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ABSTRACT

Transformers have replaced long-short term memory and other recurrent neural
networks variants in sequence modeling. It achieves state-of-the-art performance
on a wide range of tasks related to natural language processing, including lan-
guage modeling, machine translation, and sentence representation. Lossless com-
pression is another problem that can benefit from better sequence models. It is
closely related to the problem of online learning of language models. But, despite
this ressemblance, it is an area where purely neural network based methods have
not yet reached the compression ratio of state-of-the-art algorithms. In this paper,
we propose a Transformer based lossless compression method that match the best
compression ratio for text. Our approach is purely based on neural networks and
does not rely on hand-crafted features as other lossless compression algorithms.
We also provide a thorough study of the impact of the different components of the
Transformer and its training on the compression ratio.

1 INTRODUCTION

Lossless compression is a class of compression algorithms that allows for the perfect reconstruc-
tion of the original data. In the last decades, statistical methods for lossless compression have been
dominated by PAQ-type approaches (Mahoney, [2005). The structure of these approaches is similar
to the Prediction by Partial Matching (PPM) of (Cleary & Witten| (1984) and are composed of two
separated parts: a predictor and an entropy encoding. Entropy coding scheme like arithmetic cod-
ing (Rissanen & Langdon| [1979) are optimal and most of the compression gains are coming from
improving the predictor. The predictor estimates the probability of a token given its past, which is
a standard sequence modeling problem. In most PAQ-type approaches, this predictor relies heavily
on hand-crafted features, but recent work has used the close connection between sequence mod-
eling and machine learning to add neural networks based methods in the predictor. In particular,
CMIX (Knoll, [2014) has successfully added a Long-Short Term Memory (LSTM, Hochreiter &
Schmidhuber]| (1997)) to the predictor of PAQS. However, these approaches are still heavily relying
on hand-crafted features along with the neural networks, and purely neural network based models
are still far from the state of the art (Bellard, 2019).

In this work, we aim at building a purely neural network based model that compete the state of the
art. We follow Knoll & de Freitas| (201 1)) and formulate the token prediction problem solved by the
predictor as the online learning of a sequence model. As opposed to previous work, we propose to
use a Transformer (Vaswani et al.| [2017a) to replace entirely the predictor of PAQS and its hand-
crafted features. Transformer has emerged as the standard model for sequence modeling in natural
language processing, achieving state-of-the-art performance in numerous applications, including,
but not limited to, language modeling (Dai et al., [2019; |Sukhbaatar et al.,|2019b)), machine transla-
tion (Vaswani et al., 2017a; |Ott et al., 2018), or sentence representation (Devlin et al., 2018; |Yang
et al.l [2019). As opposed to the recurrent neural networks (RNNs, Elman, (1990)) used in lossless
compression, they are able to capture very long-term dependencies by allowing direct connections
between long-distance symbols.

However, the training of a Transformer is unstable and slow, limiting its application to the online
setting of lossless compression. We propose several improvements to its architecture and training to
accelerate and stabilize its online training. We show that our neural network approach matches the
state of the art on the competitive benchmark enwik8 used in the Hutter prize (Mahoneyl, [2005).
We also provide a thorough study of all the important components of a Transformer and its training
to achieve this performance.
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2 RELATED WORK

In this section, we briefly introduce statistical based methods for lossless compression, and focus on
PAQ based compression methods as well as purely neural network based methods.

Statistical based methods. A popular statistical based method for lossless data compression is
the Prediction by Partial Matching (PPM) of |Cleary & Witten|(1984). It is based on a predictor and
a entropy coding, that often takes the form of an arthimetic coding (Rissanen & Langdon, |1979;
Witten et al.l |[1987b)), but could also be a Huffman coding (Huffman, [1952b). There are many
variants of PPM such as PPM«C (Cleary & Teahan,|1997) or cPPMI-64 Shkarin|(2002). Another
statistical based method is the stochastic sequence memoizer of |(Gasthaus et al.| (2010) that is based
on a nonparametric Bayesian model. In particular, the stochastic memoizer of [Wood et al.| (2009)
shares many similarities with PPM and reaches similar compression performance. However, most
of these models are now surpassed by PAQ based methods like CMIX (Knoll, 2014).

PAQ based compression methods. The series of PAQ algorithms, including PAQS (Mahoney,
2005)), are statistical based methods designed to operate at bit-level, making it applicable to any
type of data (Salomon & Mottal 2010). There are also different version of PAQS specialised in
different data types for better compression performance. PAQ uses a context mixer that follows
the same structure as PPM. However, unlike PPM, the predictor of the context mixers combines
the probability of different prediction models (Knoll & de Freitas| 2011). More recently, a PAQ
based model called CMIX (Knoll, 2014) has been the state of the art for lossless text compression
in terms of compression rate. As opposed to PAQ8, CMIX uses a Long Short Term Memory net-
work (LSTM, Hochreiter & Schmidhuber| (1997)) in their probabilistic model. The context mixer
used in CMIX is also based on a gated linear network (Veness et al., 2017)).

Neural Network based compression method. More recently, there has been some attempts to
use purely neural network based approaches for the probabilistic model. Notably Knoll released
lstm-compress (Knoll, [2015)), which uses only the LSTM introduced in CMIX and the pre-
processing of CMIX. Bellard| (2019) investigates the performance of pure neural approaches with
modern and large neural networks such as LSTM and Transformer. As well as our approach, all of
these approaches use arithmetic coding as entropy coding scheme.

3 LOSSLESS DATA COMPRESSION

In this section, we briefly introduce the core components of statistical methods for lossless compres-
sion. As opposed to lossy compression where it is allowed to lose information about the orginal data
in the reconstruction, lossless compression methods restore the data to its original value.

Lossless compression methods are composed of two main elements: a predictor and an entropy
coding scheme. They are used successively to encode an input stream of tokens s, . .., sp. More
precisely, for each token, the predictor first evaluates its probability given its past, then the entropy
coding scheme uses this probability to store the token into a lossless code. More precisely, if we as-
sume that ¢ tokens s, . .., s;—1 are already compressed into a lossless code, the predictor computes
the probability of the next token to be equal to its value s; given all the preceding tokens, i.e., the
predictor computes p(s; | $¢—1,- - ., So). Then, the entropy coding scheme encodes the token s; into
a lossless code of bit-length log, p(s¢ | s¢—1,...,50). Once the token s; has been encoded, these
two steps are repeated on following tokens until the end of the sequence.

The operations performed by the predictor are identical during compression and decompression
phases, i.e., in both cases it predicts the next token given all the preceding tokens. The only differ-
ence is that, during the compression, the preceding tokens are taken from the input file, while during
the decompression, they are generated by the entropy coding scheme. Note that, as opposed to the
predictor, the role of the entropy coding scheme differs during the two phases since, during decom-
pression, it acts as a decoder, i.e., given the compressed representation and the sequence of predicted
probability distributions (p(s¢|s¢—1, ..., So))o<t< it restores the original sequence of tokens.

There are many efficient and optimal methods for the entropy coding scheme. The source coding
theorem Shannon|(1948)) has introduced the fundamental idea that any probability distribution can be



Under review as a conference paper at ICLR 2020

encoded into a lossless code. For a given data point, the bit-length of this code is equal to the negative
log probability estimated by the model. Thus, efficient probabilistic models are crucial to design
effective compression scheme since the smallest codes are obtained when the model estimates the
true data distribution. Depending on the type of probabilistic model considered, several compression
schemes have been developed to implement this idea in practice, namely Huffman coding [Huffman
(1952a)), arithmetic coding [Witten et al.| (1987a) and asymmetric coding |[Duda (2009). The basic
idea of all these entropy coding schemes is to assign shorter codes to the more likely tokens. In this
work, we use the arithmetic coding scheme.

4 OUR APPROACH

In this section, we introduce our approach to lossless data compression using neural networks. First,
we briefly review transformer networks, which are at the core of our method. We then discuss
modifications to the standard model, to make it more suitable to long sequence modeling. Finally,
we propose a strategy to make the online learning of large models more efficient.

4.1 TRANSFORMER NETWORKS

Transformer networks were introduced by |Vaswani et al.|(2017a) in the context of machine transla-
tion. These models are made of a sequence of identical blocks, each comprising two sublayers. The
first sublayer, called SelfAttention, is based on the attention mechanism from [Bahdanau et al.
(2014). More specifically, given a sequence of 7" hidden states of dimension d, represented by the
matrix X € R4*7, the output of this layer is given by

Z = W, Xsoftmax (X"W{W,X),

where W, W, and W, are the parameters of the sublayer used to compute the values, keys and
queries of the attention mechanism. Multiple self-attention mechanisms are usually applied in par-
allel, leading to the multi-head self-attention sublayer.

The second sublayer, called FFN, is a fully connected feed forward network with RELU activation,
which is applied independently at each time step. Each sublayer is followed by a skip connection
and a layer norm operator, to finally obtain:

Z = LayerNorm(SelfAttention(H) + H),

and

Y = LayerNorm(FFN(Z) + Z).
Following |Dai et al|(2019), we use relative positional encodings at each layer, as well as a cache
mechanism, to make the processing of long sequences more efficient. In the following, we will refer
to this model as Transformer-XL. We refer the reader to|Vaswani et al.|(2017al) and [Dazi et al.|(2019)
for a more detailed introduction to these models.

4.2 MODIFICATIONS TO THE TRANSFORMER-XL MODEL

We propose several modifications to the Transformer-XL model that we found to improve the
compression rate empirically. First, we follow |Devlin et al.| (2018) and use the GELU activation
of Hendrycks & Gimpel| (2016)) instead of ReLUs. Second, as opposed to Transformer-XL (Dai
et al.,2019), we do not use Adaptive Inputs (Baevski & Auli,2018]) to tie the weights of embeddings
and the classifier. Finally, we use different attention span size across all layers as was suggested by
Sukhbaatar et al.|(2019a). In particular, an observation from this work is that attention span can
be short in the first half of the network while it has to be longer in the last layers. We exploit this
observation by restricting the attention span of the first layers of the Transformer and is extended
linearly with the depth. More specifically, we restrict the attention size of the first 6 layers to be
equal to 6 x k for the k-th layer.

4.3 ADDING n-GRAMS AS INPUT

We also propose to enrich the input of the transformer with n-gram information. More specifi-
cally, at time step ¢, the input of the model is all the n-grams for n between 1 and N of the form
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Method BPC
Standard text compression

gzip-9 2.92
xz -9 1.99
paq8hp12any 1.31
CMIX 1.20
Neural Network based compression
lstm—compress 1.65
Transformer Bellard (2019) 1.46
LSTM [Bellard| (2019) 1.35
ours without revisit 1.33
ours with revisit 1.20

Table 1: Compression rate on enwik8 for different methods

Ti—n+1,-.-, T¢. Concretely, we have an embedding vector for each n-gram, and for a given time
step, we average the vectors corresponding to the n-grams of different lengths. For large n, there
are many rare n-grams, leading to an important increase of parameters and memory consumption. A
potential solution would be to only keep the most frequent ones, but this would require computing a
dictionary of n-grams and add it to the archive. Instead, we propose to hash the n-grams into a fixed
number of bins, allowing to constrain the memory requirement, without having to increase the size
of the archive.

4.4 TRAINING WITH OR WITHOUT REVISITS

During the compression phase (resp. decompression), once a token has been encoded (resp. de-
coded), it can be used to update the probabilistic model. This means that compression using statis-
tical models can be framed as an online learning problem. Traditionally, previously encoded tokens
are used only once to update the probabilistic model. However, nothing prevents re-using the tokens
to compute multiple updates of the model, besides memory consumption. Indeed, to be able to do
s0, one needs to store the data being compressed to be able to revisit it. In the following we propose
to explore this strategy to learn better probabilistic models based on transformer networks. The main
motivation is that large overparametrized neural networks usually needs many passes over the data
to be trained. In practice, every F' compressed tokens, we re-use the last M compressed tokens to
further train the network. This strategy will improve the quality of the probabilistic model, leading
to better predictions and compression rate of the data not yet processed. This phase is determined
by the frequency of revisit F' and the number of tokens revisited M.

5 EXPERIMENTS

In this section, we investigate the influence of different parameters on the performance of our ap-
proach. We also provide numerical evidence that a purely neural based approach can be competitive
with state-of-the-art methods in terms of compression ratio.

5.1 IMPLEMENTATION DETAILS

Dataset. The standard dataset for text compression is enwik 8, notably used for the Hutter Prize.
It is composed of 100MB of English Wikipedia data. In the compression setting, we report the bit
per character (BPC) obtained the first time we visit each token of the full dataset. This differs from
language modeling where we report the BPC on withheld data.

Preprocessing. We use the CMIX preprocessor where all uppercase letters are converted to lower-
case ones preceded by an escape code. This reduces the size of the vocabulary from 205 characters
to 165 characters, while increasing the number of symbols by approximately 3% on enwik8.
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Figure 1: Impact of the model size on compression rate. We report the compression rate in BPC for
transformer networks of various sizes. In particular, we vary the number of layers (6, 12, 18, 24)
as well as the dimension of each layer (256, 512, 1024). Left: we observe that on the full enwik8
dataset, larger models obtain better compression rate. Middle: using models deeper than 12 layers
does not seem to improve the compression. Right: Instantaneous compression rate (averaged over
the last 1 million characters) for 12 layers models. Larger models obtain better performance, even
at the beginning of compression.

Impact of Context Size
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Figure 2: Instantaneous compression rate (averaged over the
last 1 million characters) for models with different context
sizes.

Transformer. We consider Transformers with either 12, 18 or 24 layers, a hidden size d of either
256, 512 or 1024, and a number of heads between 4, 8 and 16. The dimension of the feedforward
dy is 4d. We consider several size for the span, i.e., 256, 512 and 768 , but in practice longer spans
work better. The optimizer used to train the Transformer impacts greatly the compression ratio. Our
best results were obtained with Adam optimizer Kingma & Bal (2015)) with the correction introduced
inReddi et al.|(2018)) and its variant Adamw Loshchilov & Hutter|(2017). The impact of the different
hyperparameters involved in these optimizer is investigated in the following subsections.

5.2 RESULTS

In table[T]we summarize the performance obtained with transformer networks in this report. the fact
that other approaches require the transmission of a dictionary to the decoder makes the comparison
difficult: in most cases it is not accounted in the performance although it can represent up to 400kb
of uncompressed data. in order to obtain a comparison that makes sense, we take into account the
size of the dictionary used in the different methods after compression with gzip -9. the code used
to train the different networks also needs to be transmitted to the decoder, but its size is negligible.



Under review as a conference paper at ICLR 2020

20 Fixed Learning Rate 20 Learning Rate Schedules
—— LR=2e-5 Fixed LR

g 187 —— LR=5¢-5|] 5 18 —— Linear LR |]
Q _ Q
£ 16} LR=le-4|] £ 1.6}
< <=
Q Q
g 141 g 1.4t
i i)' @ s

1.0 , , , , 1.0 , , , ,

0 20 40 60 80 100 0 20 40 60 80 100
Percentage of data Percentage of data

Figure 3: Instantaneous compression rate (averaged over the last 1 million characters) for different
fixed learning rates (left) and linear decay schedule (right). We observe that higher learning rates
get better compression rate at the beginning of the compression phase, but lower learning rates tend
to obtain better results at the end. A linear decay schedule allows to match the best performing fixed
learning rate at most steps of the compression.

5.3 IMPACT OF THE NUMBER OF PARAMETERS

First, we investigate the influence of the model size, as well as its depth and layer dimension, on
the compression rate. In many previous work, it has been observed that large overparametrized
models lead to state-of-the-art performance. For example, Vaswani et al.| (2017b) notice that large
transformers with up to 160M parameters obtain better results than smaller networks. Similarly, for
language modeling, |Dai et al.[|(2019); [Sukhbaatar et al.|(2019a); Radford et al.|(2019) present better
results with larger networks. However, our online learning setting is different from these works,
and a natural question is whether this observation is also true for compression. More specifically, it
could be possible that smaller networks would learn faster, as less parameters needs to be trained.

In Figure[I} we report the compression rate on enwik8 obtained by transformers of various sizes.
The rest of the parameters, such as the optimization parameters, are identical for all runs and are
close to the best we have found. First, we observe that, as in the supervised learning setting, larger
models do obtain better performance. In particular, our best model was also the largest one, contain-
ing almost 350M parameters.

More surprisingly, larger models also obtained better compression ratio, even at the very beginning
of the compression phase. In Figure[I] we also report the BPC averaged over the last 1M characters
processed by the model (instantaneous compression rate). We compare three networks made of 12
layers: a small network with 4 heads, a hidden state of dimension d = 256, a medium network,
with 8 heads and a hidden state of dimension 512 and finally, a large network, with 16 heads and a
hidden state of dimension 1024. Even after processing only one percent of the data, the large model
have a better compression rate than the small and medium models.

Finally, we study the influence of the depth of the network on the compression rate. In Figure|[I] we
report results obtained by networks of various depths, all the other dimensions being equal. Here,
we observe that using models deeper than 12 layers do not really improve the compression rate. In
particular, as opposed to other sequence modeling tasks, it seems more efficient to consider wider
networks than deeper ones, for a constant number of parameters.

5.4 IMPACT OF THE CONTEXT SIZE

The size of the context in transformer networks determines the maximum number of previous hidden
states the model can use to predict the next symbol. In Table 2] we compare the compression rate
obtained by using different context sizes, from 256 to 768. We show that larger context size results
in better performance overall. A larger memory provides to the network more information, but it
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Figure 4: Impact of different optimization parameters. Left: we report the BPC over the full enwik8
data for different learning rate with linear decay and number of warmup steps. Top right: small 3;
values for ADAM variants lead to better compression rate on the full enwik8. Bottom right: as for
supervised learning, gradient clipping is helpful in the compression setup.

could also be more difficult to exploit: the most useful information to predict the next character is
usually located in the few preceding characters. In particular, we observe that at the beginning of the
compression phase, models with shorter contexts tend to perform better. To illustrate this, we report
in Figure[2]the instantaneous BPC for models with context sizes 256 and 768. Finally, it is important
to note that the computation time and the memory scale linearly with the size of the context.

5.5 IMPACT OF THE LEARNING RATE SCHEDULE

In general, the learning rate is a parameter having an important influence on the convergence speed
of neural networks. In Figure [3] we report the compression rate, averaged over the last one mil-
lion characters, obtained by using different fixed learning rate with the AMSGrad algorithm. As
expected, a higher learning rate leads to a better compression rate at the beginning of the run, but a
smaller learning seems important to obtain good performance at the end of the compression phase.
In order to have the best of both worlds, we use a linear decay schedule, such that the learning rate is
equal to zero at the end of the compression phase. In Figure[3] we observe that this scheme outper-
forms fixed learning rate schedules over most of the compression. Overall, the best fixed learning
rate leads to a compression rate of 1.38 BPC, while linear decay get to 1.36 BPC.

When training transformers, it is standard practice to use a warmup phase at the beginning of learn-
ing, during which the learning rate increases from zero to its peak value (Vaswani et al., 2017b).
We follow this practice, meaning that our linear learning schedule is determined by two parameters:
the peak learning rate and the length of the warump phase. We report the influence of these two
parameters on the overall compression rate in Figure [d It appears that a longer warmup phase is
detrimental to the performance of transformer based data compression.

5.6 OTHER OPTIMIZER PARAMETERS

Finally we found that the compression ratio is sensitive to the optimizer parameters. In this section,
we evaluate the impact of the following parameters of the Adam optimizer: 31, 82 and €. We report
the BPC over the full enwik8 data for different values of 3; in Figure[d The fact that small ;s give
the best results is surprising, as usually, values close to 1.0 are used. For example, the default 3;
value in PyTorch is 0.9, and gives a compression rate of 1.39 BPC, compared to 1.36 for the optimal
value of $;. On the other hand, we found the 35 and ¢ parameters to have little influence on the
compression rate, and standard values to give the best results. Finally, Figure ] shows that gradient
clipping is helpful, but the performance are not very sensitive to its value.
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Figure 5: Instantaneous compression rate (averaged on k.« and the number of vectors used
over the last 1 million characters) for models with and to represent the n-grams
without n-grams. We observe that adding n-gram in-
formation lead to a better compression rate for the
whole compression phase.

5.7 IMPACT OF PREPROCESSING AND n-GRAMS

We only apply a minimal preprocessing step to the data, consisting in replacing uppercase characters
by lowercase ones, with an additional escape code. This simple step, also used by other compression
algorithms such as CMIX, leads to an improvement of 0.01 BPC. We also considered adding n-gram
information to the input of the transformer model. At each time step ¢, the input corresponds to
the current character, as well as the n-grams ending at position ¢. To avoid storing a dictionary
of n-grams in the archive, we instead hash the n-grams into one a fixed number of bins, each bin
being associated to a learned embedding vector. We report the effect of adding n-grams in Table [f]
and Figure 5] We show that adding this information lead to an improvement of 0.025 BPC, and
this improvement can still be observed at the end of the compression phase. By combining the
optimal parameters derived from the different experiments reported in this section, we can compress
enwik8 using 1.33 bits per character. While this is far from the performance of CMIX, it improves
previous results obtained with transformer networks (Bellard, [2019).

5.8 IMPACT OF REVISITING DATA

Finally, we study the impact of revisiting data already compressed, to improve the quality of the
model and its predictions on data to be processed. Overall, this is a critical strategy that allows
to improve the compression rate from 1.33 BPC to 1.20 BPC, for the full enwik8 dataset. For
this, every 512k compressed characters, we re-use the last 12.8M characters with batch size of 32
to further train the network. During the revisit phase, we use dropout regularization, with a rate
of p = 0.25, so that the model does not overfit the past data. Introducing the use of dropout during
the revisit improves the compression rate by approximately 0.05 BPC.

6 CONCLUSION

In this paper, we explore the application of transformer networks to the problem of lossless data
compression, which is closely related to the online learning of sequence models. One challenge of
using large neural networks to this task is the fact that many passes over the data are usually required
to train them. We thus propose to periodically revisit tokens that were already compressed to further
train the model, and improve its predictions. We also perform a thorough study of the impact of
various hyper-parameters, such as the model architecture, on the compression rate. Based on this
study, we show that a transformer based approach obtains state-of-the-art results on the competitive
enwik8 benchmark, without using hand crafted features.
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