Under review as a conference paper at ICLR 2020

WEAKLY-SUPERVISED TRAJECTORY SEGMENTATION
FOR LEARNING REUSABLE SKILLS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning useful and reusable skill, or sub-task primitives, is a long-standing prob-
lem in sensorimotor control. This is challenging because it’s hard to define what
constitutes a useful skill. Instead of direct manual supervision which is tedious and
prone to bias, in this work, our goal is to extract reusable skills from a collection
of human demonstrations collected directly for several end-tasks. We propose a
weakly-supervised approach for trajectory segmentation following the classic work
on multiple instance learning. Our approach is end-to-end trainable, works directly
from high-dimensional input (e.g., images) and only requires the knowledge of
what skill primitives are present at training, without any need of segmentation or or-
dering of primitives. We evaluate our approach via rigorous experimentation across
four environments ranging from simulation to real world robots, procedurally gen-
erated to human collected demonstrations and discrete to continuous action space.
Finally, we leverage the generated skill segmentation to demonstrate preliminary ev-
idence of zero-shot transfer to new combinations of skills. Result videos at ht tps :
//sites.google.com/view/trajectory—-segmentation/.

1 INTRODUCTION

Humans have an uncanny ability to generalize from one task to another using either few, or at times,
no new examples. This wouldn’t be possible if they were to learn each new task from scratch.
Humans rather extract reusable skills from already learned tasks and compose them to generalize to
new tasks seamlessly. However, learning such repeatable skills has been a long standing challenge in
sensorimotor control, partly because it is hard to define what constitutes a useful skill in itself.

One way to layout the scope of a skill is either by designing a corresponding reward function, or
collecting expert demonstrations. For instance, consider a skill of reaching for an object. One
can easily learn a policy for this skill by either using reinforcement learning with 12 distance as
reward (R), or by imitation learning from kinesthetic demonstrations (

;). However, neither of these approaches provide a natural form of
superv1310n because the way this skill is performed in isolation can be drastically different from the
way it could be used as part of some end task. For instance, reaching for a cup for pushing is very
different from the way one would reach for a cup to pick it up for pouring. Therefore, defining a skill
directly in a supervised manner could easily lead to biased set of examples.

A promising alternative is to learn skills that are already embedded in some useful end tasks. Prev10us
works have explored this in the context of an agent’s own exploration (,

,), where, the agent learns goal conditioned skill policies us1ng data
collected durmg its exploration phase. These skills are then used to plan for novel tasks at inference.
However, exploration in itself is an open research problem, and hence, such approaches have difficulty
in scaling to complex skills.

In this work, we follow an alternative paradigm where we extract skills from a collection of human
demonstrations gathered to perform different end tasks. A straightforward way to extract reusable
skills would be to get an expert to label each time-step of demonstrations with the corresponding skill
label. However, this per-step segmentation supervision is tedious for the expert and too expensive to
scale. Moreover, such a labeling would be biased towards what expert thinks is the right segmentation
than towards a segmentation which helps learn the skills better. This leads to the question: is it

https://sites.google.com/view/trajectory-segmentation/
https://sites.google.com/view/trajectory-segmentation/

Under review as a conference paper at ICLR 2020

WxHxT

Encoder

Trajectory Segmentation Timestep-level Trajectory-level Trajectory-level
Images Model Prediction Prediction Tags

Figure 1: We propose a weakly-supervised approach for segmenting demonstrations into skill primitives, aka,
sub-tasks. Our approach is end-to-end trainable, works directly from raw sensory data (e.g., images) and only
requires the knowledge of class of primitive sub-tasks performed during the demonstration to accomplish the end
task, without any need of segmentation or ordering of primitives. The key idea is to make per-time step prediction
corresponding to each sub-task and accumulate them to generate a trajectory-level predictions which are then
trained to match trajectory-level tags. Our segmentation model consists of an encoder followed by a recurrent
LSTM model to capture time-series dependency. We use 1og-sum—exp to perform smooth accumulation of
time-step predictions into trajectory-level predictions.

possible to use the expert knowledge to only know the types of skills present in demonstration and
figure out the segmentation from the data itself?

Inspired by the classic work in multiple instance learning (MIL) (,), we propose
a weakly-supervised approach for segmentation of human demonstration trajectories into primitive
repeatable skills. Our approach assumes the access to only trajectory-level labels, i.e., what primitive
skills, aka sub-tasks, are present in the demonstration. The key insight is to learn a primitive skills
classifier model conditioned on the input sensory data (e.g. demonstration images), and incorporate
a per-time step reasoning structure in this classifier. An overview of our approach is shown in
Figure 1. Our model generates per time-step primitive skill label prediction estimates which are then
accumulated via differentiable function to generate trajectory-level predictions. In contrast to classic
MIL, where only the most confident prediction across time-steps is trained, our full model is trained
end-to-end using trajectory-level multi-class loss directly from raw sensory images.

However, we are training with only trajectory-level supervision, then why should our per-step
predictions of segmentation model converge to meaningful skill primitives? Data comes to rescue!
Since our model trains across a variety of demonstrations, and hence, it would have seen plenty of
demonstration trajectories that contain a certain skill primitive (positives) and plenty that do not
(negatives). The classification loss would force the segmentation model to focus on discriminative
cues that are common across all positives, and absent from negatives. These discriminative cues
corresponding to each skill would encourage the per time-step predictions to gradually correspond to
the correct ground truth time-step labels.

We evaluate our approach in four different environments: (a) As proof of concept, we start with a sim-
ple 2D navigation task in grid-world setup where the demonstrations are programatically generated.
(b) We then discuss result in robotics setup with continuous control actions, in particular, Jaco robotic
arm performing button pushing demonstrations in a touch pad with procedurally generated demon-
strations. (c) We test our approach in a robotic setup with actual human demonstrations collected
on the RoboSuite benchmark. (d) Finally, we evaluate on a real robot dataset with actual human
demonstrations collected kinesthetically. Across all these environments, our approach outperforms
the other variants of MIL and achieves decent segmentation accuracy. We then show zero-shot
generalization to tasks containing novel permutations of skills in Jaco environment.

2 METHOD: SEGMENTING DEMONSTRATIONS INTO SKILL PRIMITIVES

Given a collection of human demonstration trajectories, our goal is to learn a labeling for skill
primitives at each time-step of the sequence, i.e., per time-step skill segmentation. Let X be a
human demonstration trajectory denoted by X = {21, z2, 23 ... 27}, where T is the length of the
demonstration and x; denotes a tuple of observation (which is raw sensory image in our case) at time ¢

Under review as a conference paper at ICLR 2020

and action taken from it. Note that the action data is optional for the purpose of skill segmentation, but
can be useful post segmentation for learning skill policies via imitation. Let Y = {y1, 2,93 ... yr}
be the latent ground truth labeling of skill primitives in the sequence. Each label y; belongs to one of
the k labels from a set of all skill classes C = {1,...,k}, i.e., ys € C. These per time-step labels are
not only tedious for expert to annotate, but also difficult to scale. In this work, we do not assume
access to y; during training, and learn the per time-step segmentation in a weakly-supervised fashion
by only using trajectory-level 1-bit label during training, i.e., whether a skill class is present in the
trajectory or not. After training, our model is able to directly segment demonstrations at inference,
without requiring any labels of any kind. An overview of our method is shown in Figure 1.

The marginal probability of a skill primitive at each time-step of demonstration can be written as
P(y:|0, {xt,xt—1 ..., 21}) where @ is the parameter vector of the segmentation model represented by
a neural network in our case. If we had access to the true sequence labels Y, the network parameters
6 can be easily learned via maximum log-likelihood by representing the probability as follows:

1
P(y:|0,{xt,e-1...,21}) = 7, &P (f(ye; 0, {zp, me1 ..., 21})) (D

where Z, is the partition function at ¢, defined as Z; = Y-, .. exp (fi(k; 0, {@¢,24—1...,21})). The
output of the function f; corresponds to the logit score value generated by the neural network. In
order to model temporal dependency on across observation time-steps x;, we represent f(.) via a
recurrent neural network, in particular, LSTM (, .

2.1 WEAKLY-SUPERVISED TRAJECTORY SEGMENTATION

We are given a dataset of demonstration trajectories during training, D = {X!,..., X"}, where n
is total number of demonstrations available for training. Each demonstration trajectory is weakly
labelled with what skill primitives are contained within the trajectory. Neither do we have access
to which time-step densely correspond to which skill primitive, nor to the permutation in which the
skills are executed in. Instead, we are only given a set of skill primitive labels C'x € C present in the
demonstration trajectory X.

Although our supervision is only at trajectory-level, we do not directly predict output label-
ing C'x from input demonstration X. Instead, we instill the structure of per-step prediction in
our weakly supervised segmentation model by first computing the per-step classification score
flys;0,{x,x1—1 ...,21}) and then accumulate it across all time-steps to compute the probability
of a class in the whole trajectory. This weakly-supervised setup is captured by classical paradigm
of multiple instance learning (MIL) (,). At inference, we use this per time-step
score to compute the probability of skill primitives at each time ¢ as described in Equation (1). There
are multiple ways one could accumulate these per time-step scores discussed as follows.

2.2 ACCUMULATION OF TIME-STEP PREDICTIONS

Intuitively, we would like an estimator that could generate an aggregated score for the class depending
on how much each time-step votes for that class. We would ideally like the highest score value across
time-steps to contribute most to the decision whether a class label Yy is present in the trajectory
X or not. One simple way to achieve that is to employ element-wise max operator, which is also
the de facto approach in MIL to accumulate element-level scores. However, this would amount to
passing gradients only to the most confident time-step and will completely eradicate the role of other
time-steps. This is especially problematic in case of sequential trajectories because no skill primitive
will be of only 1 time-step long. Hence, instead of max, we use a soft approximation to it which can
take into account the contribution of all time-steps. In particular, we use Log—sum—exp operator.
Given the the logit score f(y; 0, {xt,2+—1...,21}) at each time-step, the trajectory-level logit score
g for class ¢ € C is computed as follows:

T
9(c;0,X) = log (Zexp (f(yt =c¢0,{x, x4 ... ,xl}))) 2)
t=1

We perform this operation for all ¢ € C and use softmax over g(c; 8, X) to compute trajectory-level
probability distribution Q(c|X, #). Finally, the parameters 6 are optimized to maximize Q(c| X, 6)

Under review as a conference paper at ICLR 2020

(a) 2D Navigation (b) Dial Env (c) RoboSuite Env (d) MIME Env

Figure 2: We evaluate across four environments with different properties: (a) Discrete 2D Navigation as proof
of concept. (b) Dial continuous control: Jaco robotic arm based manipulation with procedurally generated
demonstrations. (c) RoboSuite environment: Sawyer robot in simulation with human-collected demonstrations.
(d) MIME environment: Baxter robot in real world with human demonstrations. Result videos at https:
//sites.google.com/view/trajectory-segmentation/.

for each class ¢ with respect to the ground truth trajectory level tags C'x. Note that this optimization
is fully differentiable through Equation 2, and hence can be optimized via stochastic gradient descent
in the end-to-end fashion. () has also showed the effectiveness of a
temperature-based variant of 1og-sum-exp operation for semantic segmentation in images.

However, these per-step scores f would be almost uniformly random in the beginning of the training
process due to the absence of per-step supervision. Since we are training with only trajectory-
level supervision, why should these per-step predictions should ever converge to meaningful skill
segmentation? It turns out to be the case because we are learning across large variety of demonstration
examples. Hence, for each skill primitive we would have seen plenty of positive as well as negative
trajectories. The loss suppresses the negative classes and encourages the positive ones, hence our
segmentation model would be forced to focus on discriminative cues that are exclusively common
among the trajectories containing the skill primitives and not common to the cues that help distinguish
other skills. Since our trajectory-level segmentation is based on a deterministic transformation of
per-step predictions, each per-step score will then be forced to focus on those discriminative cues.
The discriminative nature encourages the per time-step predictions to slowly drift towards the true
latent ground truth segmentation which are not available directly.

3 IMPLEMENTATION DETAILS, SETUP AND BASELINES

Training and Evaluation Details Our segmentation model consists of a convolutional neural
network encoder of each image of a trajectory and a one layer fully connected encoder of the action to
a 32 dimensional feature that is concatenated to the image feature before being fed into an LSTM with
100 hidden units. We train with a batch size of 64 for the Dial, RoboSuite, and MIME environments
and a batch size of 128 for the Grid-world environment. All models were trained with Adam with
learning rate of 1e-4. For training, we use 50000, 2000, 1000, and 1600 trajectories for 2D Navigation,
Dial, RoboSuite, and MIME Environments respectively. We evaluate our method on the training set,
a validation set that consists of the same number of skill primitives (sub-tasks) per trajectory as in
training, and a test set that consists of more skill primitives per trajectory than seen in training. The
segmentation quality is measured by classification accuracy of the learned model averaged across all
time-step. The time-step ground truth is only used for evaluation and not for training.

Baselines We compare our approach to different formulations of weakly-supervised classification
proposed earlier. None of these methods have been applied to a temporal trajectory segmentation
before. In our work, we adapt them for sub-task segmentation. In particular, we compare to: (a)
MIL (,): In this baseline, we train the deep segmentation model using Classic
MIL formulation as proposed by (). We penalize the most confident time-step in
the output corresponding to each sub-class to correctly predict the trajectory-level classes.

(b) FCN-MIL (,): This approach is an adaptation of MIL for deep-networks. The
MIL objective is treated as the loss function for training the segmentation network, but instead of
training the most confident output, we train a neighborhood of k-elements near the most confident
time-step, where k is a hyper-parameter chosen on the validation set. We found k=3, i.e., one extra
time-step on each side of argmax, to work the best across all datasets.

(c) CCNN (,): This is an alternative approach to tackle the weakly-supervised

https://sites.google.com/view/trajectory-segmentation/
https://sites.google.com/view/trajectory-segmentation/

Under review as a conference paper at ICLR 2020

setup. Instead of training the most confident output, a pseudo ground-truth per time-step truth is
generated in a way that ensures that it is the closest pseudo ground-truth possible which contains only
the classes as specified by the trajectory-level tags. One could additionally put threshold constraints
on the lower-bound of time-steps devoted to the present classes in the pseudo ground truth. The
segmentation is then pushed to this per time-step pseudo labels, and a new pseudo ground-truth is
generated after each iteration. This approach provides per time-step supervision using only trajectory
level-tags. The CCNN approach was originally applied for per-pixel segmentation of images in

computer vision literature (,), and we adapt it for temporal trajectories.
(d) Random: For sanity check, we randomly pick a sub-task class at every time-step with uniform
probability.

(e) Random-Cls: This is a random baseline with privileged class information even at test time. In
this case, we only sample random uniformly from the set of classes that are already present in the
trajectory. This is not a fair comparison but provides an estimate for the difficulty of the problem.
Note that we use the same network architecture and training details across all baseline implementa-
tions. However, we tune each baseline separately in a thorough manner on validation sets. This is
crucial to ensure an “apples-to-apples” comparison.

4 RESULTS

We evaluate our approach and other baselines on four different datasets with very diverse charac-
teristics. The 2D Grid-world environment has a discrete action space, while the Dial, RoboSuite,
and MIME environments have a continuous action space. The Grid-world and Dial environments
have demonstrations collected procedurally by hand-designed controllers, while the RoboSuite and
MIME environments have demonstrations collected by humans. Human demonstration in RoboSuite
are collected via teleoperation and kinesthetically in MIME. Grid world, Dial and Robosuite are in
simulation while MIME is from real robot. A snapshot of these environments is shown in Figure 2.

4.1 PROOF OF CONCEPT: 2D NAVIGATION IN DISCRETE TOY GRID-WORLD

In the grid-world environment, the action space consists

of moving up, moving down, moving left, moving right, Method Train Val Test
and picking up object it is hovering over. There are 5 Random 20.00 20.00 20.00
different types of objects uniquely identified by their color ~ Random-Cls ~ 36.00 36.00 20.00
and an end task would consist of picking up some subset ccNN 6527 64.63 6024
of all the objects in a particular order. The primitives are ~ FCN-MIL 9128 91.88 91.58
defined as picking up a specific type of object. We train ~ MIL 90.78 91.08 91.08
our segmentation model on trajectories with 2-4 skill prim- oy 100.00 100.00 100.00

itives and test with 5 skill trajectories. Each instantiation
of the er}vironment has a different starting position of the Tuble 1: This environment serves as only a
agent, different starting position of the objects, and differ- pro0f of concept. Since the environment is
ent set of objects needed to be grabbed. The image inputs a simple 2D grid with skill primitive indica-
used are 33 by 30 resolution color images, and the max tor cell at the bottom, an efficient approach
trajectory lengths are 50. This environment serves as toy should be able to achieve almost full accu-
scenario for proof of concept. At the bottom-left of the racy. Our method is able to perfectly segment
image, there is an indicator which suggests which skill ~the data into ground truths, while other base-
is being executed. Hence, an efficient approach should lines can not despite easily separable skills.
achieve 100% accuracy, as is the case with our method as shown in Table 1.

4.2 DIAL CONTROL ENVIRONMENT: JACO ROBOTIC ARM BASED MANIPULATION

In the Dial environment, proposed in (,), there is a torque-controlled JACO 6 DoF
arm and a dial pad that the arm can interact with which is simulated in MuJoCo. There are naturally
10 different types of primitives available in this environment corresponding to pressing numbers zero
through nine. We train our segmentation model on trajectories with two to four sub-tasks and test
with five sub-task trajectories. Each instantiation of the environment has a different sequence of
numbers it expects to be dialed in the correct order. The image inputs used are 112 by 112 resolution
gray-scale images, and the max trajectory lengths are 100.

Under review as a conference paper at ICLR 2020

Sub-Task # 4
Sub-Task # 1

Sub-Task # 2

©
*
%

@

<
£
3
@

Sub-Task # 7
Sub-Task # 3

(b) RoboSuite Env: Sawyer arm

A
N po pe

(c) MIME Env: Baxter arm

o
2
o
v -
Sub-Task # 4 Sub-Task # 3

T

Sub-Task # 2 Sub-Task # 1
- |

« %

Figure 3: Figure shows qualitative visualization of the skills (sub-sampled) discovered by our approach on
held-out test set. (a) Dial Env: learned primitives using Jaco arm manipulation are shown. Skill # N corresponds
to the arm dialing number N on touch pad. (b) RoboSuite Env: Three predicted primitives are shown where the
primitives are to pick and place an object into corresponding bin (top to bottom: cereal, milk, box) (c) MIME
Env: Four discovered primitives are shown starting from top left clockwise: reach to object, wipe, stir inside
object, and pour out object.

Our method performs similar to FCN-MIL on the train/val, and better on test. It significantly
outperforms the other baselines (Table 2). However, we show that our segmentation are more useful
for zero-shot execution performance as explained in Section 4.5. Learning perfect segmentation in
the Dial environment is very challenging because there is little signal in most of the trajectory for
each skill to signify exactly which digit will be pressed until the arm reaches proximity of the digit.

4.3 ROBOSUITE ENVIRONMENT: SAWYER ROBOTIC ARM BASED OBJECT PICK AND PLACE

The RoboSuite environment (Mandlekar et al., 2018) has a Sawyer 7 DoF arm and four different
objects (bread, can, cereal, and milk) that the arm can interact with simulated with MuJoCo physics
engine. There are four different types of primitives available in this environment corresponding to
pick and place of bread, can, cereal, and milk to correct corresponding bin. We train for trajectories
with two to three skill primitives and test on trajectories with four skill primitives. Each instantiation
of the environment has a different sequence and set of objects that need to be picked up and placed
into their corresponding bins. The image inputs used are 128 by 128 resolution color images and the
max trajectory lengths are 100.

Our method significantly outperforms all baselines in full trajectory segmentation by a significant
margin. Only MIL performs above random present class on validation and test datasets. Learning
perfect segmentation in the RoboSuite environment is also very challenging because there is very little
signal in most of the trajectories of each subtask to signify exactly which object will be picked up until
near the end of the primitive where the object has been picked up. The “pick object” portion of human
demonstrations is usually much longer than the “place object” part because with the tele-operation
setup the human stumbles a little bit until fully gripping the object. After the object is in the gripper,
placing object in bin is a quick reach to the correct bin for the object.

4.4 MIME ENVIRONMENT: BAXTER ROBOTIC ARM BASED MANIPULATION

MIME is a robotic-demonstration dataset that contains 8260 human-robot video demonstrations of
20 different robotic tasks (Sharma et al., 2018). We defined the following primitives for a subset

6

Under review as a conference paper at ICLR 2020

Method Dial Jaco Manipualtion RoboSuite Manipulation

Train Val Test Train Val Test
Random 10.00 10.0 10.0 25.00 25.00 25.00
Random-Cls 36.00 36.00 20.00 33.00 33.00 25.00
CCNN 9.05 9.58 10.70 3192 2224 21.80
FCN-MIL 64.42 59.64 57.81 29.79 23.76 22.21
MIL 19.02 15.89 14.00 3595 28.8l1 28.69
Ours 61.57 59.52 59.93 44.96 37.67 33.88

Table 2: We show the segmentation performance across different methods on train, validation, and test datasets
for Dial Jaco and RoboSuite Object Manipulation. (a) Dial Jaco: we train our segmentation model on
trajectories with three to four subtasks and test with five subtask trajectories. Our approach beats all baselines
by significant margin except for FCN-MIL which performs similar to ours on training and validation, but is
outperformed on the test set. (b) Robosuite: we train our segmentation model on trajectories with three subtasks
and test with four subtask trajectories. Our approach outperforms all baselines by significant margin.

of .this dataset: reach for objeqt, pour out object, s.tir inside Method Test Accuracy
object, stack objects, place object in box, wipe with rag (6

primitives). All videos have two primitives where one is to CCNN 11.17
reach for object and the other is the action to do with or on the FCN-MIL 19.10
object. There is a held out test dataset for each robotic task MIL 24.37
which we use for evaluation. The image inputs used are 120 by Ours 44.22

320 resolution grayscale images and the max trajectory lengths —
are 100. Our method beats all other baselines in full trajectory ~Table 3: Quantitative results on MIME

segmentation by at least 1.8x on the test set (Table 3). dataset. = We test our segmentation
model on held out test trajectories not

seen during training.
4.5 ZERO-SHOT RESULTS: JACO MANIPULATION

We use our segmentation model to create sub-datasets for each of our primitives to train a behavior
cloned skill policy for each. We then test our skill policies on performing higher sequence length
tasks not seen in training data. During the creation of the sub-datasets, we rejected all segments
smaller than 5 consecutive timesteps of the same labelled primitive. We applied gaussian smoothing
on the segmentation prior to extraction to filter out noisy predictions.

We demonstrate the zero-shot capability of our model and baselines on the Dial control environment
in Table 4. Our model performs at least 1.25x better than all baselines. We also show that although
FCN-MIL had the same segmentation accuracy as our method, after rejecting smaller than 5 timestep
segments our method has a significantly higher post rejection segmentation accuracy. We speculate
this is due to our model committing less to a wrong prediction than the baselines. Therefore wrong
predictions are more easily rejected with our segmentation model.

5 RELATED WORK

Multiple Instance Learning is the sub-field that deals with learning with weak-labels (

,), formulated mostly as max-margin. Classic formulations include MI-SVM (

s)or LSVM (s). There have been boosting (;

R) and Noisy-OR models (s) formulatlons as well. This has been

extenswely explored in image segmentation (,). There
is also work on learning to segment videos into primitive components that take place in each of the
videos using human narration of the videos (R), (s), (

s), (,). However collecting human narrations is an expensive process
that cannot scale to very large datasets. In our setup, we need to label each timestep of a video with a
further preferable constraint of having the labels as contiguous as possible.

Training goal conditioned policies have become very popular recently since they learn policies that are
reusable for new tasks. The goals can be defined in state space (s), (

Under review as a conference paper at ICLR 2020

Method | Seg Acc. without Reject ~ Seg Acc with Reject | Zeroshot Success Rate

CCNN 9.58 28.08 -
FCN-MIL 59.64 68.58 38.8
MIL 15.89 50 39.6
Ours | 59.52 79.01 | 50.4

Table 4: Quantitative Zero-Shot results on Dial Jaco Manipulation: This table shows the comparison of
performance across different methods. The first two columns reports the segmentation accuracy on validation set
without and with minimum of 5 time-step segment rejection. The last column shows the zero-shot subtask success
rate on 5 subtask tasks. Our method has significantly better post 5 time-step segment rejection segmentation
accuracy and zero-shot subtask performance.

s) or in image space (,), (s). These methods however
suffer from not being able to reach goals that are out of the training distribution. They also tend to
greedily reach goals which make them suffer for long horizon tasks. This leads to having to break the
problem down to checkpoint states and this can still be expensive and cumbersome for a human to
define each new task (R). Similar way to define a new task is one-shot imitation
learning where a new task is defined with one demonstration of the task; this can also be expensive if
one need to learn new tasks that are cumbersome for the human to collect (,).

Hierarchical policies have been used to solve long horizon tasks by having a meta-policy or manager
that takes in states at a sparser time scale and chooses which sub-policy or short term goal for worker
to achieve at dense time scale (), (), (,

), (,). However, the subp011c1es learned in this type of optlons framework are
not intrepretable in their specialization and therefore tend to be hard to reuse for new tasks.

Learning reusable and interpretable primitives from scratch has been very challenging. One way to
tackle this is for humans to define the high level primitives we care about beforehand. We can then

decompose complex tasks into subtasks / primitives and learn the primitives first (,).
By learning the primitives first, an agent can then perform any new task that can be decomposed
into those primitives without needing any new human demonstration data ().

The human only needs to specify the order in which the primitives need to be done. In the presence
of only the order of high level tags of what primitives were performed at the trajectory level, the
optimization is non-trivial. () provide one approach using dynamic programming
to efficiently compute gradients (,) through all possible trajectories of a given
high level permutation of primitives performed in each trajectory. We however have presented
an approach where we would not need the order in which the primitives were performed thereby

making the labeling process of videos much cheaper. (,) and (,)
do unsupervised primitive segmentation in environments using state space whereas we do weakly
supervised primitive segmentation in image space in all of our environments ((,) only

use image input for their toy gridworld environment).

6 DISCUSSION

Obtaining primitives from existing experience and composing them to perform novel tasks presents
a viable paradigm for tackling generalization to novel tasks. Due to the combinatorial nature of
composition, this approach allows generalization to exponentially many scenarios with a linear
number of primitives. This work provides an end-to-end trainable formulation for extracting primi-
tives. Our results demonstrate strong segmentation accuracy, and show early evidence for zero-shot
generalization via compositionality. Our primitive segmentations, obtained from demonstrations of
end tasks, are more naturally extracted ‘options’ than those defined by an expert, which may be prone
to being biased. Another alternative, besides zero-shot composition, is to treat these primitives as
new atomic actions to develop a hierarchical framework for modeling long-horizon tasks. Deciding
the threshold for segmenting actions into different levels of controller is one of the main bottlenecks
in hierarchical control, and current approaches usually resort to using domain knowledge to solve
the issue. These extracted primitives, a.k.a ‘macro’ actions, provide an alternative scaffolding which
could bootstrap the hierarchy in a bottom-up manner. To promote these follow-up ideas, we will
publicly release our code and environments.

Under review as a conference paper at ICLR 2020

REFERENCES

Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, and Simon
Lacoste-Julien. Learning from narrated instruction videos. IEEE transactions on pattern analysis
and machine intelligence, 40(9):2194-2208, 2018. 7

K. Ali and K. Saenko. Confidence-rated multiple instance boosting for object detection. In CVPR,
2014. 7

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 166-175. IMLR. org, 2017. 8

Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines for multiple-
instance learning. In NIPS, 2002. 2, 3, 4,7

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
NIPS, 2017. 7

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 2009. 1

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017. 8

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural information
processing systems, pp. 271-278, 1993. 8

Thomas G Dietterich, Richard H Lathrop, and Tomds Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial intelligence, 1997. 7

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAl Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In NIPS, 2017. 8

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint, 2018. 1

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. IEEE Tran. PAMI, 2010. 7

Alex Graves, Santiago Ferndndez, Faustino Gomez, and Jiirgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings
of the 23rd international conference on Machine learning, pp. 369-376. ACM, 2006. 8

David Heckerman. A tractable inference algorithm for diagnosing multiple diseases. arXiv preprint
arXiv:1304.1511, 2013. 7

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 1997. 3

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 2017. 1

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, pp. 3418-3428, 2019. 8

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and Li Fei-Fei. Roboturk: A
crowdsourcing platform for robotic skill learning through imitation. In Conference on Robot
Learning, 2018. 6

Iftekhar Naim, Young Chol Song, Qiguang Liu, Henry Kautz, Jiebo Luo, and Daniel Gildea. Unsu-
pervised alignment of natural language instructions with video segments. In Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014. 7

Under review as a conference paper at ICLR 2020

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In NeurIPS, 2018. 1, 8

Scott Niekum, Sarah Osentoski, George Konidaris, and Andrew G Barto. Learning and generalization
of complex tasks from unstructured demonstrations. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 5239-5246. IEEE, 2012. 8

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2661-2670. JMLR. org, 2017. 8

Deepak Pathak, Philipp Krédhenbiihl, and Trevor Darrell. Constrained convolutional neural networks
for weakly supervised segmentation. In ICCV, 2015a. 4,5, 7

Deepak Pathak, Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional multi-class
multiple instance learning. In /CLR, 2015b. 4

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation. In
ICLR, 2018. 1, 8

Pedro O Pinheiro and Ronan Collobert. Weakly supervised semantic segmentation with convolutional
networks. In CVPR, 2015. 4,7

Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly supervised action learning with rnn
based fine-to-coarse modeling. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 754-763, 2017. 7

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In ICML, 2015. 7

Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Gupta. Multiple interactions made easy
(mime): Large scale demonstrations data for imitation. arXiv preprint arXiv:1810.07121, 2018. 6

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. Taco:
Learning task decomposition via temporal alignment for control. arXiv preprint arXiv:1803.01840,
2018. 5,8

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press
Cambridge, 1998. 1

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.
8

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3540-3549.
JMLR. org, 2017. 8

Cha Zhang, John C Platt, and Paul A Viola. Multiple instance boosting for object detection. In NIPS,
2005. 7

Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, David Fouhey, Ivan Laptev, and
Josef Sivic. Cross-task weakly supervised learning from instructional videos. arXiv preprint
arXiv:1903.08225, 2019. 7

10

