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ABSTRACT

The efficacy of the width of the basin of attraction surrounding a minimum in
parameter space as an indicator for the generalizability of a model parametriza-
tion is a point of contention surrounding the training of artificial neural networks,
with the dominant view being that wider areas in the landscape reflect better gen-
eralizability by the trained model. In this work, however, we aim to show that
this is only true for a noiseless system and in general the trend of the model to-
wards wide areas in the landscape reflect the propensity of the model to overfit
the training data. Utilizing the objective Bayesian (Jeffreys) prior we instead pro-
pose a different determinant of the optimal width within the parameter landscape
determined solely by the curvature of the landscape. In doing so we utilize the de-
composition of the landscape into the dimensions of principal curvature and find
the first principal curvature dimension of the parameter space to be independent
of noise within the training data.

1 INTRODUCTION

When training a neural network we aim to find a parametrization which minimizes the variance of
the data around the model’s conditional mean value. A statistic which is reflective of this variance is
known as a loss function and can be seen as creating a landscape mapping a model parametrization
to a corresponding loss value. Thus, higher points in the landscape reflect higher loss values and
a worse model parametrization. The saliency of other features of the loss landscape on the model
performance are relatively less clear and in some cases are points of contention within the field. One
such point is whether the width of a basin in the landscape surrounding a local minimum (we will
also refer to this as the width of the minimum) is reflective of the ability of a model parametrization
at the minimum to generalize to unseen data. It is a common notion that the wider the minimum
in the landscape, as measured by the Hessian matrix of the loss function (Keskar et al., 2016; Dinh
et al., 2017), the better the model parametrization will generalize. The intuition behind such a belief
is simply that, wider minima reflect that a model will experience less deviation in its loss metric as
a result of minor deviations of its parameter values. As a result the model is more robust than if it
were to be parametrized by a very specific parameter set found at a sharp minimum.

In this work we aim to demonstrate that the width of a minimum is a key feature of the loss land-
scape and provides significant information on the progress of the training of a model. We deviate,
however, from the views of the field that the widest minima provide the best generalizability by re-
flecting that there is instead an optimal width or curvature around the parametrization with the best
generalizability which is not necessarily the widest point in the landscape. To this end Section 2
provides the necessary background information that we will utilize in developing our theories which
are presented in Section 3. Section 4 and Section 5 then provide empirical evidence in support of
the theoretical findings with Section 4 describing the methods employed to test the theories. Section
5 then provides and discusses the results of these empirical tests. Finally we conclude in Section 6
with our closing remarks.

The contributions of this work are threefold. Firstly we evaluate the concept of Energy-Entropy
competition of neural networks (Zhang et al., 2018) in the context of the bias-variance trade-off
(Geman et al., 1992) and reflect that a correlation exists between energy and entropy as opposed to
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a competition or trade-off as was first presented. Secondly we utilize the Fisher Information of the
loss landscape in the area of a minimum to reflect that an optimal level of curvature exists within the
landscape which does not necessarily occur at the point in the landscape with the least curvature.
Further to this, we provide a novel view on the overfitting of models to their training data using the
loss landscape. Finally, the Fisher Information is utilized in defining the objective Bayesian prior
known as the Jeffreys prior and we show that the test error of the model reaches its minimum value
at the point in the landscape which corresponds to the Jeffreys prior. In addition, we show that at this
point in the landscape the dimension of principal curvature of the model is at its maximum entropy.
In doing so we also reflect the noise invariance of the dimension of principal curvature.

2 BACKGROUND

2.1 FISHER INFORMATION AND UNINFORMATIVE (JEFFREYS) PRIORS

The Fisher Information (which we denote by ζ(θ)) is a metric dependent on the model parametriza-
tion which measures the amount of information that a sufficient statistic based on the observable
data, such as the variance of the data around the model predictions (Jaynes, 2003), carries about
an unknown parameter θ. In the case of a Gaussian model, the Fisher Information is equal to the
Expected Hessian of the log-likelihood of the Gaussian. The necessary regulatory conditions for
this equality to be true apply to the entire exponential family of distributions, however, in our case it
is sufficient for this to hold for the Gaussian distribution (Ly et al., 2017). One of the key properties
of the Fisher Information Matrix is that its determinant is invariant under reparametrizations of a
trained model. Thus, when the parameters used in modelling a distribution are changed, the Fisher
Information in each dimension will change, however, the determinant or volume of information
remains unchanged between the model parametrizations.

The invariance property of the Fisher Information was the reason for its utilization in Jeffreys (1946)
who sought to create a Bayesian prior with such an invariance property. The resultant prior is known
as the Jeffreys prior and is shown in Equation 1, whereH(θ) denotes both the Hessian and Expected
Hessian matrices (we will treat the Expected Hessian and Hessian interchangeably for the remainder
of this work, as is common in the literature (Zhang et al., 2018; Karakida et al., 2019)).

P (θ) ∝
√

det ζ(θ) =
√

detH(θ) (1)

As has been shown in Jaynes (1968; 2003) the utility of the Jeffreys prior is not limited to the
invariance property, as the Jeffreys prior is an example of an uninformative or objective prior, and
as a result informs the posterior distribution as little as possible. The Jeffreys prior is thus used to
reflect complete prior ignorance about the correct model parametrization, resulting in a posterior
distribution with parameters completely determined by the observed data. A key perspective of this
property is that the Jeffreys prior, thus, imposes a uniform distribution over the function space of the
model, not the parameter space. This is due to the density of the prior being inversely proportional to
the Hessian at a certain parametrization, and as such places higher density on parametrizations with a
unique function approximation and low parameter variance. This would result in an even distribution
over the function approximations and as a result the choice between function approximations is
left to the model learning from the data. The relationship between the Hessian and the parameter
variance of a model is discussed further in Section 2.2 below.

2.2 THE BIAS-VARIANCE DILEMMA, ENERGY-ENTROPY COMPETITION AND MINIMUM
DESCRIPTION LENGTH

It is a well-known fact that a model learning to equate its conditional mean precisely to the values
found in the training data is not always beneficial to the performance of the model on unseen data.
In particular when we observe a decrease in training error but increase in validation or test error
we say that the model is overfitting the training data (Hawkins, 2004). In Geman et al. (1992) it is
shown empirically that to decrease the variance of the data around a model’s predictions (reduce the
training error) it is necessary for the variance in the model parameters to increase. Further, Geman
et al. (1992) reflect that a large parameter variance corresponds to the overfitting of the model to
the training data. This trade-off between the bias of the model and the variance of its parameters is
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known as the Bias-Variance Dilemma (Sammut & Webb, 2011). In Geman et al. (1992) the only
means presented to mitigate this dilemma is to obtain more training data.

We see, however, that neural networks are capable of learning complex tasks with limited data and
even generalize in spite of the Bias-Variance Dilemma. In Zhang et al. (2018) it is argued that
the success of neural networks is due to a bias of Gradient Descent towards wider minima in the
loss landscape. To reflect this, Zhang et al. (2018) derive a Bayesian posterior distribution for the
parameters of a model given the training data. To derive this distribution, Zhang et al. (2018) utilize a
Gaussian likelihood with conjugate Gaussian prior, which we generalize in Equation 2 by allowing
any prior distribution exp(h(θ)) which results in a proper posterior distribution. The exponential
term of this generalized prior h(θ) is seen as some function of θ while f(xi, θ) denotes the function
approximation by the neural network. σ2

i is the variance of the output corresponding to data point
xi, and finally yi is the true output for a particular xi in the training data. The derivation of Equation
2 can be found in Appendix A.1.

P (θ|X) =
1

Z
exp

[
−

(
P∑
i=1

(yi − f(xi, θ))2

2σ2
i

− h(θ) + 1

2
log det(H(θ))

)]
(2)

From Equation 2 we see that to maximize the probability of a parametrization we must simultane-
ously maximize the model likelihood (by minimizing the first term in the exponential), the prior
probability of the parametrization and the model entropy. The model entropy is reflected by the
final term in the exponential and is inversely proportional to the Hessian of the loss landscape at
the parametrization. Using the posterior distribution Zhang et al. (2018) note that maximizing the
model likelihood is not the only factor which should be used in determining the model parametriza-
tion, and in some cases it may be beneficial to trade-off some training error for an increase in model
entropy, which the authors called Energy-Entropy competition. Zhang et al. (2018) state that the bias
of Gradient Descent towards wider minima, with smaller Hessian values, results in the model nat-
urally maximizing entropy, aiding in its generalizability. We see, however, from the Bias-Variance
Dilemma that by reducing the bias of the model on the training data, and increasing its likelihood,
that the model entropy will naturally also increase due to the higher variance in the parameter values.

With the perspective of both the Bias-Variance Dilemma and Energy-Entropy competition we see
that wide points in the loss landscape have been related to both overfitting and improved generaliz-
ability of a model parametrization. Thus, from one perspective we aim for sharp minima within the
landscape and from the other we should aim for wide minima. The issue of the width of a minimum
is further confounded by Dinh et al. (2017) which states that the width of a minimum is not a con-
sistent indicator of the ability of a model to generalize. The impact of the width of a minimum in
the landscape is still an open question and one which we try address in this work.

The Minimum Description Length (MDL) Principle is an information theoretic principle which
states that the optimal model for a set of data provides the best compression of the data (Rissa-
nen, 1978). In other words the optimal model is the simplest model which incurs the least training
error. This principle is another example of the trade-off between model complexity and minimiz-
ing the model bias. Due to its assertion that the optimal model is the simplest unbiased one the
MDL Principle is the mathematical formulation of Occam’s Razor, and is expressed by Equation 3,
which reflects that to compress the data D optimally we must find the parametrization with the net
minimum entropy in the parameter space L(θ) and in the data given the parametrization L(D|θ).

L(D) = min
θ∈ϑ

(L(θ) + L(D|θ)) (3)

For the exponential family of likelihood distributions the Jeffreys prior is used to enforce the MDL
property on the posterior distribution and results in a minimax optimal posterior, which is to say
that the maximal risk of the model parametrization is minimal out of all unbiased parametrizations
(Lehmann & Casella, 2006). The minimax optimality property, thus, provides the lowest upper
bound of the risk for all model parametrizations. Thus the MDL property is related to the Bias-
Variance Dilemma and MDL posterior distributions aim to avoid overfitting.

A final necessary principle which encompasses all of the topics above is the Likelihood Principle
(Jaynes, 2003), which states that within the context of a specified model, the likelihood distribu-

3



Under review as a conference paper at ICLR 2020

tion L(D|θ) trained from data D contains all the information about the model parameters θ that is
contained in D.

2.3 PRINCIPAL CURVATURE

The Jeffreys prior, and by extension the Fisher Information, finds further utility in its use as a right
Haar measure for the parameter space of a normal distribution (Berger, 2013). The Haar measure is
used to assign an invariant volume to a subset of locally compact topological groups and, thus, forms
an integral over the compact groups. In the case of the parameter space of the normal distribution
the topological groups will be of parametrizations with similar function approximations and, thus,
similar loss metric within the basin surrounding a local minimum in the loss landscape. Further, we
note that the parameter space of a probabilistic model forms a statistical manifold and by extension
a Riemannian manifold (Rao, 1945). The metric tensor for statistical manifolds is the Fisher Infor-
mation metric (Skovgaard, 1984), defined as the expected value of the individual elements of the
Fisher Information matrix, which forms the tangent space of such manifolds. As stated in Section
2.1, in the case of Gaussian parameter spaces the Fisher Information Matrix can be equally derived
as the Hessian matrix of the loss function relative to the model parameters. This is significant as
the Hessian matrix is used in the area of a critical point on a Riemannian manifold for obtaining the
shape operator (Spivak, 1970), and as a result the principal curvatures at the point (Porteous, 2001).
In the case of a Gaussian parameter space the shape operator is the Gaussian curvature defined as
the determinant of the Hessian matrix det(H(θ)) (Koenderink & Van Doorn, 1992). The princi-
pal curvatures are defined as the eigenvalues of the Hessian matrix and decompose the manifold
into orthogonal dimensions of curvature, with the first eigenvector reflecting the dimension of most
curvature.

It is important to note that while the parameter space of a statistical model forms a Riemannian man-
ifold, when parametrized by an overly-determined model such as a neural network, the parameter
space will not be Riemannian but rather semi-Riemannian, due to the fact that the Fisher Informa-
tion metric will no longer be defined over the entire manifold. Such undefined points for the metric
are a result of a singular metric tensor at the model parametrization and occur due to the covariance
of parameters within the model. Covariant parameters necessarily occur with the addition of hidden
layers to the model and result in dimensions on the manifold in which the parameters may be varied
without altering the behaviour of the model. This results in dimensions of no curvature along the
manifold. As seen in Section 5, this is not a destructive point for the training procedure, however,
we must necessarily remain cognisant of such covariant dimensions along the statistical manifold.

3 MODEL ENTROPY, THE LOSS LANDSCAPE AND GENERALIZATION

The aim of training a neural network is to find the most probable parametrization for a model as
determined by the posterior probability reflected by Equation 2. This is achieved by maximizing
the combination of the likelihood, prior probability and entropy of the model parametrization. The
likelihood we increase normally by decreasing the variance of the training data around the model
predictions. The entropy term we have no direct control over as the landscape is completely deter-
mined by the data, the sufficient statistic being used to determine the parameters (which is the loss
metric) and the hypothesis (the model architecture being trained). So the only component of the
posterior left to be determined is the prior. As with most work in Bayesian statistics this is the most
difficult part and must be treated with great care. There are presently two common approaches to
setting this prior distribution, the first of which being to not specify one, or more precisely use an
implicit uniform prior (Chaudhari & Soatto, 2018) and, thus, use maximum likelihood estimation
to determine the parameter values. The second common approach is to utilize a conjugate Gaussian
with a mean of 0 for the prior. In practice this method takes the form of L2 regularization, also
known as weight decay (Krogh & Hertz, 1992), with h(θ) ∝ ||θ||2 in Equation 2. Neither approach
has proven to be sufficient consistently for deterring models from overfitting, without introducing
a form of bias, due to their unjustified assumptions about the correct model parametrization. This
is relatively clear in the conjugate Gaussian prior approach which assumes a mean of 0 for the pa-
rameter values. In a case where we have explicit prior knowledge that such a mean and distribution
is in-fact correct for the model parameters then this would be a correct approach, however, in al-
most every case we are completely ignorant to the values of the true parametrization and, thus, we
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would be biasing our models to some degree by using this prior. It is necessary when developing an
unbiased model that this absence of prior knowledge be reflected in the training procedure.

The source of error from the uniform prior is slightly more nuanced, as initial intuition would suggest
that giving equal probability to all values a parameter could take is a correct means of reflecting
our prior ignorance about the parameter values. However, this method fails to accurately reflect
the probabilities that unlikely parametrizations may be correct and in a sense exhibits a kind of
confirmation bias. As discussed in Section 2.2 the model which is optimal is the one which has
the lowest variance of the data around its predictions L(D|θ) while maintaining low variance in
the model parameter space L(θ). In addition the bias-variance trade-off (Geman et al., 1992) state
that to decrease data variance we must increase parameter variance reflecting the trade-off between
L(θ) and L(D|θ) in the MDL equation. Further, we related this to the Energy-Entropy competition
concept (Zhang et al., 2018), where it was also stated that neural networks are biased towards wide
minima. Hence, by placing equal prior probability on all areas of the landscape we see that the
use of the uniform prior will result in a posterior distribution over the model parameters which
places excessive density on high variance areas of the landscape while at the same time places too
little probability on very specific, low variance parametrizations of the model. This results in the
development of a sub-optimal model which favours wider minima within the loss landscape and as
a result excessively reduces the variance of the data around its predicted values.

Thus we conjecture that a correct prior for a model would be the Jeffreys prior shown in Equation 1
and Equation 4:

P (θ) ∝
√

det ζ(θ) =
√

detH(θ) (4)
As a result we see in Equation 2 that such a prior would give the equation for h(θ) as

h(θ) =
1

2
log det(H(θ)) (5)

We note that, with the use of the Jeffreys prior, the prior and entropy term in the posterior formulation
cancel out, leaving the likelihood term as the only factor determining the posterior probability, as
can be see in Equation 6.

P (θ|X) =
1

Z
exp

[
−

(
P∑
i=1

(yi − f(xi, θ))2

2σ2
i

− 1

2
log det(H(θ)) +

1

2
log det(H(θ))

)]

=
1

Z
exp

(
−

P∑
i=1

(yi − f(xi, θ))2

2σ2
i

) (6)

It is, thus, possible to utilize the loss landscape in the area of a minimum to determine the degree of
certainty we may have in our model parametrization being the true parametrization and as a result
determine the necessary Jeffreys prior probability. This is due to the fact that higher entropy means
wider minima which reflects higher parameter variance and the necessity to be less certain of the
parametrization in that area. The opposite is true for an increase in certainty in our parametrization
at a sharp minimum. Furthermore, this would mean we are objectively setting our prior based on the
model behaviour given the observed data and sufficient statistic. Note, we do not say we determine
our prior based on the hypothesis as the determinant of the Fisher Information/Hessian is invariant
under reparametrizations. This means that in the area of a minimum, by transforming the hypothesis
to be modelled by an alternate set of parameters θ′ the dimensions and volume of the landscape will
adjust such that

√
det(H(θ)) =

√
det(H(θ′)) (Fisher, 1922). A necessary distinction regarding

the Jeffreys prior is that, while it places the full parameter determination on the data, it does not
necessarily result in a posterior distribution which has extracted all information from the data. Infor-
mation which provides an insufficient decrease in data variance to warrant the increase in variance
in the model parameters will not be utilized as the model naturally “distrusts” this information by
providing a relatively lower prior probability to the more entropic parametrization found in the wider
basin. This is where we see the utility of the Jeffreys prior with regard to the MDL property reflected
by Equation 3 as it balances both model complexity L(θ) while fitting the data L(D|θ).
The primary power of the Jeffreys prior comes from the use of the Fisher Information. Naturally as
the model fits the data and captures information, the amount of information left in the data which
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remains uncaptured by the model decreases. This is observed as a decrease in the Fisher Informa-
tion. We see, however, that the model entropy increases as the Hessian matrix, and by extension
the Fisher Information, decreases, which is again in agreement with the bias-variance trade-off. The
consequence of this observation is that to capture all the information from a sufficient statistic deter-
mined by the training data we must utilize increasingly complex models, capable of modelling finer
details found in the data. The utility of such fine details to the model performance exhibits dimin-
ishing returns to a point where the perturbation of a parameter capturing these details will not result
in any significant deviation in the model behaviour. Simply, as more information is shared between
parameters, the individual importance of a parameter decreases. This is in contrast to an under-
parametrized model where the parameters capture as much of the most important information from
the sufficient statistic as possible and rely heavily on this information in determining its behaviour.
In light of the Fisher Information we see the Maximum Likelihood Principle further reflects that the
use of the uniform prior biases our models towards maximum entropy within the loss landscape by
extracting all information from the training data at the expense of higher model complexity.

It must be noted that the propensity of neural networks to extract all information from the training
data is not an inherently negative quality of the models. Quite the opposite, it is reflective of the
power and capability of the models which are designed to learn the variances within data and utilize
this information in determining their behaviour. As a result, however, the efficacy of these models
is directly related to the reliability of the data on which they are trained and for all the information
found in the training data to be present and reflective of the entire population of data being modelled.
This is seldom the case as training data is inevitably noisy, either due to noise from sampling and
capturing of the data, or due to confounding aspects of the task domain which on average do not
affect the population data distribution but do provide a source of structured noise when their effect
is observed on the training data. Minimizing the Fisher Information metric and fulfilling the Maxi-
mum Likelihood Principle in such cases would reflect that the information found in the noise of the
training data was utilized in determining the model parameter values, which is clearly undesirable
and is known as the model over-fitting the training data (Hawkins, 2004).

We, thus, see that the notion of the widest possible minima in the loss landscape providing the
best generalization performance is only true in a noiseless environment. The view, however, that
wide areas in the landscape generalize better is true as this width in the landscape would merely
reflect that the model has captured more information from the data than a parametrization found
in a steeper portion of the landscape. Naturally this would provide better test error performance
by the model if it has captured the information found in the training data which is reflective of the
information within the population data distribution being modelled. We conclude that the width of
the landscape in which a model finds itself is demonstrably important and that there is a precise width
in the landscape which provides the model with the best possible test error performance. This point
would be exactly where the model prior is equal to the Jeffreys prior as determined by the Fisher
Information of the loss landscape. This is due to the aversion of the Jeffreys prior to any information
which does not justify the increase in model entropy by a superior decrease in data variance or
prediction error, while remaining objective in the sense that the prior is completely determined by
the loss landscape and has as little effect on the parameter posterior distribution as possible. Thus,
noise in the training data which only serves to perturb and hinder the learning of the model without
providing sufficient benefit to how the training data is fit will not be learned by the model.

4 METHODS

From the above discussion it is clear that it is not enough to merely reduce the variance of the data
around the model prediction as it is possible for the model to reduce this variance to an excess
degree. We, thus, require a metric for the difference between the model and true distributions which
is only minimized when the two distributions are identical. This is not the KL-divergence as this
metric merely reflects the density of a distribution B which lies outside of another distribution A. It
is, thus, possible to minimize the KL-divergence while the distributions are not identical by having
distribution A surround or encapsulate distribution B. We will, thus, use the Jeffreys divergence as
the difference metric between the two distributions, as the Jeffreys divergence is uniquely minimized
when the two distributions are identical. The Jeffreys divergence is shown below in Equation 7 and
is merely the sum of the KL-divergence for the true parameter distribution T (θ) compared to the
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model parameter distribution P (θ|X) and the opposite KL-divergence. We show the derivation of
the Jeffreys Divergence from this summation in Section A.2 of the Appendix.

DJ(T (θ)||P (θ|X)) =

∫
(T (θ)− P (θ|X))(lnT (θ)− lnP (θ|X))dθ (7)

Naturally Equation 7 is intractable due to the necessity to integrate over all parametrizations. How-
ever, as discussed in Section 3, the use of maximum likelihood estimation results in an excess of
density on high variance parametrizations in the posterior parameter distribution in Equation 2. It
was thus sufficient to evaluate the Jeffreys Divergence at a single point in parameter space and ob-
serve the relative densities at that point, providing a distance metric as opposed to a divergence
metric. We will, thus, refer to the Jeffreys Distance for the remainder of this work, with the formula
shown in Equation 8.

DJ(T (θ)||P (θ|X)) = (T (θ)− P (θ|X))(lnT (θ)− lnP (θ|X)) (8)

The necessity of a distance metric being positive semi-definite is upheld by this metric as it is
clear when (T (θ) − P (θ|X)) < 0 then (lnT (θ) − lnP (θ|X)) < 0. Likewise when (T (θ) −
P (θ|X)) > 0 then (lnT (θ) − lnP (θ|X)) > 0. This is a benefit of the symmetrical property of
the Jeffreys Divergence which the KL-divergence does not possess. Thus, substituting the model
posterior formula from Equation 2 as well as the true model distribution in Equation 9 into the
logarithmic terms of Equation 8 we obtain the formulation shown in Equation 10.

T (θ∗) =
1

Z∗
exp

(
−

P∑
i=1

(yi − f(xi, θ∗))2

2σ2
i

)
(9)

(lnT (θ)− lnP (θ|X)) =

(
−

P∑
i=1

(yi − f(xi, θ∗))2

2σ2
i

+

P∑
i=1

(yi − f(xi, θ))2

2σ2
i

−h(θ) + 1

2
log det(H(θ)) + Z∗ − Z

)
(10)

Assuming now that θ = θ∗, and thus f(xi, θ) = f(xi, θ
∗), as would be the case at the end of

an unbiased training procedure, we see that the two variance terms in Equation 10 will cancel out.
Further, we see that the only means of obtaining a 0 value for the expression is to use the Jeffreys
prior causing h(θ) to cancel with the entropy term 1

2 log det(H(θ)), as discussed above in Section
3, with Equation 5 and Equation 6. Finally we see that using the Jeffreys prior would result in the
posterior model distribution shown in the last line of Equation 6. If f(xi, θ) = f(xi, θ

∗) then it is
clear that Z = Z∗ is the necessary corresponding normalizing constant, and, thus, these terms will
also cancel out in Equation 10. A similar argument can be made for the probabilities component of
the Jeffreys distance (T (θ)− P (θ|X)) in Equation 8, whereby we equate the two likelihood terms,
then the use of the Jeffreys prior ensures that the posterior distributions do not differ resulting in a
Jeffreys Distance of 0.

From Equation 10 we see that the use of the Jeffreys prior while minimizing the error of the model
directs the model to a parametrization which results in the model likelihood being equal to that of
the true underlying distribution likelihood. This allowed us to determine the point at which the
model found the most probable parametrization in the landscape corresponding to the use of the
Jeffreys prior, as being the parametrization which equated the model likelihood and true distribution
likelihood values. In light of the bias-variance trade-off this would also mean that if the model
reduces its bias to a greater extent that it would have moved to a point of excess parameter variance
and model entropy as well of an excessively low Fisher Information metric. As expressed in Section
3 this is indicative of the use of noise by the model in determining its parameter values. As a result
the model would have overfit the training data. We, thus, reach the intuitive conclusion that once a
model parametrization becomes a more likely distribution to have generated the training data than
the underlying true distribution itself, that the model will have began to overfit the training data.
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The first empirical result presented in Section 5 is, thus, a distribution reflecting the proximity of
the training step at which minimum test error was reached to the training step at which the model
likelihood is equal to that of the true underlying distribution likelihood (we will refer to this as the
likelihoods intersecting) over a number of network training procedures. The aim of this experiment
is to empirically confirm that the Jeffrey Prior parametrization provides the minimum test error for
a model. For this experiment it is necessary to possess a ground truth on the likelihood of the true
data generating distribution on the training data. Unfortunately such ground truth information is not
available on real-world data sets. As a result it was necessary for our experiments to use synthetic
data which was generated by a ground truth network, which we shall refer to as the “True” network.
A “Training” network will then learn to model this ground truth network on noisy training data.

Hence, the procedure for this first experiment is as follows. We create a randomly generated True
network with depth between 5 and 15 layers. The widths of the model layers are randomly sam-
pled between 5 and 100 neurons. The layers are sorted in descending order of width, as is common
for network architectures used in practice and results in the wider, earlier layers extracting fea-
tures for the later layers. We then prepend the 100 neuron input layer and append the 1 neuron
output layer. All layers except the last are sigmoidal. This is the model used to generate data.
We then randomly initialize our training network. The number of layers in this network is ran-
domly chosen from the range of [TrueNetworkSize + 5, 25] to ensure we obtain a sufficiently
large network to overfit the data. The widths of this network’s layers are sampled from the range
of [TrueNetworksSmallestLayer, 100]. This is again to ensure the model is over-parametrized.
The True networks parameter values as well as the Training networks initial values are sampled
uniformly from [−1.0, 1.0] with a random positional bias added to the True network parameters in
the range of [−0.5, 0.5]. This bias is to ensure the Training network starts with a significant degree
of error. Finally, we utilize randomly sampled values between [0.0, 1.0] as input to the models, with
a training batch size of 50 data points and a test batch size of 500. This data is input to the True
network and we obtain the corresponding data labels as output. Lastly we add Gaussian noise to the
Training data only (while the Test data remains clean) with a mean of 0 and variance of 0.2. The
Training network is then trained to model the True network using this data and we observe the points
where the likelihoods intersect and where the test error is minimized. This process was repeated for
935 separate training procedures. The distribution of the distances between the likelihoods inter-
secting and the minimum test error are shown below in Section 5.

Having observed the relationship between test error and the relative likelihoods of the training and
true networks, we then decompose the parameter landscape into its dimensions of principal curva-
ture to reflect the impact of noise in the training data on the landscape by first training on noiseless
data until a certain training error is achieved (error < 0.4), at which point the noise is added to the
data. We observe and interpret the resulting impact of the addition of the noise on the curvature of
the landscape. Secondly we aim to observe the relationship between the dimensions of principal cur-
vature and the generalizability of a model parametrization by observing the entropy on a Riemannian
sub-manifold of the original statistical manifold (Chen, 2019), defined over the primary dimensions
of principal curvature, relative to the test error and likelihood values of a model parametrization.

Due to the necessity to calculate a full Hessian matrix 1 for these experiments a smaller network was
utilized, than in the first experimental procedure. The procedure is the same as described above for
the first experimental procedure, however, in this case the training model was composed of 4 hidden
layers with widths of 25, 20, 12 and 7 neurons respectively. As shown empirically in Karakida et al.
(2019), however, the behaviour of the Eigen-decomposition of the Fisher Information is independent
of the size of the network architecture, and, hence, this smaller network is sufficient for observing
the effect of noise on the dimensions of principle curvature of the model. Hence, the Hessian matrix
calculated has a dimensionality of 831 × 831 elements. The training data was again obtained from
a true network. In this case different permutations of 25-bit binary strings were input to this model
which returned the corresponding scalar using one hidden layer of 5 neurons and a linear output
layer.

1The Hessian matrix was calculated using the Jax library (Bradbury et al., 2018)
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Figure 1: Distributions of the number of parameter update steps (left) and the difference in test error
(right) between the Jeffreys prior parametrization and the minimum test error from 935 individual
training procedures (Kernel Density Estimate shown in red on the left).

5 RESULTS

As stated in Section 4 the first empirical result aimed to determine if the point in the landscape
which is most probable under the posterior distribution resulting from the use of the Jeffreys prior
possesses the optimal test error performance. The results of this first experiment are presented in
Figure 1, where the left image reflects the distribution of the number of parameter update steps
between where the Jeffreys prior parametrization occurs (where we observe the intersection of the
likelihoods) and where minimum test error occurs. We see in this image that the highest density is
placed around 0, with a vast majority of training procedures having the Jeffreys prior parametrization
coincide exactly with the point of minimum test error. This supports the assertion that the Jeffreys
prior results in the parametrization with the best generalization performance. We do, however,
observe a small uniform spread of density to the right of 0 in this image. We observed that this is
due to the test error oscillating once the Jeffreys prior parametrization is reached. This is merely
a result of our inability to fine-tune the learning rate for the individual training procedures of the
randomly generated training networks, with significantly different architectures. To reflect the fact
that the test error for the Jeffreys prior parametrization in the trainings where oscillations occur is
negligibly different from the minimum test error we present the right image of Figure 1. In this image
we plot the density of the difference in test error of the Jeffreys prior parametrization compared to
the minimum test error of the 935 separate training procedures. To make the error independent of
the size of the regression values being modelled we divide the error by the mean of the regression
y-values (generally this value is around 2.0 for the respective training procedures). We observe that
in all trainings the discrepancy in test error is less than 0.1, with almost all discrepancies being less
than 0.05. These error discrepancies are negligible and, thus, these results empirically confirm our
hypothesis that the Jeffreys prior parametrization corresponds to the minimum test error.

The results of injecting noise into the training data only once the model has been sufficiently trained
on clean data can be see in Figure 2. In this figure we present the Eigenvalues of 3 of the 5 principal
curvatures of the loss landscape. Thus, each value reflects the inverse of the variance of the model
in the dimension of the corresponding Eigenvector and a lower value reflects a higher entropy in
the given dimension. From these results we can see that the injection of noise results in a sudden
increase in the entropy of the lower principal curvature dimensions but has no effect on the first
dimension of principal curvature. As the Fisher Information is reflected by the entropy this would
mean that the low principal curvature dimensions capture more information at the injection of the
noise into the data, while the information captured by the first principal curvature dimension remains
smooth throughout the training procedure. This would reflect a noise invariance of the principal
curvature of the landscape and as a result we can see that the dimension of principal curvature in
the landscape is exclusively responsible for the capturing of the true or primary data information.
In light of this noise invariance we observed the entropy of a sub-manifold corresponding only to
the dimensions of high curvature (Eigenvalues > 1) during the training of a model. The results of
this experiment are shown in Figure 3. In agreement with Figure 1 we see that in the area of the
Jeffreys prior parametrization (intersection of likelihood values), the test error reaches its minimum

9
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Figure 2: Impact of the addition of noise on 3 of the 5 Principal Curvatures of the Loss Landscape.
Vertical lines signifies point of noise injection.

Figure 3: The Jeffreys prior parametrization is found in the area of parameter space minimizing test
error and maximizing entropy on the principal sub-manifold.

value. A number of insights can be gained from the third image in Figure 3. Firstly, that the Fisher
Information matrix and the Fisher Information Metric, are non-singular and positive semi-definite
on this sub-manifold. This reflects that the dimensions responsible for capturing true information in
the data are convex, with positive Gaussian curvature and that it is sufficient for the model to merely
minimize this well-behaved region of parameter space. We, further, observe that the Jeffreys prior
parametrization maximizes the entropy of this sub-manifold, reflecting that it still captures all true
information from the data. We see the green portion of the entropy metric as being the area where
the entropy is within 0.003 of its maximum value. The fact that the entropy begins decreasing later
in the training is reflective of the model forgetting true information while learning the noise once it
starts overfitting. The fact that the entropy stagnates past the Jeffreys prior parametrization is due to
the fact that the lower dimensions of principal curvatures in the sub-manifold were minorly sensitive
to noise and that in this region the model is beginning to learn noise and forget true information at
the same rate. We have, thus, demonstrated that maximizing entropy is beneficial in the absence of
noise. However, when noise is present in the data, maximum entropy corresponds to overfitting.

6 CONCLUSION

We see that the notion of the width of the loss landscape being an indicator of a robust parametriza-
tion is correct, however, this is conditional upon the model being developed in a noiseless domain
or, more significantly along a dimension of parameter space which is independent to the noise of
the domain. With the aid of the Fisher Information perspective of the geometry of the landscape
we see that the higher entropic points in the landscape directly reflect the absence of further in-
formation upon which the parameter values may be determined. Thus, we see the propensity of
maximum likelihood models towards such high entropic points as a reflection of their propensity
to utilize all information in determining the parameter values, including noise. Thus, we make the
final conclusion that the point of maximum entropy in the loss landscape does not possess the best
generalization performance and corresponds to the overfitting of the model to the training data. In-
stead the optimal point in the landscape occurs at maximum entropy in the dimension of principal
curvature which corresponds to the most probable parametrization found by a Bayesian posterior
distribution resulting from the use of the Jeffreys prior.
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A APPENDIX

A.1 DERIVATION OF THE NEURAL NETWORK BAYESIAN POSTERIOR DISTRIBUTION

The derivation presented below is adapted from Zhang et al. (2018).

We aim to derive a Bayesian posterior probability for the parameters of an artificial neural network
conditional upon the training data. To this end we will assume a Gaussian likelihood distribution, as
well as a general exponential prior. By this definition, this prior may be improper, however, without
loss of generality we will assume that only priors which result in proper posterior distributions are
utilized. Finally, we will assume that the data points are independent and identically distributed
(i.i.d). Thus we utilize the following likelihood and prior distributions respectively:

P (X|θ) ∝ exp

(
−

P∑
i=1

(yi − f(xi, θ))2

2σ2
i

)

P (θ) = exph(θ)

We, thus, obtain the posterior distribution, where Z is the normalizing constant (also known as the
partition function):

P (θ|X) =
1

Z
exp

(
−

P∑
i=1

(yi − f(xi, θ))2

2σ2
i

+ h(θ)

)

As stated in Zhang et al. (2018), machine learning problems where stochastic gradient descent has
been successfully applied have an asymptotic data-to-parameter ratio of P/N = O(1) as P → ∞
where P denotes the number of data points being used to determine N parameters. This is referred
to as the high dimensional limit (Advani et al., 2013). In this limit it is justified to perform Laplace
Approximation: ∫

P (θ|X)dθ ≈ 1

Z

∑
q

exp
[
−
∑P
i=1

(yi−f(xi,θq))
2

2σ2
i

+ h(θ)
]

√
detH(θq)

where θq is a parametrization for a local minimum of a given loss function and H(θq) denotes the
Hessian matrix of the model parameters at this minimum. We are, thus, summing over the various
local minima within the loss landscape in the above formulation.
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Finally, rewriting the denominator in an exponential form:

1√
detH(θq)

= exp

(
−1

2
log det(H(θq))

)
We obtain:

∫
P (θ|X)dθ ≈ 1

Z

∑
q

exp

[
−

(
P∑
i=1

(yi − f(xi, θq))2

2σ2
i

− h(θq) +
1

2
log det(H(θq))

)]

With the point density for the model parametrization at a single minimum in parameter space:

P (θ|X) ≈ 1

Z
exp

[
−

(
P∑
i=1

(yi − f(xi, θq))2

2σ2
i

− h(θq) +
1

2
log det(H(θq))

)]

A.2 DERIVATION OF JEFFREYS DIVERGENCE

DJ(T (θ)||P (θ|X)) =DKL(T (θ)||P (θ|X)) +DKL((P (θ|X)||T (θ))

=−
∫
T (θ)ln

[
P (θ|X)

T (θ)

]
dθ −

∫
P (θ|X)ln

[
T (θ)

P (θ|X)

]
dθ

=−
∫
T (θ) [lnP (θ|X)− lnT (θ)] dθ −

∫
P (θ|X) [lnT (θ)− lnP (θ|X)] dθ

=

∫
−T (θ)ln(P (θ|X)) + T (θ)ln(T (θ))− P (θ|X)ln(T (θ)) + P (θ|X)ln(P (θ|X))dθ

=

∫
(−T (θ) + P (θ|X))ln(P (θ|X))− (−T (θ) + P (θ|X))ln(T (θ))dθ

=

∫
(−T (θ) + P (θ|X))(lnP (θ|X)− lnT (θ))dθ

=

∫
(T (θ)− P (θ|X))(lnT (θ)− lnP (θ|X))dθ
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