Schwab et al. (2019)). This is to ensure that: 1. Both state-
based criticQs and observation-based criticQo observe states that would be visited by either of their
respective policies. 2. The attention modules hs and ho are trained on the same data distribution to
better facilitate alignment. 3. Efficient discovery of highly performing states from πs are used to
speed up learning of πo.

Algorithm 1 shows pseudocode for a single actor implementation of APRiL. In practice, in order to
speed up data collection and gradient computation, we parallelise the agents and environments and
ensure data collection from state- and image- based agents is even.

4 EXPERIMENTS

To demonstrate the performance and generality of our method, we apply APRiL to a range of envi-
ronments, and compare with a competitive asymmetric DDPG baseline and various ablations. We
evaluate APRiL over different metrics to investigate how attention helps with robustness and gener-
alisation to unseen environments and transfer scenarios. Further experimental details can be found
in Appendix C.

4.1 EVALUATION PROTOCOL

In order to investigate APRiL under varying conditions, we evaluate in scenarios of increasing com-
plexity covering simple 2D navigation, 3D reaching and 2D dynamic locomotion.

We use the following continuous action-space environments (see Appendix A for further details):

1. NavWorld: In this 2D environment, the goal is for the circular agent to reach the triangular
target in the presence of distractors. The agent is sparsely rewarded if the target is reached.

2. JacoReach: In this 3D environment the goal of the Kinova arm (Campeau-Lecours et al.,
2017) agent is to reach the diamond ShapeStacks object (Groth et al., 2018) in the presence
of distractors. The agent is rewarded for approaching and reaching its goal.

2Many simulators, like (Todorov et al., 2012), natively provide functionality to access these segmentations
3In practice, the output of ho(ot) is tiled to match the number of channels that the image contains

4



Under review as a conference paper at ICLR 2020

Algorithm 1 Attention Privileged Reinforcement Learning
Initialize (a)symmetric actor-critic modules As, Ao, attention alignment module AT , replay buffer R
for episode= 1 to M do

Initial state s0
while ¬ DONE do

Render image observation ot and segmentation maps zt:
ot, zt ← renderer(st)

if episode mod 2 = 0 then
Obtain action at using obs-behavioral policy and obs-attention network:

at ← πo(ho(ot)� ot)
else

Obtain action at using state-behavioral policy and state-attention network:
at ← πs(hs(st)� st)

end if
Execute action at, receive reward rt, DONE flag, and transition to st+1

Store (st, ot, zt, at, rt, st+1, ot+1) in R
end while
for n = 1 to N do

Sample minibatch {s, o, z, a, r, s
′
, o

′
}B0 from R

Optimise state- critic, actor, and attention using {s, a, r, s
′
}B0 with As

Convert state-attention to target observation-attention {T}B0 using {s, o, z}B0 with AT

Optimise observation- critic, actor, and attention using {s, o, T, a, r, s
′
, o

′
}B0 with Ao

end for
end for

3. Walker2D: In this slightly modified 2D Deepmind Control Suite environment (Tassa et al.,
2018) the goal of the agent is to walk forward as far as possible within a time-limit. The
agent receives a reward for moving forward as well as a reward for keeping its torso upright.

For these domains we randomise visuals during training as to enable generalisation to these variable
aspects of the environment. We randomise a combination of: camera position and orientation,
textures, materials, colours, object locations, background. Refer to Appendix B for more details.

4.2 KEY RESEARCH QUESTIONS

We investigate the following questions to evaluate how well APRiL accommodates for the transfer-
ring of policies across visually distinct environments: Does APRiL 1. Increase sample-efficiency
during training? 2. Affect interpolation performance on unseen environments from the training dis-
tribution? 3. Affect extrapolation performance on environments outside the training distribution?

We qualitatively analyse the learnt attention maps (both on interpolated and extrapolated domains).
Finally, we perform an ablation study to investigate which parts of the APRiL contribute to perfor-
mance gains. This ablation consists of the following models:

1. APRiL no self-supervision (APRiL no sup): APRiL except without the self-supervision
provided by the state agent to train the observation-based attention. Both agents are still
equipped with an attention module, but the observation attention must now learn without
guidance from the state agent. Without bootstrapping from the state agent in this way we
expect learning of informative observation-based attention to be hindered.

2. APRiL no shared buffer (APRiL no share): APRiL except each agent has its own replay
buffer, instead of one shared replay buffer, and hence does not share experiences during
training. Under this setting, the observation agent will not be able to benefit from earlier
visitation of lucrative states by the state agent. Both agents have an attention module and
attention alignment still occurs.

3. APRiL no background (APRiL no back): APRiL except the state agent’s attention is no
longer used to calculate object-space attention values c. Instead, all objects are given equal
attention and we hence learn a background suppressor. This most competitive ablation in-
vestigates how important object suppression is for learning, robustness, and generalisation.
Both agents still maintain attention have a shared replay buffer.

5



Under review as a conference paper at ICLR 2020

Figure 2: Learning curves during training of APRiL , its ablations, and the asymmetric DDPG base-
line. Solid line: mean performance. Shaded region: covers minimum and maximum performances
across 5 seeds.

4.3 PERFORMANCE ON THE TRAINING DISTRIBUTION

We evaluate the performance on all domains during training and observe APRiL ’s benefits. As seen
in Figure 2, APRiL provides performance gains across all continuous action domains. APRiL not
only helps learn useful representations quicker (improving learning rate) but also improves final
policy performance (within the allotted training time).

The ablations demonstrate that self-supervision and shared replay both independently provide per-
formance gains for JacoReach and Walker2D4. For Walker2D, shared replay is crucial as stabilises
learning (observe APRiL , APRiL no back, APRiL no sup), due to constant visitation for highly
performing states. Suppression of task-irrelevant, yet highly varying, information also speed up
learning as simplifies the observation space. For this reason, APRiL no back proves to be a com-
petitive ablation, approaching the performance of APRiL for JacoReach and Walker2D. For these
domains, the background occupies the majority of the observation space and ignoring it already
suppresses most of the irrelevant information. Minimal improvement can be achieved by suppress-
ing additional irrelevant objects. None of the ablations, however, are able to outperform the full
APRiL framework, demonstrating that the combination of a shared replay buffer and state-space-
informed image-attention module cooperate constructively toward more efficient feature learning
and effective policy and critic updates.

4.4 INTERPOLATION: TRANSFER TO DOMAINS FROM THE TRAINING DISTRIBUTION

We evaluate the performance of all actor-critic algorithms on a hold out set of simulation parameters,
unseen during training, from the training distribution. For a detailed description of the training dis-
tribution for each domain please refer to Appendix B. For both NavWorld and JacoReach, the inter-
polated environments have the same number of distractors, sampled from the same object catalogue,
as the training distribution. Table 1 displays final policy performance on these domains. For APRiL ,
we observe no degradation in policy performance between training and interpolated domains. We
see a very similar trend for the asymmetric DDPG baseline. However, as APRiL performs better
on the training distribution, its final performance on the interpolated domains is significantly better.
We therefore demonstrate that on these domains APRiL’s attention mechanism does not hurt with
respect to overfitting.

4.5 EXTRAPOLATION: TRANSFER TO DOMAINS OUTSIDE THE TRAINING DISTRIBUTION

We investigate performances on simulation parameters outside the training distribution. In partic-
ular, we investigate how well APRiL , its ablations, and asymmetric DDPG, generalise to environ-
ments with more distractor objects than seen during training. For NavWorld and JacoReach, we
run two sets of increasingly extrapolated experiments with an additional 4 or 8 distractors (refered
to as ext-4 and ext-8 in Table 1). The textures and colours of these objects are sampled from a
held-old out set of simulation parameters not seen during training. For NavWorld, the locations and
orientations of the additional distractors are randomly sampled. For JacoReach, the locations are

4We suspect that this is due to the simplicity of NavWorld, both visually and due to the small confined
state-space, that none of the ablation by themselves outperform the baseline.

6



Under review as a conference paper at ICLR 2020

sampled from arcs of two concentric circles of different radii (extrapolated arcs and radii to those
seen during training), in such a way that each object remains visible. The shapes of the additional
distractor object are sampled from the training catalogue of distractor objects. Please refer to Figure
3 for examples of the extrapolated domains.

Table 1 compares performances on the extrapolated sets (except Walker2D) varying in difficulty
(ext-4 and ext-8). APRiL yields performance gains over the asymmetric DDPG baseline on every
extrapolated domain. For JacoReach, APRiL’s generalisation is so effective that, for the hardest
domain with additional 8 distractors, its performance degrades by only 9%5 opposed to 41% (base-
line).

APRiL generalises favorably due to the attention module. Figure 3 shows that attention generalises
and suppresses the additional distractors, thereby effectively converting the hold-out observations to
those seen during training, which the image-policy can handle. The ablations in Table 1 confirm that
in this setting, distractor suppression is crucial. This is seen when comparing the maximum degra-
dation in policy performance of APRiL, APRiL no share, APRiL no back and APRiL no sup (9%,
16%, 27% and 47% respectively). APRiL and APRiL no share both align attention between image
and state agents during training, and therefore effectively suppress distractors (yielding a favourable
decrease in policy performance of only 9% and 16%). APRiL no back learns a background suppres-
sor, but does not suppress the distractors (leading to a larger degradation of 27%). APRiL no sup has
an attention module trained only on the asymmetric actor-critic loss and yields the worst extrapolated
performance (47% policy degradation). For these extrapolated domains, the successful suppression
of the background and additional distractors (achieved only by the full APRiL framework), creates
policy invariance with respect to them and helps generalise.

Table 1: Ablation comparing average return over training, interpolated and extrapolated environ-
ments (100 each). Results reflect mean and standard deviation of average return over 5 seeds.

Domain Baseline APRiL no sup APRiL no share APRiL no back APRiL
NavWorld (train) 0.72± 0.02 0.60± 0.02 0.61± 0.02 0.67± 0.02 0.75 ± 0.02
NavWorld (inter) 0.70± 0.03 0.60± 0.02 0.62± 0.02 0.69± 0.02 0.80 ± 0.02
NavWorld (ext-4) 0.45± 0.02 0.42± 0.02 0.43± 0.02 0.45± 0.02 0.53 ± 0.02
NavWorld (ext-8) 0.46± 0.02 0.42± 0.02 0.38± 0.02 0.47± 0.02 0.50 ± 0.02
JacoReach (train) −2.38± 0.23 −3.03± 0.30 −0.10± 0.19 1.10 ± 0.16 0.03± 0.19
JacoReach (inter) −2.19± 0.24 −3.38± 0.31 −0.29± 0.20 0.81 ± 0.18 0.13± 0.20
JacoReach (ext-4) −6.07± 0.25 −6.81± 0.33 −1.26± 0.22 −0.79± 0.23 −0.70 ± 0.23
JacoReach (ext-8) −8.02± 0.24 −9.26± 0.28 −2.69± 0.24 −3.53± 0.26 −1.47 ± 0.25
Walker2D (train) 67.4± 3.15 107± 3.31 63.0± 2.13 126± 4.33 155 ± 3.25
Walker2D (inter) 68.9± 3.25 107± 3.30 62.6± 2.11 126± 4.31 156 ± 3.20

4.6 ATTENTION MODULE ANALYSIS

To better comprehend the role of the attention, we visualise APRiL’s attention maps (Figure 3, 4,
5) on both interpolated and extrapolated domains. For NavWorld, attention is correctly paid to all
relevant aspects (agent and target; circle and triangle respectively). Attention generalises reasonably
well to the extrapolated environments. For JacoReach, attention looks at the target, diamond-shaped,
object as well as every other link (alternating links) of the Kinova arm. Interestingly, APRiL learnt
that as the arm is a constrained system, the state of every other link can be indirectly inferred without
explicit attention. The state of the unobserved link can be inferred by observing the links either side
of it. The entropy loss over the state-attention module encourages this form of attention over minimal
set of objects. Attention here generalises very well to the extrapolated domains. For Walker2D, we
observe attention that is dynamic in object space. The attention module attends different subsets
of links depending on the state of the system (see Figure 5). When the walker is upright, walking,
and collapsing, APRiL pays attention to the lower limbs, every other link, and foot and upper body,
respectively. We suspect that in these scenarios, the magnitude of the optimal action depends on the
state of and as is largest for the lower links (due to stability), every link (coordination), and foot and
upper body (large torque required), respectively.

5Percentage decrease is taken with respect to initial and final policy performance on training distribution

7



Under review as a conference paper at ICLR 2020

Figure 3: Example held-out domains (top) and APRiL attention maps (bottom). White and black
signify high and low attention values. Attention correctly suppresses background and distractors.

5 RELATED WORK

Domain Randomisation has been applied for reinforcement learning to facilitate transfer between
domains (Tobin et al., 2017; Pinto et al., 2018; Sadeghi & Levine, 2016; Viereck et al., 2017; OpenAI
et al., 2018; Held et al., 2017) and increase robustness of the learned policies (Rajeswaran et al.,
2016). However, while domain randomisation enables us to generate more robust and transferable
policies, it leads to a significant increase in required training time (OpenAI et al., 2018).

Existing comparisons in the literature demonstrate that, even without domain randomisation, the in-
creased dimensionality and potential partial observability complicates learning for RL agents (Tassa
et al., 2018; Schwab et al., 2019; Watter et al., 2015; Lesort et al., 2018). In this context, accelerated
training has been achieved by using access to privileged information such as environment states to
asymmetrically train the critic in actor-critic RL (Schwab et al., 2019; Pinto et al., 2018). In addition
to using additional information to train the critic, Schwab et al. (2019) use a shared replay buffer
for data generated by image- and state-based actors to further accelerate training for the image-
based agent. Our method extends these approaches by sharing information about relevant objects by
aligning agent-integrated attention mechanisms between an image- and state-based actors.

Recent experiments have demonstrated the strong dependency and bidirectional interaction between
attention and learning in human subjects (Leong et al., 2017). In the context of machine learning,
attention mechanisms have been integrated into RL agents to increase robustness and enable in-
terpretability of an agent’s behaviour (Sorokin et al., 2015; Choi et al., 2017; Mott et al., 2019). In
comparison to these works, we focus on utilising the attention mechanism as an interface to transfer
information between two agents to enable faster training.

6 CONCLUSION

We introduce Attention Privileged Reinforcement Learning (APRiL), an extension to asymmetric
actor-critic algorithms that leverages access to privileged information like exact simulator states.
The method benefits in two ways, via sharing a replay buffer as well as aligning attention masks
between image- and state-space agents. By leveraging simulator ground-truth information about
system states, we are able to learn efficiently in the image domain especially during domain ran-
domisation where feature learning becomes increasingly difficult. Our evaluation on a diverse set
of environments demonstrates significant improvements over the competitive asymmetric DDPG
baseline and reveals that APRiL learns to generalise favourably to environments not seen during
training (both within and outside of the training distribution) in comparison to the strong baseline;
emphasising the importance of attention and shared experience for robustness of the learnt policies.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In OSDI, volume 16, pp. 265–283, 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan.
Domain separation networks. In Advances in Neural Information Processing Systems, pp. 343–
351, 2016.

Alexandre Campeau-Lecours, Hugo Lamontagne, Simon Latour, Philippe Fauteux, Véronique Ma-
heu, François Boucher, Charles Deguire, and Louis-Joseph Caron L’Ecuyer. Kinova modular
robot arms for service robotics applications. Int. J. Robot. Appl. Technol., 5(2):49–71, July 2017.
ISSN 2166-7195. doi: 10.4018/IJRAT.2017070104. URL https://doi.org/10.4018/
IJRAT.2017070104.

Jinyoung Choi, Beom-Jin Lee, and Byoung-Tak Zhang. Multi-focus attention network for efficient
deep reinforcement learning. In Workshops at the Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

Oliver Groth, Fabian B. Fuchs, Ingmar Posner, and Andrea Vedaldi. Shapestacks: Learning vision-
based physical intuition for generalised object stacking. In ECCV (1), volume 11205 of Lecture
Notes in Computer Science, pp. 724–739. Springer, 2018.

T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine. Learning to Walk via Deep Rein-
forcement Learning. arXiv e-prints, December 2018.

Tuomas Haarnoja. Acquiring Diverse Robot Skills via Maximum Entropy Deep Reinforcement
Learning. PhD thesis, UC Berkeley, 2018.

David Held, Zoe McCarthy, Michael Zhang, Fred Shentu, and Pieter Abbeel. Probabilistically safe
policy transfer. In Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp.
5798–5805. IEEE, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Yuan Chang Leong, Angela Radulescu, Reka Daniel, Vivian DeWoskin, and Yael Niv. Dy-
namic interaction between reinforcement learning and attention in multidimensional environ-
ments. Neuron, 93(2):451 – 463, 2017. ISSN 0896-6273. doi: https://doi.org/10.1016/j.
neuron.2016.12.040. URL http://www.sciencedirect.com/science/article/
pii/S089662731631039X.

Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-Franois Goudou, and David Filliat. State represen-
tation learning for control: An overview. Neural Networks, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

9

https://doi.org/10.4018/IJRAT.2017070104
https://doi.org/10.4018/IJRAT.2017070104
http://www.sciencedirect.com/science/article/pii/S089662731631039X
http://www.sciencedirect.com/science/article/pii/S089662731631039X


Under review as a conference paper at ICLR 2020

Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo J. Rezende. Towards
interpretable reinforcement learning using attention augmented agents. ArXiv, abs/1906.02500,
2019.

OpenAI, :, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szy-
mon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation, 2018.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. Robotics: Science and Systems, 2018.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
robust neural network policies using model ensembles. arXiv preprint arXiv:1610.01283, 2016.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van
de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing -
solving sparse reward tasks from scratch, 2018.

A Romero, N Ballas, SE Kahou, A Chassang, C Gatta, and Y Bengio. Imagenet classification with
deep convolutional neural networks. In International Conference on Learning Representations,
2015.

Andrei A Rusu, Mel Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia Hadsell.
Sim-to-real robot learning from pixels with progressive nets. arXiv preprint arXiv:1610.04286,
2016.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016.

Devin Schwab, Tobias Springenberg, Murilo F Martins, Thomas Lampe, Michael Neunert, Abbas
Abdolmaleki, Tim Herkweck, Roland Hafner, Francesco Nori, and Martin Riedmiller. Simul-
taneously learning vision and feature-based control policies for real-world ball-in-a-cup. arXiv
preprint arXiv:1902.04706, 2019.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, and Anastasiia Ignateva. Deep
attention recurrent q-network. arXiv preprint arXiv:1512.01693, 2015.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pp. 23–30.
IEEE, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

10



Under review as a conference paper at ICLR 2020

Ulrich Viereck, Andreas ten Pas, Kate Saenko, and Robert Platt. Learning a visuomotor controller
for real world robotic grasping using simulated depth images. arXiv preprint arXiv:1706.04652,
2017.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

Markus Wulfmeier, Ingmar Posner, and Pieter Abbeel. Mutual alignment transfer learning. arXiv
preprint arXiv:1707.07907, 2017.

11



Under review as a conference paper at ICLR 2020

Appendix

A ENVIRONMENTS

1. NavWorld: In this sparse reward, 2D environment, the goal is for the circular agent to reach
the triangular target in the presence of distractor objects. Distractor objects have 4 or more
sides and apart from changing the visual appearance of the environment cannot affect the
agent. The state space consists of the [x, y] locations of all objects. The observation space
comprises RGB images of dimension (60 × 60 × 3). The action space corresponds to the
velocity of the agent. The agent only obtains a sparse reward of +1 if the particle is within
ε of the target, after which the episode is terminated prematurely. The maximum episodic
length is 20 steps, and all object locations are randomised between episodes.

2. JacoReach: In this 3D environment the goal of the agent is to move the Kinova
arm (Campeau-Lecours et al., 2017) such that the distance between its hand and the di-
amond ShapeStacks object (Groth et al., 2018) is minimised. The state space consists of
the quaternion position and velocity of each joint as well as the Cartesian positions of each
ShapeStacks object. The observation space comprises RGB images and is of dimension
(100 × 100 × 3). The action space consists of the desired relative quaternion positions
of each joint (excluding the digits) with respect to their current positions. Mujoco uses a
PD controller to execute 20 steps that minimises the error between each joint’s actual and
target positions. The agent’s reward is the negative squared Euclidean distance between the
Kinova hand and diamond object plus an additional discrete reward of +5 if it is within ε
of the target. The episode is terminated early if the target is reached. All objects are out
of reach of the arm and equally far from its base. Between episodes the locations of the
objects are randomised along an arc of fixed radius with respect to the base of the Kinova
arm. The maximum episodic length is 20 agent steps.

3. Walker2D: In this 2D modified Deepmind Control Suite environment (Tassa et al., 2018)
with a continuous action-space the goal of the agent is to walk forward as far as possible
within 300 steps. We introduce a limit to episodic length as we found that in practice this
helped stabilise learning across all tested algorithms. The observation space comprises of 2
stacked RGB images and is of dimension (40×40×6). Images are stacked so that velocity
of the walker can be inferred. The state space consists of quaternion position and velocities
of all joints. The absolute positions of the walker along the x-axis is omitted such that the
walker learns to become invariant to this. The action space is setup in the same way as
for the JacoReach environment. The reward is the same as defined in (Tassa et al., 2018)
and consists of two multiplicative terms: one encouraging moving forward beyond a given
speed, the other encouraging the torso of the walker to remain as upright as possible. The
episode is terminated early if the walker’s torso falls beyond either [−1, 1] radians with the
vertex or [0.8, 2.0]m along the z axis.

B RANDOMISATION PROCEDURE

In this section we outline the randomisation procedure taken for each environment during training.

1. NavWorld: Randomisation occurs at the start of every episode. We randomise the location,
orientation and colour of every object as well as the colour of the background. We therefore
hope that our agent can become invariant to these aspects of the environment.

2. JacoReach: Randomisation occurs at the start of every episode. We randomise the textures
and materials of every ShapeStacks object, Kinova arm and background. We randomise the
locations of each object along an arc of fixed radius with respect to the base of the Kinova
arm. Materials vary in reflectance, specularity, shininess and repeated textures. Textures
vary between the following: noisy (where RGB noise of a given colour is superimposed
on top of another base colour), gradient (where the colour varies linearly between two
predefined colours), uniform (only one colour). Camera location and orientation are also
randomised. The camera is randomised along a spherical sector of a sphere of varying
radius whilst always facing the Kinova arm. We hope that our agent can become invariant
to these randomised aspects of the environment.

12



Under review as a conference paper at ICLR 2020

3. Walker2D: Randomisation occurs at the start of every episode as well as after every 50
agent steps. We introduce additional randomisation between episodes due to their increased
duration. Due to the MDP setup, intra-episodic randomisation is not an issue. Materials,
textures, camera location and orientation, are randomised in the same procedure as for
JacoReach. The camera is setup to always face the upper torso of the walker.

C IMPLEMENTATION DETAILS

Table 2: Model architecture. FC() represents a (multi-layered) fully connected network with the
number of nodes per layer stated as argument. Conv() represents a (multi-layered) convolutional
network whose arguments take the form [channels, square kernel size, stride] for each hidden layer.

Domain NavWorld and JacoReach Walker2D
State Actor FC([256]) FC([256])
Obs Actor Conv([[18, 7, 1], [32, 5, 1], [32, 3, 1]]) Conv([[18, 8, 2], [32, 5, 1], [16, 3, 1], [4, 3, 1]])
State Critic FC([64, 64]) FC([400, 300])
Obs Critic FC([64, 64]) FC([400, 300])

State Attention FC([256]) FC([256])
Obs Attention Conv([[32, 8, 1], [32, 5, 1], [64, 3, 1]]) Conv([[32, 8, 1], [32, 5, 1], [64, 3, 1]])

Replay Buffer Size 104 2× 105

In this section we provide more details on our training setup. Refer to table 2 for the model ar-
chitecture for each component of APRiL and the asymmetric DDPG baseline. Obs Actor and Obs
Critic setup are the same for both APRiL and the baseline. Obs Actor model structure comprises of
the convolutional layers (without padding) defined in table 2 followed by one fully connected layer
with 256 hidden units (FC([256])). All layers use ReLU (Romero et al., 2015) activations and layer
normalisation (Ba et al., 2016) unless otherwise stated. Each actor network is followed by a tanh
activation and rescaled to match the limits of the environment’s action space.

The State Attention module includes the fully connected layer defined in table 2 followed by a
Softmax operation. The Obs Attention module has the convolutional layers (with padding to en-
sure constant dimensionality) outlined in table 2 followed by a fully connected convolutional layer
(Conv([1, 1, 1])) with a Sigmoid activation to ensure the outputs vary between 0 and 1. The output
of this module is tiled in order to match the dimensionality of the observation space.

During each iteration of APRiL (for both Ao and As) we perform 50 optimization steps on mini-
batches of size 64 from the shared replay buffer. The target actor and critic networks are updated
every iteration with a Polyak averaging of 0.999. We use Adam (Kingma & Ba, 2014) optimization
with a learning rate of 10−3, 10−4 and 10−4 for critic, actor and attention networks respectively.
We use default TensorFlow (Abadi et al., 2016) values for the other hyperparameters. The discount
factor, entropy weighting and self-supervised learning hyperparameters are γ = 0.99, β = 0.0008
and ν = 1 respectively. To stabilize learning, all input states are normalized by running averages of
the means and standard deviations of encountered states.

Both actors employ adaptive parameter noise (Plappert et al., 2017) exploration strategy with initial
std of 0.1, desired action std of 0.1 and adoption coefficient of 1.01. The settings for the baseline
are kept the same as for APRiL where appropriate.

13



Under review as a conference paper at ICLR 2020

D ATTENTION VISUALISATION

Figure 4: APRiL attention maps for policy rollouts on NavWorld and Jaco domains. White and
black signify high and low attention values respectively. For NavWorld and JacoReach, attention is
correctly paid only to the relevant objects (and Jaco links), even for the extrapolated domains. Refer
to section 4.6 for more details.

14



Under review as a conference paper at ICLR 2020

Figure 5: APRiL attention maps for policy rollouts on Walker domain. White and black signify high
and low attention values respectively. Attention varies based on the state of the walker. When the
walker is upright, high attention is paid to lower limbs. When walking, even attention is paid to
every other limb. When about to collapse, high attention is paid to the foot and upper torso. Refer
to section 4.6 for more details.

15


	Introduction
	Problem Setup
	Reinforcement Learning
	Asymmetric Deep Deterministic Policy Gradients

	Attention Privileged Reinforcement Learning (APRiL)
	Experiments
	Evaluation Protocol
	Key research questions
	Performance on the training distribution
	Interpolation: transfer to domains from the training distribution
	Extrapolation: transfer to domains outside the training distribution
	Attention Module Analysis

	Related Work
	Conclusion
	Environments
	Randomisation Procedure
	Implementation details
	Attention Visualisation

