
Training a Network of Spiking Neurons with Equilibrium Propagation

Peter O’Connor 1 Efstratios Gavves 1 Max Welling 1 2

Abstract
Backpropagation is almost universally used to
train artificial neural networks. However, there
are several reasons that backpropagation could
not be plausibly implemented by biological neu-
rons. Among these are the facts that (1) bio-
logical neurons appear to lack any mechanism
for sending gradients backwards across synapses,
and (2) biological “spiking” neurons emit binary
signals, whereas back-propagation requires that
neurons communicate real numbers between one
another. Recently (Scellier and Bengio, 2017),
demonstrated an alternative to backpropagation,
called Equilibrium Propagation, wherein gradi-
ents are implicitly computed by the dynamics of
the neural network, so that neurons do not need an
internal mechanism for backpropagation of gra-
dients. This provides an interesting solution to
problem (1). In this paper, we address problem (2)
by proposing a way in which Equilibrium Prop-
agation can be implemented with neurons which
are constrained to just communicate binary values
at each time step. We show that with appropriate
step-size annealing, we can converge to the same
fixed-point as a real-valued neural network, and
that with predictive coding, we can make this con-
vergence much faster. We demonstrate that the
resulting model can be used to train a neural net-
work using the update scheme from Equilibrium
propagation.

1. Introduction
The “neurons” used in deep learning are so-named because
of their loose correspondence to biological neurons. There
are however, a number of fundamental differences between
the types of neurons used in deep learning and those we
observe in biology (Crick, 1989). Among them are :

*Equal contribution 1QUVA Lab, University of Amsterdam
2Qualcomm Netherlands. Correspondence to: Peter O’Connor
<peter.ed.oconnor@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1. Gradient Propagation: Neurons used in deep learn-
ing emit two types of signals - an activation on the
forward pass, and a gradient on the backward pass.
Biological neurons are only known to emit one kind
of signal - a forward activation, and do not appear to
transmit gradients backwards across synapses.

2. Activations Functions: Neurons in deep learning
have continuous, differentiable activation functions.
This is necessary in order to propagate useful gradients
back through the network. Biological neurons instead
emit streams of all-or-nothing impulses called “spikes”,
which are some function of recent inputs to the neuron.

These two characteristics pose a conundrum to those look-
ing to reconcile theories in machine-learning with how the
brain might be reasonably expected to operate. The recent
successes in deep learning have been based on achieving
gradient-descent by propagating error-gradients backwards
through a network. But it is not clear at all how biological
neurons could achieve this.

Equilibrium Propagation, proposed by (Scellier and Bengio,
2017), showed how one may propagate gradients through
a deep network in a setting where neurons only produce
one type of signal, the forward activation. The authors
use a continuous Hopfield network (Hopfield, 1984) - a
symmetrically-weighted neural network whose dynamics
are defined according to the gradient of an energy function
(∂s∂t ∝ −

∂E
∂s , where s is the state of the neurons). Learning

is based on allowing the network to converge to a fixed-
point conditioned on the input data, then perturbing the
output units towards the target, and then updating parame-
ters to minimize a contrastive loss between the fixed-point
state and the perturbed state. Their work showed a semi-
plausible mechanism by which biological neural may be
able to achieve gradient descent.

The original formulation of Equilibrium Propagation, how-
ever, still assumes continuous-valued units. In this paper,
we constrain neurons to emit binary-valued signals, and
look at how neurons can efficiently convey their real-valued
activations to other neurons despite this bottleneck.

This line of research may be of interest for designing the
next generation of neural network hardware. A continuous-
dynamical system can be implemented with an analog cir-

Training a Network of Spiking Neurons with Equilibrium Propagation

cuits, but electrical issues such as capacitance, inductance,
and cross-talk make it difficult to faithfully transmit analog
values over longer distances. Digital signals, by compar-
ison, can be transmitted with ease. The brain appears to
use a hybrid approach, with neurons having analog internal
dynamics but communicating with one another using digital
“spikes”.

2. Background
2.1. A Neural Network as a Dynamical System

Suppose we have a network of recurrently connected neu-
rons with symmetric weights (wij = wji). This is known as
a continuous Hopfield Network. (Hopfield, 1984) proposed
an energy-function for such a network, which can be defined
as:

E(s) =
1

2

∑
u

s2i −
∑
i 6=j

wijρ(si)ρ(sj)−
∑
i

biρ(si) (1)

Where si is the activation of neuron i, wij and bi are model
parameters, and ρ is a nonlinearity ((Scellier and Bengio,
2017) use a hard sigmoid function: ρ(s) = [s]10, where
[·]ba indicates that values outside the range of a and b are
clipped to these limits). Given this energy function, we can
define the temporal dynamics that minimize this energy with
respect to activations:

∂sj
∂t

= −∂E(sj)

∂sj
= −sj + ρ′(sj)

(∑
i

wijρ(si) + bj

)
(2)

Where ρ′(sj) is the derivative of the activation function
about sj . For implementation in discrete time, this can be
expressed as a difference-equation (this is known as the
Forward Euler Method):

stj =

[
(1− ε)st−1j + ερ′(st−1j)

(∑
i

wijρ(st−1i) + bj

)]1
0

(3)

Where ε ∈ (0, 1) can be seen either as the size of the time-
step or as the learning-rate of the activations. This update
will converge to the optimum for a sufficiently small ε (e.g.
ε = 1

2).

2.2. Equilibrium Propagation

(Scellier and Bengio, 2017) proposed a method for using
a continuous Hopfield Network to implement gradient de-
scent on a loss defined over a subset of units in the network.

They propose a two-phase learning algorithm called Equi-
librium Propagation. In Equilibrium Propagation, units are
partitioned into input, hidden, and output neurons, whose
states we denote sin, shid, and sout, respectively. They de-
fine some loss function between some target variable y and
output activations: L = C(sout, y)

In the “Negative Phase”, we are given an input vector x, and
clamp the corresponding input units to that value: (sin = x).
The remaining units (shid and sout) are allowed to settle to
an energy minimum s− according to Equation 3.

In the “Positive Phase”, the output units are “weakly
clamped” by the loss function. The “weak clamping” is
done by adding the loss to the energy function from Equa-
tion 1: Eβ(s) = E(s) + βC(sout, y) (where β is some
small scalar), and allowing the network to briefly settle to a
state s+. Finally, network parameters are updated according
to the difference between these states:

∆w =
η

β

(
∂E(s+)

∂w
− ∂E(s−)

∂w

)
∝∼ −

∂L
∂w

(4)

Where η is some learning rate. (Scellier and Bengio, 2017)
show that for small β, the resulting parameter update is
proportional to ∂L

∂w . Intuitively, the idea works by pulling
the minima of E(s) closer to the minima of Eβ(s) (when
sin = x) so that the network will gradually learn to naturally
minimize the output loss.

3. Binary Communication
Suppose we now operate under the constraint that neurons
can only output binary values at each time-step. Our ob-
jective is to still converge to the same fixed-points as the
continuous-valued dynamical system. We modify Equation
3 to describe the dynamics of a binary “spiking” neuron as
follows:

utj =
∑
i

wijq
t−1
i

vtj , ψ
t
j = dec(utj , ψ

t−1
j)

εtj , ξ
t
j = anneal(εt−1j , vtj , ξ

t−1
j)

stj = [(1− εtj)st−1j + εtjρ
′(st−1j)

(
vtj + bj

)
]10

qtj , φ
t
j = enc(ρ(stj), φ

t−1
j)

(5)

Where qtj ∈ {0, 1} is the binary signal from neuron j at time
t. enc and dec are functions for encoding and decoding sig-
nals between neurons, anneal is a function of updating the
step size ε, and internal state variables φ, ψ, ξ of functions
enc, dec and anneal can take any form.

In this work we show how various definitions of enc, dec
and anneal affect the convergence of our discrete dynam-

Training a Network of Spiking Neurons with Equilibrium Propagation

ics to the true minimum of the energy (Equation 1). Our
objective is then to settle as fast a possible to a fixed point
under the constraint that neurons can only communicate
binary signals at each time step. In the following sections
we propose a quantization method that allows our neurons
to efficiently settle towards this fixed point.

3.1. Stochastic Approximation

One approach we could take is to look at this as a Stochastic
Approximation problem from the perspective of each neuron.
The task of Stochastic Approximation is to keep an online
estimate θ̂t of a time-varying parameter θt from a stream
of noisy samples xt ∼ θt + ζt, where ζt is some unbiased
noise. When θt is not constant in time, we stay the input is
nonstationary.

(Robbins and Monro, 1951) showed that if the nonstation-
arity is transient (θt converges to a final value over time),
we can sequentially average out the noisy samples to form
estimates:

θ̂t = (1− εt)θ̂t−1 + εtxt (6)

If we anneal the step-size (or learning rate) εt in such a
way that

∑∞
t=0 ε

t = ∞ and
∑∞
t=0(εt)2 < ∞, then our

estimator eventually converges to the true parameter values
(limt→∞ θ̂t = θ). For stationary problems, when θt =
θ0 : ∀t, the optimal annealing schedule is εt = 1

t , which
corresponds to a simple moving average. For nonstationary
signals (e.g. the activations in our network, which undergo
some transient dynamics before settling), we can converge
faster by forgetting early samples, so that the average is not
corrupted by stale values. There are a number of ways to do
this (George and Powell, 2006). A simple one is to schedule
the step-size as:

εt =
ε0

(t)η
(7)

With the exponent η ∈ (1
2 , 1). This guarantees that as t→

∞, the inputs at t = 0 diminish to have zero weight relative
to the most recent inputs, but the average still smooths over
an ever-growing number of samples.

3.2. A Naive Approach: Stochastic Rounding and the
Robinson-Munroe Annealing

In our case, the parameter we want to estimate is the total in-
put received from all other neurons at the energy minimum:∑
i wijρ(s−i). The noise arises from trying to represent real

signals with a temporal stream of bits. The non-stationarity
arises from the fact that the rest of the network has not yet
settled to the fixed point. Note that our estimate itself af-
fects future inputs: Neurons are connected recurrently in a

network and the estimator in neuron i affects the estimator
in neuron j which in turn affects the estimators in neuron i.

Suppose each input neuron i in Equation 5 stochastically
outputs bits qti ∼ Bernoulli(ρ(si)), where ρ(si) ∈ (0, 1) is
the neuron’s activation. Since qti is an unbiased estimator of
ρ(si), a neuron j receiving this signal i should eventually
average it out, along with all its other inputs, to achieve
a correct estimate of

∑
i wijρ(s−i), provided that its input

neurons do indeed converge to the correct fixed point s−i . A
simple communication scheme can then be described (with
reference to the variables in Equation 5) as:

qt = Bern(ρ(st)) Stochastic Encoder (8)

vt = ut Identity Decoder (9)

εt =
1

(t)η
Annealer (10)

3.3. Faster Convergence with Sigma-Delta Modulation

There are more efficient ways to communicate a time-
varying real value than to send random bits centered around
that value. A simple method from signal processing for
encoding time-varying signals is Sigma-Delta modulation
(Candy and Temes, 1962). Suppose we have a time-varying
input signal x1, ...xt where xτ ∈ (0, 1)∀τ . We then quan-
tize xt into qt according to:

φ′ = φt−1 + xt

qt =

[
φ′ >

1

2

]
Sigma Delta Encoder

φt = φ′ − qt

(11)

Where [a > b] evaluates to 1 if a > b and 0 otherwise.
By expanding Equation 11 recursively, we can verify that
if xt ∈ (0, 1) and φ0 = 0, the mean quantization error is
bounded: 1

T

∣∣∣∑T
t=0(xt − qt)

∣∣∣ ≤ 1
2T . So we have O(1/T)

convergence, compared to the O(1/
√
T) convergence that

we would get from averaging out a stochastic estimator.

Note that this corresponds to an “integrate-and-fire” quanti-
zation - inputs are added to a “potential” φ, and once that
potential crosses a threshold a “spike” (q(t) = 1) is sent out,
and subtracted from the potential. Sigma-Delta modulation
has previously been used as a model of the neural spiking
mechanism: (Yoon, 2016), (Zambrano and Bohte, 2016),
(O’Connor et al., 2017).

3.4. Predictive Coding

When the signal is time-varying, it seems like a poor use
of bandwidth to simply communicate a stream of bits that

Training a Network of Spiking Neurons with Equilibrium Propagation

averages out to the current signal value. Instead, we can
use an encoding scheme wherein neurons primarily send
temporal changes in the signal value to downstream neurons,
and downstream neurons integrate these changes. This is
an instance of Predictive Coding, a widely used concept in
the Signal Processing literature. Predictive Coding has in
the past been proposed as a possible mechanism in neural
communication. (Srinivasan et al., 1982), (Shin, 2001),
(Tewksbury and Hallock, 1978), (Bharioke and Chklovskii,
2015).

Lossy Predictive Coding is a method for efficiently encoding
a real-valued signal as a bitstream, and decoding it again on
the other end of a communication channel. At each time-
step, a predictor attempts to predict the current signal from
past signal values, and the prediction is subtracted from the
signal before quantization. On the receiving end, the same
predictor is used to reconstruct the signal from the stream of
bits. In the case where the predictor is a linear function of
past inputs, we can exploit the commutativity of the weight-
multiplication and decoding operations (O’Connor et al.,
2017) to sandwich a weight matrix between the encoders
and decoders. Here, we formulate an extremely simple
predictor Pred(xt−1, ...x0) = (1−λ)xt−1 where λ ∈ (0, 1).
We formulate this system (with reference to the variables in
Equation 5) as:

at =
1

λ

(
ρ(st)− (1− λ)ρ(st−1)

)
Predictive Encoder

qt = Q(at)

(12)

Where Q is some (possibly stateful) quantization procedure,
such Sigma-Delta modulation (Equation 11) or Stochastic
Rounding (Equation 8). On the decoding side, we sum
up the weighted quantized inputs and invert the encoding
function:

utj =
∑
i

wijq
t−1
i

vtj = (1− λ)vt−1j + λutj Predictive Decoder
(13)

When λ is close to 0, we have a system that only sends
changes in state, and accumulates these change in a running
sum. When λ is 1, we recover the case with no predictive
coding.

3.5. Lambda-Annealing

As was the case with ε, it is also possible to anneal the
prediction-factor λ. Intuitively, we would like to start the
convergence process with a very short memory (λ close to
1), primarily using bits to communicate the rapidly changing

current state. Later, as we approach a fixed point, we would
like to lengthen the memory (λ close to 0) and use our bits
to communicate increasingly fine increments to the state.

3.6. The Resulting Model

Combining Sigma-Delta encoding from Equation 11 with
the predictive encoder/decoder of Equations 12 and 13 by
plugging them all into Equation 5 results in a biologically-
plausible model that applies double-exponential smoothing
to inputs and produces output spikes with an integrate-and-
fire mechanism:

vtj = (1− λt)vt−1j + λt
∑
i

wijq
t−1
i

stj = [(1− εt)st−1j + εtρ′(st−1j)
(
vtj + bj

)
]10

at =
1

λt
(
ρ(st)− (1− λt)ρ(st−1)

)
qtj = [φt−1j + atj >

1

2
]

φtj = φt−1j + atj − qtj

(14)

Figure 1 shows some example dynamics from our model.

4. Experiments
We explore several combinations of the hyperparameters
εt, λt and the quantizer, introduced in Section 3. First in
Section 4.1, we compare the rate at which these various
hyperparameter settings converge to the fixed point for ran-
domly initialized networks. Then in Section 4.2 we apply
the more promising settings to train a neural network on the
MNIST dataset.

4.1. Convergence

To understand how our encoding/decoding parameters af-
fect the rate of convergence, we use a randomly initialized
network with 3 layers of [500-500-10] units, where the first
is considered the "input" layer and is clamped to a ran-
dom input vector (sin = x). We find the true fixed point
s∗ by running a continuous-valued network (Equation 3)
for a long time, then evaluate the rate at which our bina-
rized network activations st converge to the true fixed point:
error(t) = ‖s∗ − st‖. We find that the best convergence is
obtained by annealing both λ (the predictive coding term),
and ε (the step size). Using a random search with 5000 trials,
we looked for an optimal annealing schedule (in terms of
the lowest mean error over the convergence process) in the
form of Equation 7, and obtained εt = 0.84

t0.092 , λt = 0.83
t0.58 .

This seems to indicate that annealing λ is helpful. Figure 2
plots the results.

Training a Network of Spiking Neurons with Equilibrium Propagation

s1
s2
s3

uj

0 50 100 150 200
t

sj (real)
sj (binary)

Figure 1. An illustration of the evolution of a neuron in response
to converging inputs. Top: The values of three input neurons as
they converge towards a fixed point. Tick marks indicate the times
where the encoders of those neurons output a 1. Row 2: The total
weighted input from the input neurons to a post-synaptic neuron.
Row 3: the step size ε as it anneals from an initial value of 1.
Bottom: A comparison of the value of the post-synaptic neuron
under the continuous dynamics (Equation 3, red curve) and our
binary dynamics (Equation 14, black curve).

4.2. Equilibrium Propagation on MNIST

We applied our quantization methods to train our binary-
valued network on the MNIST dataset using Equilib-
rium Propagation. We compare to our implementation of
continuous-valued Equilibrium-Propagation by (Scellier and
Bengio, 2017). Unlike the author’s implementation, we did
not use the trick of keeping persistent activations per training
sample between epochs. This trick would have improved
the performance of both the continuous and binary network
but would not be useful in drawing conclusion about the
performance of the binary network relative to the continuous
one.

Somewhat surprisingly, our binary-network performed on-
par with continuous-network (see Figure 3). Our binary
network achieved a 2.34% test / 0.066% training error, com-
pared to the continuous network’s 2.57% test / 0.036% train-
ing error.

We found the performance to be quite sensitive to the choice
of ε and λ hyperparameters. For many parameter settings,
the training procedure completely failed to converge and

100 101 102 103 104

t

10 4

10 3

10 2

10 1

|e
rr

or
(t)

|

q: , =1/2
q: , =1/t
q: , =1/ t

q:stochastic, =1/ t
q: , =0.84/t0.092, =0.83/t0.58

1/ t
1/t

Figure 2. The convergence of the state of our binary network to
the true Energy minimum (see Section 4.1). Note the log-log axis.
q = stochastic indicates stochastic rounding (Equation 8) and
q = Σ∆ indicates Sigma-Delta quantization (Equation 11). The
best results (purple line) were obtained by random search for ε and
λ schedules in the form of Equation 7.

network’s prediction scores remained at chance levels. We
suspect that the reason for these failures is that the network
had not sufficiently converged by the end of the negative
phase. Thus the difference between the positive-phase state
s+ and negative-phase state s− in Equation 4 not only re-
flected the effect of the target-perturbation, but also direction
that the network would have settled anyway (without the
perturbation). This can push units into a useless, saturated
regime.

5. Discussion
Our study is preliminary and there is much to explore. Much
of the work in the stochastic approximation literature is
about how to adapt step-sizes according to the statistics of
the incoming sample stream (Chau and Fu, 2015), (George
and Powell, 2006). We expect that step-size adaptation
will lead to better performance, and intend to explore these
methods in future work. It is also unclear whether we can
simply transfer adaptive step-size algorithms to the similar
task of choosing optimal predictive coding coefficients (λ).
(Bharioke and Chklovskii, 2015) suggested that including
a nonlinearity in the predictor can have the effect of rapid
online adaptation of prediction coefficients. Adaptive step
sizes will allow us to perform inference on nonstationary
data. We can imagine constructing a network which settles
to a precise fixed-point when data is unchanging but then
adapts itself to take larger, coarser steps when it sees the
input has started changing rapidly (e.g. during a saccade).

Training a Network of Spiking Neurons with Equilibrium Propagation

0 5 10 15 20 25
Epoch

0

2

4

6

8

10
Cl

as
sif

ica
tio

n
Er

ro
r

Continuous Eq-Prop: Train
Continuous Eq-Prop: Test
Binary Eq-Prop: Train
Binary Eq-Prop: Test

Figure 3. Learning curves on the MNIST dataset, on an equilibrium
propagation network with one hidden layer. The Blue Curves:
Training/Test set Learning curves of our implementation of “Real-
Valued” Equilibrium propagation by (Scellier and Bengio, 2017).
Orange Curve: Scores from our Binary-Values implementation
with the best-performing quantization hyperparameters from Fig-
ure 2.

There are still several obstacles to doing truly biologically
plausible deep learning. One subtle issue is that we rely
on “capturing” a negative state s− and a positive state s+

in order to do the parameter update (Equation 4). This
requires holding onto two states at once - something which
biological neurons seem unlikely to do. If we instead take
the approach of using the rate of change of the postsynaptic
neuron at the beginning of the positive phase, as suggested
in (Bengio et al., 2015), (Scellier and Bengio, 2017), (i.e.
∆wij ∝ ρ(si)

∂sj
∂t) we have the problem that we get very

noisy updates due to the quantization. If we run the update
for several time-steps so that the noise cancels, we face
yet another problem - the trajectory of s+j is not just being
moved by the introduction of the target signal, but also
the fact that wij has changed. This can cause a positive
feedback loop. Empirically, we found that this prevented
effective learning.

Another lingering biological-implausibility that is not spe-
cific to our algorithm is that we still use symmetric weights.
Learning with symmetric weights implies an additional com-
munication channel to synchronize synapse wij of neuron
j to synapse wji of neuron i. However recent work by
(Scellier et al., 2018) and (Lillicrap et al., 2014) seems to
suggest that this may not be a problem, because weights
tend to align themselves to be approximately symmetrical
through learning anyway. Another obstacle is that biological
networks do not appear to have distinct forward/backward
passes, or negative/positive phases (except perhaps on the
very slow timescale of the sleep/wake cycle). It is still not
clear how one could do learning in a setting where new data
is continuously coming in and we do not have the luxury of
pausing our sensory input while we wait for our brains to

do a forward/backward pass or settle to an energy minimum.
Even if we could, we face the problem of Catastrophic For-
getting, wherein deep networks tend to forget old training
data when presented with a nonstationary stream of train-
ing samples (though (Kirkpatrick et al., 2017) have done
some work addressing this). Finally the question of how to
learn temporal sequences without doing backpropagation-
through-time remains an open one, though recent works
such as (Ollivier et al., 2015) and (Tallec and Ollivier, 2017)
have begun to address this.

We speculate that this work is relevant to the design of
asynchronous neural computing hardware. One can imag-
ine future neural-computers wherein neurons are imple-
mented as loosely-coupled physical circuits that operate
asynchronously. These neurons may internally perform ana-
log computations, and asynchronously send digital “spikes”
whenever a neuron’s internal dynamics crosses some thresh-
old. Such an architecture, with no need for a centralized
clock and with memory closely coupled to processing, could
allow for much more scalable neural computing machines.

Code is available at https://github.com/
QUVA-Lab/spiking-equilibrium-prop

https://github.com/QUVA-Lab/spiking-equilibrium-prop
https://github.com/QUVA-Lab/spiking-equilibrium-prop

Training a Network of Spiking Neurons with Equilibrium Propagation

References
Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng

Zhang, and Yuhuai Wu. Stdp as presynaptic activity times
rate of change of postsynaptic activity. arXiv preprint
arXiv:1509.05936, 2015.

Arjun Bharioke and Dmitri B Chklovskii. Automatic adapta-
tion to fast input changes in a time-invariant neural circuit.
PLoS computational biology, 11(8):e1004315, 2015.

James C Candy and Gabor C Temes. Oversampling delta-
sigma data converters: theory, design, and simulation.
University of Texas Press, 1962.

Marie Chau and Michael C Fu. An overview of stochastic
approximation. In Handbook of Simulation Optimization,
pages 149–178. Springer, 2015.

Francis Crick. The recent excitement about neural networks.
Nature, 337(6203):129–132, 1989.

Abraham P George and Warren B Powell. Adaptive step-
sizes for recursive estimation with applications in approx-
imate dynamic programming. Machine learning, 65(1):
167–198, 2006.

John J Hopfield. Neurons with graded response have col-
lective computational properties like those of two-state
neurons. Proceedings of the national academy of sciences,
81(10):3088–3092, 1984.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of
sciences, page 201611835, 2017.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed,
and Colin J Akerman. Random feedback weights sup-
port learning in deep neural networks. arXiv preprint
arXiv:1411.0247, 2014.

Peter O’Connor, Efstratios Gavves, and Max Welling. Tem-
porally efficient deep learning with spikes. arXiv preprint
arXiv:1706.04159, 2017.

Yann Ollivier, Corentin Tallec, and Guillaume Charpiat.
Training recurrent networks online without backtracking.
arXiv preprint arXiv:1507.07680, 2015.

Herbert Robbins and Sutton Monro. A stochastic approx-
imation method. The annals of mathematical statistics,
pages 400–407, 1951.

Benjamin Scellier and Yoshua Bengio. Equilibrium propa-
gation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuro-
science, 11:24, 2017.

Benjamin Scellier, Anirudh Goyal, Jonathan Binas, Thomas
Mesnard, and Yoshua Bengio. Extending the frame-
work of equilibrium propagation to general dynamics,
2018. URL https://openreview.net/forum?
id=SJTB5GZCb.

Jonghan Shin. Adaptive noise shaping neural spike encoding
and decoding. Neurocomputing, 38:369–381, 2001.

Mandyam V Srinivasan, Simon B Laughlin, and Andreas
Dubs. Predictive coding: a fresh view of inhibition in
the retina. Proceedings of the Royal Society of London B:
Biological Sciences, 216(1205):427–459, 1982.

Corentin Tallec and Yann Ollivier. Unbiased online re-
current optimization. arXiv preprint arXiv:1702.05043,
2017.

S Tewksbury and RW Hallock. Oversampled, linear pre-
dictive and noise-shaping coders of order n> 1. IEEE
Transactions on Circuits and Systems, 25(7):436–447,
1978.

Young C Yoon. Lif and simplified srm neurons encode sig-
nals into spikes via a form of asynchronous pulse sigma-
delta modulation. 2016.

Davide Zambrano and Sander M Bohte. Fast and efficient
asynchronous neural computation with adapting spiking
neural networks. arXiv preprint arXiv:1609.02053, 2016.

https://openreview.net/forum?id=SJTB5GZCb
https://openreview.net/forum?id=SJTB5GZCb

