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ABSTRACT

In this paper, we consider the problem of training structured neural networks (NN)
with nonsmooth regularization (e.g. ¢;-norm) and constraints (e.g. interval con-
straints). We formulate training as a constrained nonsmooth nonconvex optimiza-
tion problem, and propose a convergent proximal-type stochastic gradient descent
(ProxSGD) algorithm. We show that under properly selected learning rates, with
probability 1, every limit point of the sequence generated by the proposed Prox-
SGD algorithm is a stationary point. Finally, to support the theoretical analysis
and demonstrate the flexibility of ProxSGD, we show by extensive numerical tests
how ProxSGD can be used to train either sparse or binary neural networks through
an adequate selection of the regularization function and constraint set.

1 INTRODUCTION

In this paper, we consider the problem of training neural networks (NN) under constraints and reg-
ularization. It is formulated as an optimization problem
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where x is the parameter vector to optimize, y; is the i-th training example which consists of the
training input and desired output, and m is the number of training examples. The training loss f
is assumed to be smooth (but nonconvex) with respect to x, the regularization r is assumed to be
convex (but nonsmooth), proper and lower semicontinuous, and the constraint set X is convex and
compact (closed and bounded).

When r(x) = 0and X = R", stochastic gradient descent (SGD) has been used to solve the optimiza-
tion problem (I). At each iteration, a minibatch of the mn training examples are drawn randomly,
and the obtained gradient is an unbiased estimate of the true gradient. Therefore SGD generally
moves along the descent direction, see |[Bertsekas & Tsitsiklis| (2000). SGD can be accelerated by
replacing the instantaneous gradient estimates by a momentum aggregating all gradient in past it-
erations. Despite the success and popularity of SGD with momentum, its convergence had been an
open problem. Assuming f is convex, analyzing the convergence was first attempted in|Kingma &
Ba (2015)) and later concluded in Reddi et al.| (2018)). The proof for a nonconvex f was later given
in|Chen et al.| (2019); [Lei et al.|(2019).
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In machine learning, the regularization function r is typically used to promote a certain structure
in the optimal solution, for example sparsity as in, e.g., feature selection and compressed sensing,
or a zero-mean-Gaussian prior on the parameters (Bach et al.| 2011} Boyd et al., 2010). It can be
interpreted as a penalty function since at the optimal point «* of problem (1)), the value r(x*) will
be small. One nominant example is the Tikhonov regularization r(x) = u||z||3 for some predefined
constant y, and it can be used to alleviate the ill-conditioning and ensure that the magnitude of the
weights will not become exceedingly large. Another commonly used regularization, the ¢;-norm
where 7(x) = pllz|1 = p3 7, |7;| (the convex surrogate of the £p-norm), would encourage a
sparse solution. In the context of NN, it is used to (i) promote a sparse neural network (SNN) to
alleviate overfitting and to allow a better generalization, (ii) accelerate the training process, and (iii)
prune the network to reduce its complexity, see Louizos et al.|(2018)) and |Gale et al.| (2019).

Technically, it is difficult to analyze the regularizations as some commonly used convex regularizers
are nonsmooth, for example, ¢1-norm. In current implementations of TensorFlow, the gradient of
|| is simply set to O when = = 0. This amounts to the stochastic subgradient descent method and
usually exhibits slow convergence. Other techniques to promote a SNN includes magnitude pruning
and variational dropout, see|Gale et al.|(2019).

Although regularization can be interpreted as a constraint from the duality theory, sometimes it may
still be more desirable to use explicit constraints, for example, xf < «, where the summation is
over the weights on the same layer. This is useful when we already know how to choose . Another
example is the lower and upper bound on the weights, that is, I < w < wu for some predefined [
and u. Compared with regularization, constraints do not encourage the weights to stay in a small
neighborhood of the initial weight, see Chapter 7.2 of |Goodfellow et al.| (2016) for more details.

The set X models such explicit constraints, but it poses an additional challenge for stochastic gradient
algorithms as the new weight obtained from the SGD method (with or without momentum) must be
projected back to the set X to maintain its feasibility. However, projection is a nonlinear operator,
so the unbiasedness of the random gradient would be lost. Therefore the convergence analysis for
constrained problems is much more involved than unconstrained problems.

In this paper, we propose a convergent proximal-type stochastic gradient algorithm (ProxSGD) to
train neural networks under nonsmooth regularization and constraints. It turns out momentum plays
a central role in the convergence analysis. We establish that with probability (w.p.) 1, every limit
point of the sequence generated by ProxSGD is a stationary point of the nonsmooth nonconvex
problem (I). This is in sharp contrast to unconstrained optimization, where the convergence of the
vanilla SGD method has long been well understood while the convergence of the SGD method with
momentum was only settled recently. Nevertheless, the convergence rate of ProxSGD is not derived
in the current work and is worth further investigating.

To test the proposed algorithm, we consider two applications. The first application is to train a SNN,
and we leverage ¢ -regularization, that is,

I R
minimize Ez:fi(m,yi)+ﬂ||m||l~ @)

The second application is to train a binary neural network (BNN) where the weights (and activations)
are either 1 or -1 (see /Courbariaux et al.| (2015;2016); Hou et al.| (2017);|Y1in et al.|(2018)); Bai et al.
(2019) for more details). To achieve this, we augment the loss function with a term that penalizes
the weights if they are not +1 or -1:

N - 2
mlmmlze Zf’ (z,y:) Z z_: aj(z; + 1) + (1 —a;)(z; — 1)?)
subject to aj:()orl,jzl,...,n,

where 41 is a given penalty parameter. The binary variable a; can be interpreted as a switch for
weight z;: when a; = 0, (1 — a;)(z; — 1)? is activated, and there is a strong incentive for z; to be
1 (the analysis for a; = 1 is similar). Since integer variables are difficult to optimize, we relax a;
to be a continuous variable between 0 and 1. To summarize, a BNN can be obtained by solving the
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following regularized optimization problem under constraints with respect to  and a

mlmmlze Zf’ (z,y;) %Z aj(z; + 1) + (1 —a;)(z; — 1)?)

subject to Ogajgl,]:l,..., . 3)

If p is properly selected (or sufficiently large), the optimal a; will be exactly or close to 0 or 1.
Consequently, regularization and constraints offer interpretability and flexibility, which allows us to
use more accurate models to promote structures in the neural networks, and the proposed convergent
ProxSGD algorithm ensures efficient training of such models.

2 THE PROPOSED PROXSGD ALGORITHM

In this section, we describe the ProxSGD algorithm to solve ().
Background and setup. We make the following blanket assumptions on problem (T)).

* fi(x,y™) is smooth (continuously differentiable) but not necessarily convex.

* Vafi(x,y®) is Lipschitz continuous with a finite constant L; for any y;. Thus V f(z) is
Lipschitz continuous with constant L = L 5" [,

* r(x) is convex, proper and lower semicontinuous (not necessarily smooth).
* Xis convex and compact.

We are interested in algorithms that can find a stationary point of (I). A stationary point x* satisfies
the optimality condition: at x = x*,

(& —x*) 'V f(x*) +r(x) —r(x*) >0,Vz € X. 4)

When r(x) = 0 and X = R", the deterministic optimization problem can be solved by the (batch)
gradient descent method. When m, the number of training examples, is large, it is computationally
expensive to calculate the gradient. Instead, we estimate the gradient by a minibatch of m(¢) training
examples. We denote the minibatch by M(¢): its elements are drawn uniformly from {1,2,...,m}
and there are m(t) elements. Then the estimated gradient is

)& —— Z V fi(a(t),y") 5)

zeM(t)
and it is an unbiased estimate of the true gradient.

The proposed algorithm. The instantaneous gradient g(¢) is used to form an aggregate gradient
(momentum) v(t), which is updated recursively as follows

o(t) = (1= p(t)v(t = 1) + p(t)g(?), (6)
where p(t) is the stepsize (learning rate) for the momentum and p(t) € (0, 1].

At iteration ¢, we propose to solve an approximation subproblem and denote its solution as
Z(x(t),v(t), 7(t)), or simply Z(t)

~ . 1 .

Z(t) £ argmin {(m —x(t)Tv(t) + 5(3) — (1)) diag(7(t))(x — =(t)) + r(m)} )
zeX

A quadratic regularization term is incorporated so that the subproblem (/) is strongly convex and its

modulus is the minimum element of the vector 7(t), denoted as 7(¢) and 7(¢) = minj—1, _, 7;(¢).

Note that 7(¢) should be lower bounded by a positive constant that is strictly larger than 0, so that

the quadratic regularization in (/) will not vanish.

The difference between two vectors Z(t) and x(t) specifies a direction starting at (t) and ending
at Z(t). This update direction is used to refine the weight vector

a(t+ 1) = 2(t) + () (Z(t) — 2(1)), (8)
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algorithm momentum |weight| quadratic gain in subproblem |regularization| constraint set

ProxSGD p(t) e(t) T(t) convex |convex, compact
SGD (w. momentum) 1(p) € 1 0 R"™
AdaGrad 1 € \/r(t) + o1f 0 R™
RMSProp 1 ¢ (@) + oL 0 R"
ADAM o - Vi + o1t 0 R"

=0
AMSGrad _ r( 0 R"
ra r © | A1) = max(? (e - 1), (1))’
ADABound 1 0 R™
o p YN O

Table 1: Connection between the proposed framework and ex1st1ng methods, where p, 3, € and § are
some predefined constants. Tr(t) = r(t — 1) + g(t) © g(t), fr(t) = Br(t— 1) + (1 - B)g(t) @ g(t).

where €(t) is a stepsize (learning rate) for the weight and €(¢) € (0, 1]. Note that (¢ + 1) is feasible
as long as x(t) is feasible, as it is the convex combination of two feasible points x(¢) and Z(¢) while
the set X is convex.

The above steps (3)-(8) are summarized in Algorithm I} which is termed proximal-type Stochastic
Gradient Descent (ProxSGD), for the reason that the explicit constraint x € X in can also be
formulated implicitly as a regularization function, more specifically, the indicator function ox (x). If
all elements of 7(¢) are equal, then Z(¢) is exactly the proximal operator
1
+ —r(x) + 5x(zc)}

2

- (m(t)—T(lt)v(t)> R0

1
£ Prox 1 () 465 () <m(t) - v(t)> .

T(t)

xT

Z(t) = argmin {

Algorithm 1 Proximal-type Stochastic Gradient Descent (ProxSGD) Method

Input: x(0) € X, v(—1) =0,t =0, T, {p(t) }+=0(t), {e(t) }s=o().
fort=0:1:Tdo

1. Compute the instantaneous gradient g(t) based on the minibatch M(¢):

Z Vo fi((t), y ).

zEM(t

2. Update the momentum: v(t) = (1 — p(¥))v(t — 1) + p(¥)g(¢).
3. Compute Z(t) by solving the approximation subproblem:
Z(t) = argmin {(w —x(t))(t)v(t) + %(w — (1)) diag(7(t))(x — =(t)) + r(m)} .
zeX
4. Update the weight: (¢t + 1) = x(t) + €(t)(Z(¢) — =(t)).

end for

ProxSGD in Algorithm [I] bears a similar structure as several SGD algorithms, without and with
momentum, see Table |1} and it allows to interpret some existing algorithms as special cases of the
proposed framework. For example, no momentum is used in SGD, and this amounts to setting
p(t) =1in Algorlthml 1} In ADAM, the learmng rate for momentum is a constant p and the learning
rate for the weight vector is glven by €/(1 — p') for some ¢, and this simply amounts to setting
p(t) = pand €(t) = /(1 — p') in Algorithm[I] This interpretation also implies that the convergence
conditions to be proposed shortly later are also suffcient for existing algorithms (although they are
not meant to be the weakest conditions available in literature).
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Solving the approximation subproblem ([7]) Since (7) is strongly convex, Z(t) is unique. Gener-
ally Z(t) in does not admit a closed-form expression and should be solved by a generic solver.
However, some important special cases that are frequently used in practice can be solved efficiently.

e The trivial case is X = R™ and » = 0, where
Z(t) =x(t) — —= 9)

where the vector division is understood to be element-wise. When X = R™ and r(x) = pl|x|1,
Z(t) has a closed-form expression that is known as the soft-thresholding operator

Z(t) = S (:c(t) - ““) , (10)

@ T(t)

where S, (b) £ max(b — a,0) — max(—b — a, 0) (Bach et al., [2011).
o If X = R™ and r(x) = u||x||2 and 7(t) = 71 for some 7, then (Parikh & Boyd| [2014)

=y - 4 A=p/lret) —v@)l) (x(t) —v(t)/7), if |lT2(t) —v(t)]2 = p,
x(t) ) (11)
0, otherwise.
If x is divided into blocks x1, ®o, ..., the {5-regularization is commonly used to promote block

sparsity (rather than element sparsity by ¢; -regularization).

e When there is a bound constraint I < & < wu, Z(t) can simply be obtained by first solving the
approximation subproblem without the bound constraint and then projecting the optimal point
onto the interval [, u]. For example, when X = R™ and r = 0,

v(t)

0= [o0- 23], (12

8)

with [z]# = clip(z, 1, u) £ min(max(z,1), u).

o If the constraint function is quadratic: X = {z : ||z||3 < 1}, Z(¢) has a semi-analytical expression
(up to a scalar Lagrange multiplier which can be found efficiently by the bisection method).

Approximation subproblem. We explain why we update the weights by solving an approxi-
mation subproblem . First, we denote f as the smooth part of the objective function in
(7). Clearly it depends on x(t) and v(¢) (and thus M(t)), while (¢) and v(t) depend on
the old weights x(0),...,z(t — 1) and momentum and v(0),...,v(t — 1). Define F(t) =
{x(0),...,2(t),M(0),...,M(t)} as a shorthand notation for the trajectory generated by ProxSGD.

We formally write fas

Tl F(5) 2 (2~ 2(0) (1) + 5 (@ — a(0) diag(r(1)) (@ — 2()). (13)

It follows from the optimality of Z(t) that

Fl@(6); F (1) +r(a(t) > F@();F(1) +r(@(1)).
After inserting and reorganizing the terms, the above inequality becomes
(@(t) — 2(t)Tv(t) +r(@(t) - r(=(t) < —r@)]|2(t) - x®)]3. (14)
Since V f(«) is Lipschitz continuous with constant L, we have
f(t+1)) +r(x(t+1) — (f(2@)) + r(=(t)))
< (x(t+1) —x(t) V(@) + gllm(t +1) =@} +r(xt+1) -r(=@) (5

<e(t) ((55(15) —2(t)'V () + (@) - () + ge(t)l\i(t) - Cc(t)||§> )

where the first inequality follows from the descent lemma (applied to f) and the second inequality
follows from the Jensen’s inequality of the convex function 7 and the update rule (8.
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If v( V f(x(t)) (which is true asymptotically as we show shortly later), by replacing V f(x(t))
in by v(t) and inserting (14) into (16), we obtain
L ~
flet+1) +r(x(t+1)) = (f(z@) +r(2(t))) <e?) <26(f) - T(ﬂ) |1&(t) — x(t)]3. (17)

The right hand side (RHS) will be negative when €(t) < QTL(t) this will eventually be satisfied as
we shall use a decaying €(¢). This implies that the proposed update . 8) will decrease the objective
value of (I after each iteration.

Momentum and algorithm convergence. 1It turns out that the momentum (gradient averaging step)
in (6) is essential for the convergence of ProxSGD. Under some mild technical assumptions we
outline now, the aggregate gradient v(¢) will converge to the true (unknown) gradient V f(x(t)).
This remark is made rigorous in the following theorem.

Theorem 1. Assume that the unbiased gradient g(t) has a bounded second moment

E[llg®)l3IFt)] < C, (18)
for some finite and positive constant C, and the sequence of stepsizes {p(t)} and {e(t)} satisfy

Zp(t):oo,Zp(t)2<oo,Ze( :ooz 2 < o0, hmﬂ:O‘ (19)
=0 =0 =0 t—=o0 p(t)

Then limy_, o ||v(t) — Vf(2z(t))|| = 0, and every limit point of the sequence {x(t)} is a stationary
point of (1) w.p.1.

Proof. Under the assumptions (18) and (19), it follows from Lemma 1 of Ruszczynsk1 (1980) that
v(t) = Vf(x(t)). Since the descent dlrectlon Z(t) — x(t) is a descent direction in view of (14 -,
the convergence of the ProxSGD algorithm can be obtained by generalizing the line of analysis in
Theorem 1 of [Yang et al.|(2016) for smooth optimization problems. The detailed proof is included
in the appendix to make the paper self-contained. O

We draw some comments on the convergence analysis in Theorem [I]

The bounded second moment assumption on the gradient g in (I8) and decreasing stepsizes in
are standard assumptions in stochastic optimization and SGD. What is noteworthy is that €(¢) should
decrease faster than p(t) to ensure that v(t) — V f(2(t)). But this is more of an interest from the
theoretical perspective, and in practice, we observe that €(t)/p(t) = a for some constant a that is
smaller than 1 usually yields satisfactory performance, as we show numerically in the next section.

According to Theorem [1} the momentum v (¢) converges to the (unknown) true gradient V f (x(t)),
so the ProxSGD algorithm eventually behaves similar to the (deterministic) gradient descent algo-
rithm. This property is essential to guarantee the convergence of the ProxSGD algorithm.

To guarantee the theoretical convergence, the quadratic gain 7(¢) in the approximation subproblem
should be lower bounded by some positive constant (and it does not even have to be time-
Varylng) In practice, there are various rationales to define it (see Table|l), and they lead to different
empirical convergence speed and generalization performance.

The technical assumptions in Theorem [I| may not always be fully satisfied by the neural networks
deployed in practice, due to, e.g., the nonsmooth ReLU activation function, batch normalization
and dropout. Nevertheless, Theorem [I] still provides valuable guidance on the algorithm’s practical
performance and the choice of the hyperparameters.

3 SIMULATION RESULTS

In this section, we perform numerical experiments to test the proposed ProxSGD algorithnﬂ In
particular, we first train two SNN to compare ProxSGD with ADAM (Kingma & Ba, |2015), AMS-
Grad (Reddi et al., 2018, ADABound (Luo et al.,|[2019) and SGD with momentum. Then we train

'The simulations in Setion 3.1 and 3.3 are implemented in TensorFlow and available at https://
github.com/optyang/proxsgd. The simulations in Section 3.2 are implemented in PyTorch and avail-
able athttps://github.com/cc-—hpc—itwm/proxsgd.
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a BNN to illustrate the merit of regularization and constraints. To ensure a fair comparison, the
hyperparameters of all algorithms are chosen according to either the inventors’ recommendations or
a hyperparameter search. Furthermore, in all simulations, the quadratic gain 7(¢) in ProxSGD is
updated in the same way as ADAM, with 3 = 0.999 (see Table|I).

3.1 SPARSE NEURAL NETWORK: TRAINING CONVOLUTION NEURAL NETWORKS ON
CIFAR-10

We first consider the multiclass classification problem on CIFAR-10 dataset (Krizhevsky, 2009)
with convolution neural network (CNN). The network has 6 convolutional layers and each of them
is followed by a batch normalization layer; the exact setting is shown in Table 2]

Table 2: CNN Settings

parameter value

data set CIFAR-10

number of convolution layers 6

size of convolution kernels 3x3

number of output filters in convolution layers 1-2, 3-4, 5-6 | 32, 64, 128

operations after convolution layers 1-2, 3-4, 5-6 max pooling, dropout (rate=0.2)
kernel size, stride, padding of maxing pooling 2x2,2, valid

activation function for convolution/output layer elu/softmax

loss function and regularization function cross entropy and ¢1-norm

Following the parameter configurations of ADAM in |[Kingma & Ba| (2015), AMSGrad in Reddi
et al.| (2018)), and ADABound in|Luo et al|[(2019), we set p = 0.1, 8 = 0.999 and ¢ = 0.001 (see
Table[I), which are uniform for all the algorithms and commonly used in practice. Note that we have
also activated ¢;-regularization for these algorithms in the built-in function in TensorFlow/PyTorch,
which amounts to adding the subgradient of the ¢;-norm to the gradient of the loss function. For the
proposed ProxSGD, €(t) and p(t) decrease over the iterations as follows,

() = 0.06 (1) = 0.9
Tt aos YT s
Recall that the ¢;-norm in the approximation subproblem naturally leads to the soft-thresholding

proximal mapping, see (I0). The regularization parameter . in the soft-thresholding then permits
controlling the sparsity of the parameter variable x; in this experiment we set . = 5 - 1075,

(20)

- oun
08 ——ProeSGD
ADAM 08
—o—AwSGrad o7
—5— ADABound
Y0 o om

—&—Prox SGD 06
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(a) Training Loss (b) Test Accuracy (c) CDF of Weights

Figure 1: Performance comparison for CNN on CIFAR-10.

In Figure |1} we compare the four algorithms (ProxSGD, ADAM, AMSGrad, ADABound) in terms
of three metrics, namely, the training loss, the test accuracy and the achieved sparsity. On the
one hand, Figure[I[(a) shows that ProxSGD outperforms ADAM, AMSGrad and ADABound in the
achieved loss value. On the other hand, the achieved accuracy is comparable, see Figure[I](b).

The sparsity of the trained model is measured by the cumulative distribution function (CDF) of the
weights’ value, which specifies the percentage of weights below any given value. For the proposed
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ProxSGD in Figure [T[c), we can observe at 0 in the x-axis the abrupt change of the CDF in the
y-axis, which implies that more than 90% of the weights are exactly zero. By comparison, only
40%-50% are exactly zero by the other algorithms. What is more, for this experiment, the soft-
thresholding proximal operator in ProxSGD does not increase the computation time: ADAM 17.24s
(per epoch), AMSGrad 17.44s, ADABound 16.38s, ProxSGD 16.04s. Therefore, in this experi-
ment, the proposed ProxSGD with soft-thresholding proximal mapping has a clear and substantial
advantage than other stochastic subgradient-based algorithms.

3.2 SPARSE NEURAL NETWORK: TRAINING DENSENET-201 ON CIFAR-100

In this subsection, the performance of ProxSGD is evaluated by a much more complex network
and dataset. In particular, we train the DenseNet-201 network (Huang et al.,|2017) for CIFAR-100
(Krizhevskyl, 2009). DenseNet-201 is the deepest topology of the DenseNet family and belongs
to the state of the art networks in image classification tasks. We train the network using Prox-
SGD, ADAM and SGD with momentum. To ensure a fair comparison among these algorithms, the
learning rate is not explicitly decayed during training for all algorithms. Furthermore, the ideal hy-
perparameters for each algorithm were computed by grid-search and the curves are averaged over
five runs. A batch-size of 128 is adopted. For ProxSGD, the regularization parameter is ;1 = 1075,
the learning rate for the weight and momentum is, respectively,

) 0.15 ) 0.9
€t) = —+ =—.
(t+4)05 PV = [ gyos
For ADAM, ¢ = 6 - 10~ and p = 0.1. SGD with momentum uses a learning rate of ¢ = 6 - 1073

and a momentum of 0.9 (so p = 0.1). The regularization parameter for both ADAM and SGD with
momentum is ¢ = 1074,

Accuracy

\
S

°

0 _
0000 0.0002 0.0004 —0.0004-0.00020:0000

o 10 20 30 40 50 60 o 10 20 30 40 50 60 uit{ 00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Epochs Epochs Weights value

(a) Training Loss (b) Test Accuracy (c) CDF of Weights
Figure 2: Performance comparison for DenseNet-201 on CIFAR-100.

Figure [2] shows the performance of ProxSGD and other algorithms for DenseNet-201 trained on
CIFAR-100. We see from Figure [2(a)| that ProxSGD achieves the lowest training loss after Epoch
10. The test accuracy in Figure[2(b)|shows that all algorithms achieve similar accuracy and ProxSGD
outperforms the other two during the early stage of training. We remark that this is achieved with
a much sparser network as shown in Figure 2(c)] In particular, we can see from the zoomed-in part
of Figure that SGD with momentum has approximately 70% of their weights at zero, while
most weights learned by ADAM are not exactly zero (although they are very small). In contrast,
ProxSGD reaches the sparsity of 92-94%.

In Figure[3] we demonstrate that ProxSGD is much more efficient in generating a SNN, irrespective
of the hyperparameters (related to the learning rate). In particular, we try many different initial
learning rate of the weight vector €(0) for ProxSGD and test their performance. From Figure a)-
(b) we see that, as expected, the hyperparameters affect the achieved training loss and test accuracy,
and many lead to a worse training loss and/or test accuracy than ADAM and SGD with momentum.
However, Figure c) shows that most of them (except when they are too small: ¢(0) = 0.01 and
0.001) generate a much sparser NN than both ADAM and SGD with momentum. These observations
are also consistent with the theoretical framework in Section 2: interpretating ADAM and SGD with
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Figure 3: Hyperparameters and sparsity for DenseNet-201 on CIFAR-100.

momentum as special cases of ProxSGD implies that they have the same convergence rate, and the
sparsity is due to the explicit use of the nonsmooth ¢;-norm regularization.

For this experiment, the soft-thresholding proximal operator in ProxSGD increases the training time:
the average time per epoch for ProxSGD is 3.5 min, SGD with momentum 2.8 min and ADAM 2.9

min. In view of the higher level of sparsity achieved by ProxSGD, this increase in computation time
is reasonable and affordable.

3.3 BINARY NEURAL NETWORKS: TRAINING DEEP NEURAL NETWORKS ON MNIST

In this subsection, we evaluate the proposed algorithm ProxSGD in training the BNN by solving
problem (3). We train a 6-layer fully-connected deep neural network (DNN) for the MNIST dataset,
and we use the tanh activation function to promote a binary activation output; see Table [3] The
algorithm parameters are the same as Sec. except that 4 = 2 - 107%. The chosen setup is
particularly suited to evaluate the merit of the proposed method, since MNIST is a simple dataset
and it allows us to investigate soly the effect of the proposed model and training algorithm.

Table 3: DNN Settings

parameter Value
dataset MNIST
number of hidden layers 6

number of nodes per hidden layer 200
activation function in hidden/output layer | tanh/softmax
loss function Cross entropy

After customizing Algorithm[T]to problem (3), the approximation subproblem is

(@ —x(t)) ve (t) + 3 (2 — 2(t))" diag(7.(t)) (x — (1))

+a —a(t) va(t) + 5(a — a(t)) diag(ra(t)) (@ — a(t)) [
Both Z(t) and @(t) have a closed-form expression (cf. (9) and (12))

(Z(t),a(t)) = argmin
0<a<1

n w(t) { va(t)} '
z(t) = x(t) — ,and a(t) = |a(t) — , (21
(0 ==(t) - = )= e - 25
where v, (t) and va(t) are the momentum updated in the spirit of (), with the gradients given by
ga(t ( > Vi), y") + 2( x(t) + 2a(t) — 1), and ga(t) = pa(t).
1€M(t)

The training loss is shown in Figure f[a). We remark that during the training process of ProxSGD,
the weights are not binarized, for the reason that the penalty should regularize the problem in a way
such that the optimal weights (to which ProxSGD converges) are exactly or close to 1 or -1. After
training is completed, the CDF of the learned weights is summarized in Figure fc), and then the
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Figure 4: Performance comparison for BNN on MNIST

learned weights are binarized to generate a full BNN whose test accuracy is in Figure fb). On the
one hand, we see from Figure [a)-(b) that the achieved training loss and test accuracy by BNN is
worse than the standard full-precision DNN (possibly with soft-thresholding). This is expected as
BNN imposes regularization and constraints on the optimization problem and reduces the search
space. However, the difference in test accuracy is quite small. On the other hand, we see from
Figure [c) that the regularization in the proposed formulation (3) is very effective in promoting
binary weights: 15% of weights are in the range (-1,-0.5) and 15% of weights are in the range
(0.5,1), and all the other weights are either -1 or 1. As all weights are exactly or close to 1 or -1, we
could just binarize the weights to exactly 1 or -1 only once by hard thresholding, after the training
is completed, and thus the incurred performance loss is small (98% versus 95% for test accuracy).
In contrast, the weights generated by the full-precision DNN (that is, without regularization) are
smoothly distributed in [—2, 2].

Even though the proposed formulation (3) doubles the number of parameters to optimize (from @ in
full-precision DNN to (x, a) in BNN ProxSGD), the convergence speed is equally fast in terms of
the number of iterations. The computation time is also roughly the same: full-precision DNN 13.06s
(per epoch) and ProxSGD 12.21s. We remark that g, (t), the batch gradient w.r.t. a, has a closed-
form expression and it does not involve the back-propagation. In comparison with the algorithm in
Courbariaux et al.[(2016), the proposed ProxSGD converges much faster and achieves a much better
training loss and test accuracy (95% versus 89%, the computation time per epoch for |Courbariaux
et al.| (2016) is 13.56s). The notable performance improvement is due to the regularization and
constraints. Naturally we should make an effort of searching for a proper regularization parameter p,
but this effort is very well paid off. Furthermore, we observe in the simulations that the performance
is not sensitive to the exact value of u, as long as it is in an appropriate range.

4 CONCLUDING REMARKS

In this paper, we proposed ProxSGD, a proximal-type stochastic gradient descent algorithm with
momentum, for constrained optimization problems where the smooth loss function is augmented
by a nonsmooth and convex regularization. We considered two applications, namely the stochastic
training of SNN and BNN, to show that regularization and constraints can effectively promote struc-
tures in the learned network. More generally, incorporating regularization and constraints allows us
to use a more accurate and interpretable model for the problem at hand and the proposed convergent
ProxSGD algorithms ensures efficient training. Numerical tests showed that ProxSGD outperforms
state-of-the-art algorithms, in terms of convergence speed, achieved training loss and/or the desired
structure in the learned neural networks.
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A APPENDIX: PROOF OF THEOREM [1]

Proof. The claim lim;_, o, ||v(t) — V f(2(t))|| = 0is a consequence of (Ruszczynski,[1980, Lemma
1). To see this, we just need to verify that all the technical conditions therein are satisfied by the
problem at hand. Specifically, Condition (a) of (Ruszczynskil [1980, Lemma 1) is satisfied because
X is closed and bounded. Condition (b) of (Ruszczynski, [1980, Lemma 1) is exactly (]'1;8[) Con-
ditions (c)-(d) of (Ruszczynskil [1980, Lemma 1) come from the stepsize rules in (I9) of Theorem
[[} Condition (e) of (Ruszczynskil 1980, Lemma 1) comes from the Lipschitz property of V f and
stepsize rule in (T9) of Theorem 1]

We need the following intermediate result to prove the limit point of the sequence x(t) is a stationary
point of (T).

Lemma 1. There exists a constant L such that
@ (2(t1), £(t1)) — B(@(t2), £(t2))]| < Lla(tr) — x(t2)]| + e(tr, t2),
and limy, 4,00 €(t1,t2) = 0 wp.1.

Proof. We assume without loss of generality (w.l.o.g.) that 7(¢) = 71, and the approximation
subproblem (7) reduces to

#() £ argmin { (@ —2(0))"0(0) + 3z — 2] + r(w) |

It is further equivalent to

Lo {(@= )0 + Lle - o()]3 +y}. )

where the (unique) optimal  and y is (Z(¢) and r(Z(t)), respectively.

We assume w.l.o.g. that to > ¢1. It follows from first-order optimality condition that
(x —2(t)" (v(t)) + 7(Z(t1) — x(t1))) +y — r(@(t1)) > 0,Vx,y such that r(z) <y  (23a)
(& — Z(t2)) T (v(t2) + T(2(t2) — x(t2))) +y — 7(Z(t2)) > 0,Va, y such that r(x) < y. (23b)

Setting (x,y) = (Z(t2), r(Z(t2))) in 23a) and (z,y) = (Z(¢t1),7(Z(¢1))) in (23b), and adding
them up, we obtain

(@ (1) —Z(t2)) " (v(t1) —v(t2)) —7(x(tr) —2(t2)) T (Z(t1) —B(t2)) < —7[| & (1) —Z(t2) 3. (24)
The term on the left hand side can be lower bounded as follows:
(Z(t1) — &(t2),v(t1) — Vf(z(t1)) — v(t2) + V(2(t2)))
+(Z(t1) — Z(ta2), VI (x(t1)) = VI(®(t2))) — 7(Z(t1) — B(L2), z(t1) — x(t2))
> — ||@(t1) — @(t2)||(e(tr) + £(t2)) — (L + 7)||&(t1) — T(t2) ||| (t1) — x(t2)|| (25)

where the inequality comes from the Lipschitz continuity of Vjf(z), with &(t) =

[v(t) = V()]
Combining the inequalities (24) and (23)), we have

[Z(t1) = Z(t2)|| < (L +7)77H|ax(tr) — a(ta)|| + 77" (e(tr) +e(t2)),
which leads to the desired (asymptotic) Lipschitz property:
|Z(t1) — B(t2)|| < L|a(tr) — 2(t2)|| + eltr, t2),
with L 2 773(L + 7) and e(t1, 1) 2 771 (e(ty) + e(t2)), and limy, o0 1,00 €(t1,12) = 0
w.p.l. O
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Define U(x) £ f(x) + r(x). Following the line of analysis from to , we obtain

Ula(t+1)) - Ula(t) 26)
< (@) — ()" (VS (@(0) + (@) ~ () + e [#(0) - 20

= )(@(0) — 2(0) (VS (@(0)) ~ 0(0) +0(0) + r(@F(0) — (@) + 50?0 — (o)
< —ct0) (7= 540 80 - 2] + €00 2O V1@ (0) - o(0)]| e

where in the last inequality we used (T4) and the Cauchy-Schwarz inequality.

Let us show by contradiction that lim infy_, . ||#(t) —@(t)|| = 0 w.p.1. Suppose lim inf, || Z(t)—
x(t) H > x > 0 with a positive probability. Then we can find a realization such that at the same time
|Z(t) — x(t)|| = x > 0 for all t and lim¢—,o0 ||V f((t)) — v(t)|| = 0; we focus next on such a
realization. Using ||Z(t) — x(t)|| > x > 0, the inequality (27) is equivalent to

Ula(t + 1) - Ula(t) < () (7 = Fet) =+ V7 (0) - o0l ) [30) - o). 8
Since limy 0|V f((t)) — v(t)|| = 0, there exists a t, sufficiently large such that

L
=
2

1
<) - L IV @®) —o@®l 27 >0, V=t (29)
Therefore, it follows from (28) and (29) that
Ul(t) = U@") < =7x"5, -, (D)™, (30)

which, in view of 37, '€"*! = oo, contradicts the boundedness of {U ((t))}. Therefore it must
be liminf; o ||Z(t) — 2(t)| = 0 w.p.1.

Let us show by contradiction that limsup,_ . [|[Z(t) —x(t)]] = 0 wp.l.  Suppose
limsup,_, . ||Z(t) — «(t)|| > 0 with a positive probability. We focus next on a realization along
with limsup,_, . | Z(t) — (t)]| > 0, limio||[Vf(2(t)) — v(t)|| = 0, liminf,oo||Z(t) —

x(t)|| = 0, and lim, 4, o0 €(t1,t2) = 0, where e(ty,t2) is defined in Lemrna It follows from
limsup,_, ., [|£(t) — (t)|| > 0 and lim inf, . ||Z(t) — (t)|| = O that there exists a § > 0 such

that ||Az(t)|| > 26 (with Az(t) £ Z(t) — x(t)) for infinitely many ¢ and also ||Ax(t)|| < §
for infinitely many ¢. Therefore, one can always find an infinite set of indexes, say 7, having the
following properties: for any ¢ € T, there exists an integer i; > t such that

lAx(t)]] <0, ||Ax(iy)| >2d, §<||Axn)|| <26,t<n<i. (31)
Given the above bounds, the following holds: for all ¢t € T,
§ < || Ax(iy)|| — |Ax(@) |
< [[Ax(iy) — Awt)]| = [[(Z (i) — = (i) — (@(t) — ()]
< ||2(ie) — 2(t)]| + || (i) — =(1)]|
< (14 I)||2(ie) — ()] + e(ir, t)

< (U D)XZ5 en) [Az(n)]| + eir, )
< 26(1+ L)X e(n) + ey, t), (32)

implying that o o . 1
’lrlgtgnog Yo €(n) >0 = m > 0. (33)

Proceeding as in (32)), we also have: forall ¢t € T,
Az (t+1)|| — [|Az)]| < [|Az(t+1) — Az(t)]| < 1+ L)e(t) | Aa(t)|] + e(t,t + 1),
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which leads to
(L+ 1+ D)e(t) [Az ()] +e(t,t+1) > [Az(t+1)| > 4, (34)

where the second inequality follows from . It follows from (34)) that there exists a d, > 0 such
that for sufficiently large t € T,

6—e(t,t+1 -
jaa() > 2D s 5,
1+ (14 L)e(t)
Here after we assume w.l.o.g. that holds for all ¢ € T (in fact one can always restrict {x(t) }1eT
to a proper subsequence).

We show now that is in contradiction with the convergence of {U((t))}. Invoking (27), we
have forall t € T,

> 0. (35)

U(x(t+1)) = U(x(t)) < —e(t) <’T — se(t)> ||5E(t) — a:(t)”2 + e(t)éHVf(:c(t)) — v(t)H
< et (T_ ge@ B HVf(a:(tzS) —v(t)H) 180 - 20|
+e()0]| V(= (t)) — v ()], (36)

and fort < n < iy,

Ulz(n+1)) = U(z(n))

IN

5 I
(37
where the last inequality follows from (3I). Adding (36) and 37) over n = t + 1,...,4 — 1
and, for t € T sufficiently large (so that T — Le(t)/2 — 6~ !||V f(x(n)) — v(n)|| > 7 > 0 and

|V f(z(t) — v(t)|| < 763/0), we have
(a) .
Ula(i) = Ulw() = 75 em)||2(n) — 2] + )5 |V f(@() - v(0)]
(®) o i -
< —FO NIl en) — e(t) (733 — 6 ||V (x (1) — v (1)]))
< BT ), (38)
where (a) follows from 7 — Le(t)/2 — 6 ||V f(z(n)) — v(n)|| = 7 > 0; (b) is due to (35);
and in (c) we used ||V f(z(t)) — v(t)|| < 763/5. Since {U(x(t))} converges, it must be

711Ht1 inf 22;34- 1€(n) = 0, which contradicts . Therefore, it must be limsup,_, . ||Z(t) —
St—00

z(t)|| =0 wp.1.

Finally, let us prove that every limit point of the sequence {x(t)} is a stationary solution of (T). Let
x* be the limit point of the convergent subsequence {x(t)}, . Taking the limit of (23a)) over the
index set T (and replacing w.l.o.g. y by r(x)), we have

i (@ —&(0)(0(t) + 7 (@(0) — (1)) + r(2) (@)

= (x —x")TVf(x*) +r(z) —r(x*) >0, Ve € X,

where the last equality follows from: i) limy .o ||V f((t)) — v(t)|| = 0, and ii) lim ;o || Z(t) —
x(t) H = 0. This is the desired first-order optimality condition and =* is a stationary point of . O
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