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Abstract
In order to mimic the human ability of contin-
ual acquisition and transfer of knowledge across
various tasks, a learning system needs the capabil-
ity for life-long learning, effectively utilizing the
previously acquired skills. As such, the key chal-
lenge is to transfer and generalize the knowledge
learned from one task to other tasks, avoiding in-
terference from previous knowledge and improv-
ing the overall performance. In this paper, within
the continual learning paradigm, we introduce a
method that effectively forgets the less useful data
samples continuously across different tasks. The
method uses statistical leverage score informa-
tion to measure the importance of the data sam-
ples in every task and adopts frequent directions
approach to enable a life-long learning property.
This effectively maintains a constant training size
across all tasks. We first provide some mathemati-
cal intuition for the method and then demonstrate
its effectiveness with experiments on variants of
MNIST and CIFAR100 datasets.

1. Introduction
It is a typical practice to design and optimize machine learn-
ing (ML) models to solve a single task. On the other hand,
humans, instead of learning over isolated complex tasks,
are capable of generalizing and transferring knowledge and
skills learned from one task to another. This ability to re-
member, learn and transfer information across tasks is re-
ferred to as lifelong learning or continual learning (Thrun
& Mitchell, 1995; Hassabis et al., 2017; Parisi et al., 2019).
The major challenge for creating ML models with lifelong
learning ability is that they are prone to catastrophic forget-
ting (McClelland et al., 1995; McCloskey & Cohen, 1989).
ML models tend to forget the knowledge learned from previ-
ous tasks when re-trained on new observations correspond-
ing to a different (but related) task. Specifically when a
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deep neural network (DNN) is fed with a sequence of tasks,
the ability to solve the first task will decline significantly
after training on the following tasks. The typical structure
of DNNs by design does not possess the capability of pre-
serving previously learned knowledge without interference
between tasks or catastrophic forgetting. There have been
different approaches proposed to address this issue and they
can be broadly categorized in three types:

I) Regularization: It constrains or regularizes the model
parameters by adding some terms in the loss function that
prevent the model from deviating significantly from the
parameters important to earlier tasks. Typical algorithms in-
clude elastic weight consolidation (EWC) (Kirkpatrick et al.,
2017) and continual learning through synaptic intelligence
(SynInt) (Zenke et al., 2017).

II) Architectural modification: It revises the model struc-
ture successively after each task in order to provide more
memory and additional free parameters in the model for new
task input. Recent examples in this direction are progres-
sive neural networks (Rusu et al., 2016) and dynamically
expanding networks (Yoon et al., 2018).

III) Memory replay: It stores data samples from previ-
ous tasks in a separate memory buffer and retrains the new
model based on both the new task input and the memory
buffer. Popular algorithms here are gradient episodic mem-
ory (GEM) (Lopez-Paz & Ranzato, 2017), incremental clas-
sifier and representation learning (iCaRL) (Rebuffi et al.,
2017).

Among these approaches, regularization is particularly
prone to saturation of learning when the number of tasks
is large. The additional / regularization term in the loss
function will soon lose its competency when important pa-
rameters from different tasks are overlapped too many times.
Modifications on network architectures like progressive net-
works resolve the saturation issue, but do not scale as num-
ber and complexity of tasks increase. The scalability prob-
lem is also present when using memory replay and often
suffer from high computational and memory costs.

In this paper, we propose a novel approach to lifelong learn-
ing with DNNs that addresses both the learning saturation
and high computational complexity issues. In this method,
we progressively compresses the input information learned
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thus far along with the input from current task and form
more efficiently condensed data samples. The compres-
sion technique is based on the statistical leverage scores
measure, and it uses frequent directions idea in order to
connect the series of compression steps for a sequence of
tasks. Our approach resembles the use of memory replay
since it preserves the original input data samples from ear-
lier tasks for further training. However, our method does
not require extra memory for training and is cost efficient
compared to most memory replay methods. Furthermore,
unlike the importance assigned to model specific parameters
when using regularization methods like EWC or SynInt, we
assign importance to the training data that is relevant in ef-
fectively learning new tasks, while forgetting less important
information.

2. Online Leverage Score Sampling (OLSS)
Before presenting the idea, let’s first setup the problem:

Let {(A1, B1), (A2, B2), ..., (Ai, Bi), ...} represent a se-
quence of tasks, each task consists of ni data samples and
each sample has a feature dimension d and an output dimen-
sionm, i.e., inputAi ∈ Rni×d and true outputBi ∈ Rni×m.
Here, we assume the feature and output dimensions are fixed
for all tasks 1. The goal is to train a DNN over the sequence
of tasks and ensure it performs well on all of them. Here,
we consider that the network’s architecture stays the same
and the tasks are received in a sequential manner. Formally,
with f representing a DNN, our objective is to minimize the
loss 2:

min
f

∥∥f(A)−B
∥∥2
2

where A =


A1

A2

...
Ai
...

 and B =


B1

B2

...
Bi
...

 .
(1)

Under this setup, let’s look at some existing models:
Online EWC trains f on task (Ai, Bi) with a loss function
containing additional penalty terms minf

∥∥f(Ai)−Bi
∥∥2
2

+∑i−1
j=1 Λj and each Λj is defined as the change of impor-

tant parameters (using Fisher information matrix) in f with
respect to the jth task.

GEM keeps an extra memory buffer containing data sam-
ples from each of the previous tasks Mk with k < i, it

1If we know apriori that the feature or output dimensions are
different, we could choose a presumed larger value of d and m.
In lifelong learning our aim is to solve successive problems with
some degree of overlap. As such, the feature and output dimensions
being the same across tasks is not overly strict.

2Here, we represent a generic Euclidean loss term. However,
this could take the form of any typical formulation in terms of
l1-loss, l2-loss or cross-entropy loss as commonly used in classifi-
cation problems.

trains on the current task (Ai, Bi) with a regular loss func-
tion min

∥∥f(Ai)−Bi
∥∥2
2
, but subject to inequalities on each

update of f , 〈
∂ ‖fθ(Ai)−Bi‖2

2

∂θ ,
∂ ‖fθ(AMk

)−BMk‖
2

2

∂θ 〉 ≥ 0 for
all k < i.

The new approach OLSS is to find an approximation of A
in a streaming manner, i.e., to form an Âi to approximate
[A1 A2 · · · Ai]T such that the resulting

f̂i := arg min
f

∥∥∥f(Âi)− B̂i
∥∥∥2
2

is likely to perform on all tasks as good as

f∗i := arg min
f

∥∥∥f([A1 A2 · · · Ai]T )− [B1 B2 · · · Bi]T
∥∥∥2
2
.

(2)
To avoid extra memory and computation cost during the
training process, we restrict the approximate Âi to have the
same number of rows as the current task Ai.

Equation (1) and (2) represent nonlinear least squares prob-
lems. It is to be noted that a nonlinear least squares
problem can be solved with an approximation deduced
from an iteration of linear least squares problems with
JTJ∆θ = JT∆B where J is the Jacobian of f at each
update (Gauss-Newton Method). Besides this technique,
there are various approaches in addressing this problem.
Here we adopt a cost effective simple randomization tech-
nique - leverage score sampling, which has been used ex-
tensively in solving large scale linear least squares and low
rank approximation problems (Woodruff, 2014; Cohen et al.,
2017).

Statistical Leverage Score

Definition 1 (Drineas et al., 2012) Given a matrix A ∈
Rn×d with n > d, let U denote the n× d matrix consisting
of the d left singular vectors of A, and let U(i,:) denote the
i-th row of U , then the statistical leverage score of the i-th

row of A is defined as
∥∥∥U(i,:)

∥∥∥2
2

for i ∈ {1, ..., n}.

Statistical leverage scores define the relevant non-uniformity
structure of a matrix and a higher score indicates a heav-
ier weight of the row contributing to the non-uniformity of
the matrix; it has been widely used for constructing a ran-
domized sketch of a matrix (Drineas et al., 2012; Woodruff,
2014). In our case, given an input matrix A, we will com-
pute the leverage score of each row, then sample the rows
with probability proportional to the scores.

Using leverage score sampling, we are able to select the
important samples given a dataset. The remaining problem
is to embed it in a sequence of tasks. In order to achieve
this, we make use of the concept of frequent directions.
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Frequent Directions

Frequent directions extends the idea of frequent items in
item frequency approximation problem to a matrix (Liberty,
2013; Ghashami et al., 2016; Teng & Chu, 2018). Given
a matrix A ∈ Rn×d whose rows are received one by one
and a space parameter `, the algorithm considers the first
2` rows in A and shrinks its top ` orthogonal vectors by the
same amount to obtain an `× d matrix; then combines them
with the next ` rows in A for the next iteration, repeat the
procedure until reaching the final sketch of dimension `× d.
Frequent directions algorithm is targeted at finding a low
rank approximation on a continuously expanding matrix.
This is well suited for a continuous stream of data (tasks)
within the lifelong learning setting. We present the step
by step procedure of performing leverage score sampling
together with compression using frequent directions idea in
Algorithm 1. In our setting, we append the new task data
samples to the existing buffer set and perform leverage score
sampling to form a new buffer set and then train on it, this
process is repeated for the entire sequence of tasks.

Main Algorithm

Algorithm 1 OLSS

Input: A sequence of tasks {(A1, B1), ..., (Ai, Bi), ...}
with Ai ∈ Rni×d and Bi ∈ Rni×m; initialization of
the model parameters; a space parameter ` i.e., number
of samples to pass in the model for training. It can be set
as ni or even smaller after receiving the i-th task, which
avoids extra memory and computations during training.

Output: A trained neural network on a sequence of tasks.
Step 1 Initialize a buffer set S = {Â, B̂} where both Â

and B̂ are empty.
Step 2 While the ith task is presented:
Step 3 If Â and B̂ are empty:
Step 4 set Â = Ai and B̂ = Bi,
Step 5 else:

Step 6 set Â =

[
Â
Ai

]
and B̂ =

[
B̂
Bi

]
.

Step 7 Perform SVD: [U,Σ, V T ] = svd(Â).
Step 8 Randomly select ` rows of Â and B̂ without

replacement based on probability∥∥Uj,:∥∥22 /‖U‖2F for j ∈ {1, ..., ni + `} (or
j ∈ {1, ..., ni} when i = 1) and set them as Â
and B̂ respectively.

Step 9 Train the model with Â ∈ R`×d and B̂ ∈ R`×m.
Step 10 End

When ni is large, the SVD (singular value decomposition)
of matrix Â ∈ R(ni+`)×d in Step 6 is computationally
expensive, we could use a streaming SVD method to speed
up the process if ` is chosen much smaller than ni. In

that case the computational cost for SVD could be reduced
from O((ni + `)d2) to O(log2(ni + `)`d2) (assuming d <
` < ni). In addition, there exists various efficient ways to
approximate the leverage scores (Drineas et al., 2012; Rudi
et al., 2018) which would further reduce the computational
cost.

Remark: A major concern with this algorithm is that lever-
age scores is a linear measure, i.e., the selected samples
capture the important information embedded linearly in the
data matrix which may not fully represent the importance of
the data samples. Another related issue is that the nonlinear
information probably depend on the structure of f , the DNN.
As such, there may be some underlying dependency of a data
sample’s importance on the DNN architecture. We leave
this open as a future research direction.

3. Experiments
We evaluate the performance of the proposed algorithm
OLSS on three classification tasks used as benchmarks in
related prior work.

• Rotated MNIST (Lopez-Paz & Ranzato, 2017): a vari-
ant of the MNIST dataset of handwriten digits (LeCun
et al., 1998), the digits in each task are rotated by a
fixed angle between 0◦ to 180◦. The experiment is on
20 tasks and each task consists of 60, 000 training and
10, 000 testing samples.

• Permutated MNIST (Kirkpatrick et al., 2017): a vari-
ant of the MNIST dataset (LeCun et al., 1998), the
digits in each task are transformed by a fixed permuta-
tion of pixels. The experiment is on 20 tasks and each
task consists of 60, 000 training and 10, 000 testing
samples.

• Incremental CIFAR100 (Rebuffi et al., 2017; Zenke
et al., 2017): a variant of the CIFAR object recogni-
tion dataset with 100 classes (Krizhevsky, 2009). The
experiment is on 20 tasks and each task consists of 5
classes; each task consists of 2, 500 training and 500
testing samples. Where, each task introduces a new set
of classes; for a total number of 20 tasks, each new task
concerns examples from a disjoint subset of 5 classes.

In the original setting of (Lopez-Paz & Ranzato, 2017),
a softmax layer is added to the output vector which only
allows entries representing the 5 classes in the current task
to output values larger than 0. In our setting, we allow the
entries representing all the past occurring classes to output
values larger than 0. We believe this is a more natural setup
for lifelong learning.

The DNN used for rotated and permuted MNIST is an MLP
with 2 hidden layers and each with 400 units; whereas a
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ResNet18 is used for the incremental CIFAR100 experiment.
We train 5 epochs with batch size 200 on rotated and per-
muted MNIST datasets and 10 epochs with batch size 100
on incremental CIFAR100. In all experiments we compare
the following algorithms: I) A simple SGD predictor, II)
EWC (Kirkpatrick et al., 2017), III) GEM (Lopez-Paz &
Ranzato, 2017) and IV) OLSS (ours).

In all the algorithms, we use a plain SGD optimizer. All
algorithms were implemented based on the publicly avail-
able code from the original authors of the GEM paper
(Lopez-Paz & Ranzato, 2017). The regularization and mem-
ory hyper-parameters in EWC and GEM were set as de-
scribed in (Lopez-Paz & Ranzato, 2017). The space pa-
rameter for our OLSS algorithm was set to be equal to
the number of samples in each task; the learning rate for
each algorithm was determined through a grid search on
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0}.

Results

Comparing across all the algorithms, we summarize the
average test accuracy on the learned tasks in Figure 1 (see
Appendix Figure 2 for the change in the test accuracy at
the first task, as more tasks are learned.) and the compu-
tational costs for each algorithm in Table 1. As observed
from the figures, across the three benchmarks, OLSS and
GEM achieve similar accuracy and significantly outperform
both EWC and simple SGD training. Nevertheless, GEM
demands much higher computational resources (see Table
1) as the algorithm requires a constraint validation step and
a potential gradient projection step to correct for constraint
violations across all previously learned tasks during training
(see Section 3 in (Lopez-Paz & Ranzato, 2017)). In detail,
for GEM, the time complexity is proportional to the product
of the number of samples kept in the memory buffer, the
number of parameters in the model and the number of iter-
ations required to converge. In contrast, OLSS requires a
SVD (or QR factorization) to compute the leverage scores
for each task which can be achieved in a time complexity
proportional to the product of the square of the number
of features and the number of data samples, and is much
less compared to GEM. As observed in Appendix Figure
2, OLSS shows robustness to catastrophic forgetting of the
first task with positive backward transfer across all three
datasets while learning the remaining sequence of tasks. In
the case of rotated and permuted MNIST, OLSS is the most
robust method.

As presented in Appendix Figure 3, after training on the
whole sequence of tasks, both GEM and OLSS are able
to preserve the accuracy for most tasks on rotated and per-
muted MNIST. In contrast, it is hard to preserve the accuracy
of the previously trained tasks on CIFAR100 for all algo-
rithms. As we noted earlier, EWC exhibits a saturation issue
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Figure 1. Evolution of average test accuracy across all the learned
tasks after training on a sequence of tasks. (E.g., the accuracy
value at Task = 10 means the average test accuracy on Task 1−10
after training the model for 10 consecutive tasks.)

when the number of tasks increases. This may hold for
most regularization methods in order to achieve continual
learning, as they target constraining the model parameters
successively, thereby limiting the model capacity.

Table 1. Wall Clock Time (s)
ROTATED PERMUTED INCREMENTAL
MNIST MNIST CIFAR100

SGD 158 152 780
EWC 944 896 1213
GEM 8688 8846 17868
OLSS 496 455 1363

4. Conclusions
We presented a new approach in addressing the lifelong
learning problem with deep neural networks. It is inspired
by the randomization and compression techniques typically
used in statistical analysis. We combined a simple impor-
tance sampling technique - leverage score sampling with
the frequent directions concept and developed an online
effective forgetting or compression mechanism that enables



Lifelong Learning via OLSS

lifelong learning across a sequence of tasks. Despite its
simple structure, the results on MNIST and CIFAR100 ex-
periments show its effectiveness as compared to recent state
of the art.
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A. Further experimental results
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Figure 2. Evolution of test accuracy for the first task after training
on a sequence of tasks. (E.g., the accuracy value at Task = 10
means the accuracy of Task 1 after training the model for 10
consecutive tasks.)
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Figure 3. Accuracy of each task after training sequentially on all
tasks. (E.g., the accuracy value at Task = 10 means the accuracy
of Task 10 after training the model on all tasks sequentially.)


