
Under review as a conference paper at ICLR 2019

RATING CONTINUOUS ACTIONS
IN SPATIAL MULTI-AGENT PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study credit assignment problems in spatial multi-agent environments where
agents pursue a joint objective. On the example of soccer, we rate the movements
of individual players with respect to their potential for staging a successful at-
tack. We propose a purely data-driven approach to simultaneously learn a model
of agent movements as well as their ratings via an agent-centric deep reinforce-
ment learning framework. Our model allows for efficient learning and sampling of
ratings in the continuous action space. We empirically observe on historic soccer
data that the model accurately rates agent movements w.r.t. their relative contri-
bution to the collective goal.

1 INTRODUCTION

Learning to assess individual behavior in an environment that contains several agents with poten-
tially concurring goals received a lot of attention recently (Lowe et al., 2017; Foerster et al., 2017),
spurred in part by the large success of deep reinforcement learning models in single agent domains.

Figure 1: Learned ratings of potential movements
of the circled red player (green dots, the darker the
higher the rating). The red circle denotes the true
movement that the player is about to perform.

In this paper, we focus on cooperative multi-
agent problems in spatial environments on the
example of soccer. Figure 1 illustrates a snap-
shot of a professional soccer game where indi-
vidual players behave such that the collective
is likely to score. We aim to assign a rating to
every agent’s movement that reflects the qual-
ity w.r.t. the collective goal. To do so, we pro-
pose to learn possible (and likely) movements
of individual players in the unconstrained con-
tinuous space.

We translate the spatial multi-agent problem
into a Markov Decision Process (MDP) where
agents perceive positions and movements of
other agents as a state representation that is
possibly augmented by environmental vari-
ables such as the position of the ball. Given
the state, every agent decides on a movement from a continuous action space that aims to support
the team in receiving a joint reward. Successful strategies that ground on simulation (Copete et al.,
2015; Hausknecht & Stone, 2016) are unfortunately not applicable in our scenario where historic
games are the only data source. On the other hand, credit assignments by experts are tedious and
only available for a few manually selected scenes per game and usually ground on heuristics (Link
et al., 2016; Fernandez & Bornn, 2018). To remedy the need of experts, we take a purely data-driven
approach without external information and focus on learning from observations. On the example of
soccer, we show that our complementary approach to expert-based ratings gives meaningful scores
that highly correlate with manually created ones by experts.

Technically, we propose an agent-centric deep reinforcement learning approach to rate agent move-
ments in spatio-temporal decision making problems. The real distribution governing each agent’s
movements in the continuous action space is unknown and can only be observed from examples. We

1



Under review as a conference paper at ICLR 2019

introduce a mixture model that models the unknown distribution of actions, allowing for efficient
learning, sampling and evaluation of movements when the examples are limited.

Given the mixture model, we devise a deep reinforcement learning-based approach to learn the
values of the mixture components (the ratings of actions). Our approach allows to efficiently evaluate
the advantage function of actual movements of the agents in any situation. Both, policy and ratings
of movements, are learned simultaneously by jointly optimizing the likelihood and a variant of the
Bellman error. The deep model renders the input independent from the roles and positions of the
agents and convolutions capture the entire environment from each agent’s perspective. Empirically,
we show that our approach leads to sensible ratings which are comparable with expert grades on
professional soccer data.

2 RELATED WORK

Cooperative multi-agent scenarios where multiple agents act in a shared environment and pursue a
joint objective are usually addressed with multi-agent RL techniques (Tan, 1993; Littman, 2001).
These approaches are often attributed to either team learning aiming at models in joint action spaces
or concurrent learning focusing on individual agents (Panait & Luke, 2005). Claus & Boutilier
(1998) demonstrate that the convergence of cooperative concurrent learning could be nearly obtained
as in a single-agent setting. Omidshafiei et al. (2017) present a deep learning approach for partially
observable multi-agent tasks. Deep RL has been successfully applied in game contexts (Mnih et al.,
2015; Lanctot et al., 2017; Silver et al., 2016; 2017). Moreover, Foerster et al. (2017) focus on
learning decentralized policies while a central critic is optimizing independent behaviors.

An actor-critic deep model for an abstraction of RoboCup has been proposed to learn the value of
actions (Hausknecht & Stone, 2016). The action space contains four discrete actions with continuous
parameters, one of which captures the magnitude and direction of movement for each agent and thus
resembles our movement policies. Agents learn to play the game from scratch in a fully simulated
setting, rendering the approach unsuited for problems like team sport that cannot (yet) be simulated.

Zhan et al. (2018) and Le et al. (2017b) employ deep imitation learning to model coordinated move-
ments of agents in the problem of basketball and soccer, respectively. Similarly, Le et al. (2017a) use
imitation learning to compare the behavior of soccer players to the average performance of either
the player herself or a team average. Although the analysis is based on very interesting movement
patterns, the average performance does not serve as a reliable evaluation of player movements as
it is oblivious of situations and contexts. By contrast, our approach evaluates whether an agent’s
movement leads to maximizing the actual reward of an episode.

Player rating in soccer is a fairly new topic which aims at quantitatively ranking players instead of
subjective measures. The related works consist of defining game indexes (McHale et al., 2012),
space generated by players (Fernandez & Bornn, 2018), and the location of completed passes
(Brooks et al., 2016). We present a model to learn the value of players movements that gives a
fine grained measure of players performance. Other computational approaches of analyzing soccer
matches often rely on domain knowledge (Lucey et al., 2014; Bialkowski et al., 2014) or deploy
frequency-related criteria to narrow down the candidate space (Haase & Brefeld, 2014). Scoring
opportunities are for instance rated by Spearman (2018) and Link et al. (2016).

3 LEARNING TO RATE ACTIONS

3.1 PRELIMINARIES

Markov decision processes consist of a state space S, a state-dependent action space M(s), s ∈ S,
a reward function r(s,m, s+), where s, s+ ∈ S, and m ∈ M(s), and a state transition distribution
p(s+|s,m). We denote the next state and next action by s+ and m+, respectively. A stochastic
policy π(m|s) describes the distribution of actions m ∈M(s) that agents in state s will decide for.

In our multi-agent setting, state and action spaces are jointly defined for a set of n agents. A state s ∈
S describes the positions of the agents, {f1, ..., fn}, augmented by some other features {g1, ..., gn}
such as their direction of movement or team ID. Additionally, s encodes the environmental features,
e.g., the position and speed of the ball, as well as the location of the goals. An action m ∈ M(s) is
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defined by the set of movements m = {m1, ...,mn} of the agents between two consecutive states s
and s+, resulting in a continuous action space.

A soccer game is split into episodes of uninterrupted ball possession phases of a team, hence ren-
dering episodes of variable length. A reward is granted at the last state transition of every episode.
We assume a positive reward if the attacking team carries the ball into the dangerous zone of the op-
ponent while retaining ball possession, and zero otherwise. However, note that any other definition
of a positive reward may be used as well.

State transition probabilities, p(s+|s,m), are partly deterministic since an agent’s position is the sum
of previous positions and the performed movements, f+i = f i+mi. Nevertheless, the movement of
the ball is a part of the environment and is modeled as random movement. Therefore, the movement
distribution is governed by a stochastic policy π(m|s). Although the quantity is unknown, samples
from π(m|s) are contained in the episodes. We compute the ratings of the movements using the
Bellman equation of the form

Q(s,m) = Es+∼p
[
r(s,m, s+) + γEm+∼π(·|s+)Q(s+,m+)

]
. (1)

The value function recursively computes the cumulative discounted reward until the end of an
episode where γ ∈ (0, 1] is a discount factor. In the remainder, we use r instead of r(s,m, s+)
for simplicity in the notation. Equation 1 gives the value of the collective movements in the current
state, while we are interested in valuating the movements of individual agents mi. Hence, we define

Q̄(s,mi) =

∫
m̃:m̃i=mi

π(m̃|s)
π̄(mi|s)

Q(s, m̃)dm̃ =

∫
m̃:m̃i=mi

p(m̃|s,mi)Q(s, m̃)dm̃ (2)

as the value of movement mi of agent i in state s, where π̄(mi|s) =
∫
m̃:m̃i=mi

π(m̃|s)dm̃. In other
words, the value of a single agent’s movement is the expectation over all collective movements in
which that agent performs that movement.

Finally, when rating an agent’s behavior, we generally focus on the relative value of a movement
compared to the values of alternative movements the agent could perform in the same state. The
relative gain of an action is often called the advantage of that action and is defined as

A(s,mi) = Q̄(s,mi)−
∫
m̃i
π(m̃i|s)Q̄(s, m̃i)dm̃i. (3)

Note that the integral on the right side, that is, the state value function V (s) =∫
m̃i
π(m̃i|s)Q̄(s, m̃i)dm̃i, is the same for all agents.

3.2 THE OBJECTIVE FUNCTION

A general approach to learning the value function Q̄ is to interpret the Bellman equation (Equation 1)
as an optimality criterion by minimizing the temporal differences. We only have access to a finite
amount of historic data consisting of episodes of state, movement, and reward, i.e., (s,m, r) ∈
{(st,mt, rt)}tet=1, where te is the length of an episode. The Bellman objective is given by ΩQ̄,

ΩQ̄ =
∑

(s,m,r,s+)

∑
i

(
Q̄(s,mi)−

(
r + γ

∫
m̃+i

π(m̃+i|s+)Q̄(s+, m̃+i)dm̃+i
))2

, (4)

where every (s,mi) is a sample of the policy π and thus ΩQ̄ is an objective for an on-policy policy
evaluation from a fixed data set.

A standard approach to learning Q̄ is using a purely sample based method which approximates the
integral with a single observed sample which leads to the following loss function

ΩQ̄B =
∑

(s,m,r,s+,m+)

∑
i

(
Q̄(s,mi)−

(
r + γQ̄(s+,m+i)

)2

. (5)

However, the number of training examples is limited compared to the complexity of the continuous
action space for optimizing such objective. Additionally, we are interested in sampling realistic
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movements that a player can actually perform. For instance, while in theory the value of running
toward goal with a speed of 45 km/h is very high, practically, no player will be able to achieve it.
Hence, in order to find the best possible movement of a player in a given state, the model should only
be queried for possible actions. This problem arises since the continuous action space is essentially
unconstrained and without additional information on the boundaries of player’s physical capabilities.
Even with this information, enforcing those bounds can be hard as investigated by Hausknecht &
Stone (2016) who proposed to adjust gradients accordingly during learning. Another approach is to
discretize the space into a predefined grid (Zheng et al., 2016).

Instead, we propose a model-based approach to learn the movement policy of the agents that imposes
no constraints on the space of movements a priori. In the following, we introduce our model-based
approach by devising parametric versions of Q̄(s,mi) and π(mi|s) that are simultaneously adapted
to data by a deep architecture to minimize ΩQ̄ of Equation 4. Note that the integral over all subse-
quent movements m+i depends on the form of π and might be difficult to compute. Nonetheless,
our parametric approach allows to replace the integral by a computationally inexpensive sum which
leads to efficient computation of Q, A, and V (see Section 3.4).

The next section presents a general model for π together with an optimization criterion to learn π
from the data. Section 3.4 then introduces a model for Q̄ that makes use of π and leads to a second
optimization criterion. Finally, Sections 3.5 and 3.6 bring the loose ends together and present a deep
architecture that simultaneously optimizes both criteria.

3.3 ESTIMATING POLICY π

As described in sections 3.1 and 3.2, the policy π(mi|s) should allow for both computationally effi-
cient integration in Equation 4 and efficient sampling of possible movements for mi. We therefore
model π as a mixture of k two-dimensional Gaussians

π(mi|s) =

k∑
l=1

π̂Ψπ̂ (l|s, i)N (mi|m̂l
Ψ
m̂l

(s, i), σlΨ
σl

(s, i) · I), (6)

where the two-dimensional function m̂l
Ψ
m̂l

(s, i) computes the mean of the l-th Gaussian of agent i
in state s. Although parameters Ψm̂l are shared across agents, the means of the mixture model are
computed for each player i individually. The model allows to sample values efficiently at those k
means (see also Figure 1 for an example with k = 5).

Similarly, function σlΨ
σl

(s, i) maps state s to the width parameter of the spherical covariance matrix
σlΨ

σl
(s, i) · I of the l-th Gaussian of agent i. I denotes the two-dimensional identity matrix. Again,

parameters Ψσl are shared among all agents. The probability π̂Ψπ̂ (l|s, i) that agent i chooses action
l in state s is parameterized by Ψπ̂ . The structure of Ψπ̂,Ψm̂l , and Ψσ̂l are defined by the deep
model in Section 3.6. To not clutter notation unnecessarily, we omit the parameters in the remainder
whenever possible.

We estimate the parameters of the Gaussian mixture model by minimizing the negative log-
likelihood on the samples. For that we need to estimate p(s+|s). Let sM be the part of the state that
is defined by movements of agents such that s+M = {f+i;∀i}, where f+i = f i + mi, and let sB
denote the remaining part. Then it gives

p(s+|s) = p(s+B , s+M |s) = p(s+B |s+M , s)p(s+M |s).

Although p(s+B |s+M , s) remains unknown, samples of p(s+B |s+M , s) can be drawn from the data.
Therefore, minimizing the negative log-likelihood of p(s+|s) over data samples {(s, s+)} reduces
to p(s+M |s) instead. We further assume that movements of agents are independent given the state
and rewrite the state transition function in terms of Equation 6 as p(s+M |s) =

∏
i π(mi|s).

The negative log-likelihood of the movement policy, ΩL(Ψπ̂,Ψm̂l ,Ψσ̂l), thus is written as

ΩL(Ψπ̂,Ψm̂l ,Ψσ̂l) = −
∑

(s,m,s+),i

log

(∑
l

π̂Ψπ̂ (l|s, i)N (mi|m̂l
Ψ
m̂l

(s, i), σlΨ
σl

(s, i))

)
. (7)
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3.4 LEARNING VALUE FUNCTION Q̄

Recall that the discrete set of movements as defined by the means of the mixture model of agent i
in state s is given by {m̂1(s, i), ..., m̂k(s, i)}. Let Q̂ΨQ̂

: (s, m̂l(s, i)) 7→ < be a value function that
maps those state-movement pairs to a real number with parameters ΨQ̂. In order to generalize to all
possible movements, i.e., movements that are not contained in {m̂1(s, i), ..., m̂k(s, i)}, the general
value function Q̄ computes the expected value

Q̄(s,mi) =
∑
l

p(m̂l(s, i)|s,mi, σl(s, i))Q̂(s, m̂l(s, i)),

where the expectation is w.r.t. p(m̂l(s, i)|s,mi, σl(s, i)), the posterior for the movement being
generated by the l-th component of the movement model. The following proposition shows that the
integral in Equation 4 can be substituted with a sum over the mixture components.
Proposition 1. The integral in Equation 4 can be written as∫

m̃+i

π(m̃+i|s+)Q̄(s+, m̃+i) dm̃+i =
∑
l

π̂(l|s+, i)Q̂(s+, m̂l(s+, i)).

Proof. (see Appendix A)

Combining this result with Q̄ yields a simplified form of ΩQ̄ that reduces the learning of Q̄ to
learning the parametric function Q̂ which is given by

ΩQ̄(ΨQ̂; Ψπ̂,Ψm̂l ,Ψσ̂l) =
∑

(s,m,r,s+),i

[∑
l

p(m̂l
Ψ
m̂l

(s, i)|s,mi, σlΨ
σ̂l

(s, i))Q̂Ψ
Q̂

(s, m̂l
Ψ
m̂l

(s, i)) (8)

−

(
r + γ

∑
l′

π̂Ψπ̂ (l′|s+, i)Q̂Ψ
Q̂

(s+, m̂l′
Ψ
m̂l

′ (s+, i))

)]2

,

3.5 PUTTING THINGS TOGETHER

The optimization criteria for learning π and Q̄ are determined in the last two sections. Equation 4
states a model-based learning objective for learning a generic value function Q̄ that depends on
movement policy π, but the parametric functions for π and Q̄ was not defined at that point. We
then specified π using a Gaussian mixture model with an optimization criterion for adapting its
parameters to data. In the last step, this π was used to define a value function Q̄ whose parameters
are learned by minimizing ΩQ̄ in Equation 8. Our choice of π allows to replace the integral in
Equation 4 by a sum which leads to an efficiently trainable optimization problem.

In addition, since the computation of Q̄ depends on π, the optimality of Q̄ too depends on the
parameters of π in the optimization process ΩQ̄(ΨQ̂; Ψπ̂,Ψm̂l ,Ψσ̂l). Despite the fact that π and Q̄
could be learned in a pipe-lined approach one after another, we propose a deep model that allows to
learn all parameters Ψ = ΨQ̂ ∪Ψπ̂ ∪Ψm̂l ∪Ψσ̂l in one single optimization problem

min
Ψ

(ΩQ̄(ΨQ̂; Ψπ̂,Ψm̂,Ψσ̂) + ΩL(Ψπ̂,Ψm̂,Ψσ̂)).

We benefit from the convolutional model which enables sharing large parts of the individual param-
eter sets, thus speeding up training as well as prediction.

3.6 DEEP MODEL

In this section, we present the deep convolutional model that is developed to learn both Q̄ and π.
More detailed information can be found in Appendix B.

Input: Recall that the state consists of the position and direction of movements of all agents and
the ball, augmented by additional information. The input to the net is thus represented by a three
dimensional ‘image-like’ tensor I ∈ R105×68×12 shown in Figure 2.
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Figure 2: Input representation to the deep
convolutional net. Layers: Team red, team
blue, ball, speed in x-direction team red,
speed in y-direction team red, speed in x
ball,..., team has ball possession {+1,−1},
goal position, border.

Figure 3: Feature representation for an agent
as defined by the deep model. Activations of
all convolutional layers at the position of the
agent are concatenated to form feature repre-
sentations that are fed into the loss net.

Architecture: The introduced tensor is the input to a 6-layer deep convolutional net such
that the receptive field of activations at the last layer spans over the whole pitch. The ex-
act definition of each layer can be found in Appendix B. Full feature representations of agents
are computed by concatenating activations of convolutional layers as depicted in Figure 3.

Figure 4: Output nodes and loss.

Hence, slices through all activation tensors are
computed relative to the agent’s position. For
instance, if the size of the output tensor of the
j-th convolutional layer is nj × mj × oj and
the players position in the input image is x, y,
the relevant slice of the input tensor is located
at position bx · 105/njc, by · 68/mjc and has
length oj . Slices through the outputs of all con-
volutional layers are computed and then com-
piled into a single feature vector that consists
of features of different levels of granularity and
receptive fields, centered at the agent’s position.
Representation vectors of agents have d dimen-
sions with d = 12 +

∑
j=1...6 oj .

An agent’s feature representation connects to
5k outputs via a fully connected layer where k is the number of components in the Gaussian mix-
ture model defined in Equation 6 (cmp. Figure 4). Activations are linear for m̂ and Q̂, whereas π̂
uses an additional softmax layer to ensure valid probability distributions. Only σ has an exponential
activation function to ensure positiveness.

4 EMPIRICAL STUDY

We evaluate the performance of our model on trajectory data from the UEFA Women’s Euro 2017
tournament. The dataset consists of six games of the Dutch team from group stage to the final match.
Each game comes as a sequence of x and y-coordinates of all players and the ball sampled at 10
frames per second. Every frame is turned into an input tensor as described in Figure 2.

We extract all episodes of open play were one team continuously retains ball possession without the
game being halted. An episode is considered successful if the team carries the ball into an area that
extends 2 meters outside the penalty box of the opponent. In case of a successful action, the episode
is labeled with a positive reward, otherwise the reward is 0. We report on results of leave-one-game-
out cross validations; that is, every result is the mean of a 6-fold cross validation where each fold
contains all episodes of exactly one of the six games. Error bars indicate standard error.

4.1 BASELINES

As mentioned in Section 3.2, a common approach to learn the value function from data is to approx-
imate the integral in Equation 4 with a single observed sample, yielding the objective in Equation 5.
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We compare our model to this baseline. However, as mentioned in Section 3.1, when rating play-
ers’ movements, we are generally interested in the advantage function of a movement to assess its
quality. In order to compute the advantage values, we need an estimate of the state value func-
tion V (cmp. Equation 3). We consider three approaches to estimate V . The first two methods
estimate the state value function from the learned Q̄B , i.e., we approximate the integral V (s) =∫
m
π(m|s)Q̄B(s,m)dm with a sum over J sampled movements V (s) ≈ 1/J

∑J
j=1 Q̄B(s,mj).

Since the real movement policy π is unknown, we uniformly sample from the space of possible
movements1, which forms the first baseline called Baseline with Random Sampling. The second
baseline uses the policy π̄ from our model to sample from the space of movements and is called
Baseline with Model.

The third baseline directly estimates V (s) using the same deep architecture as defined in Section 3.6.
Instead of predicting values based on an agent’s feature representation, a fully connected layer with
a single output V (s) is connected to the last convolutional layer. Thus, V and Q share all model
parameters except those of the output nodes. V is estimated by minimizing the expected temporal
difference error for states minV

∑
(s,s+,r) (V (s)− (r + γV (s+)))

2. We show that the learned V
assigns meaningful values to states in the Appendix C.1.

4.2 MOVEMENT VALUATION

The ability to rate individual movements allows us to determine how good a player behaves on
the soccer pitch. An example of a rating for one player is shown in Figure 1 for k = 5 mixture
components. The hypothesis is that the more agents choose good actions, the more successful the
team coordination and thus the higher the reward. 2 We validate the hypothesis as follows.

Evaluation Measures: We present metrics for evaluating both Q-values as well as advantage
functionA. To evaluateQ, we compute theQ-values of the last completed movements of all players
for each episode. In our experiments, we define the duration of movements to be 3 seconds, so that
the last completed action starts 3 seconds before the end of an episode. The computed Q-values are
averaged over all agents to compute a single value for every episode which is considered a prediction
of the outcome of an episode. Hence, the higher the average Q, the higher the probability that the
attack is successful. We compute the area under the ROC curve (AUC) for each episode to compare
predictions with actual rewards. We refer to this measure as Q AUC.

In order to evaluate A, we compute the advantage function (Equation 3) for every observed move-
ment in an episode for all agents. The values are averaged over all agents and time steps to compute
a single value for every episode. Analogous to Q AUC, these values are considered a prediction of
the outcome of an episode, and are denoted as Advantage AUC in the results.

To give an intuition of choosing the evaluation measures, first recall that Q(s,mi) is the expected
cumulative reward of mi. Therefore, when we consider an agent’s last movement in an episode,
i.e. the intended movement 3 seconds before the end of the episode, its value reflects the expected
outcome of the episode which serves as a suitable predictor of the outcome. On the other hand,
advantage function A describes the relative value of an action. The second evaluation measure
thus evaluates that the more qualified decisions the agents make during an episode, the higher the
likelihood of success would be.

Performance Results: Figure 5 (left, top) shows the averageQAUC for varying numbers of mixture
components of π, with a prediction horizon of 3 seconds. The AUC values of our model grow
slightly with the complexity of the model and significantly outperform the baseline in predicting
Q-values. This result strongly indicates that using our model-based approach proves advantageous
when learning Q from limited data.
Figure 5 (left, bottom) plots the average Advantage AUC which also increases with the complexity of
the model. The third baseline, that uses the learned V , is not shown in the plot due to giving a value
of 0.489 in our experiments. The Baseline with Random Sampling performs poorly, nonetheless,
the Baseline with Model that uses the same movement model as our model performs comparable
to our approach. This highlights the benefit of learning a movement policy in order to asses the

1We consider all movements with a speed below 30km/h possible.
2And in a real-world application, vice versa, situations in which agents frequently choose suboptimal actions

could be reinforced in the coaching.
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Figure 5: Top left: Average AUCs for Q-evaluation. Bottom left: Average Advantage AUCs. Right:
Exemplary movement model prediction and occupation zones (3 seconds into the future).

relative value of movements, where our model allows to sample efficiently. Even though our model
performs only slightly better than the informed baseline, both approaches significantly outperform
the baselines without movement models,

Table 1: Players ratings

SOG-based Our Model Newspaper
1:Sanden 1.6 1:Sanden 0.086 1:Martens 8.5
2:Miedema 1.5 2:Miedema 0.032 2:Groenen 8
3:Martens 1.3 3:Donk 0.005 3:Sanden 7.5
4:Donk 1.2 4:Groenen 0.004 3:Miedema 7.5
5:Groenen 1.1 5:Martens 0.003 4:Donk 7
6:Spitse 0.85 6:Dekker 0.002 4:Dekker 7
7:Van Es 0.8 7:Gragt -0.015 4:Gragt 7
8:Dekker 0.69 8:Spitse -0.018 4:Spitse 7
9:Gragt 0.67 9:Van Es -0.075 4:Van Es 7

In an additional evaluation, we compare our
computed movement ratings to expert ratings.
We average the advantage of the true move-
ments of nine Dutch players (excluding the goal-
keeper) who appeared in all six games over all
timesteps in the episode, and compute their per-
formance via cross validation. The models em-
ploy k = 5 mixture components and the move-
ment duration is two seconds. We compare our
ratings with expert rankings based on Space Oc-
cupation Gain (SOG) measure introduced by Fernandez & Bornn (2018) as well as scores from a
newspaper3. Table 1 shows that our approach is in line with the two expert views.

4.3 MOVEMENT MODEL

An interesting application of the learned movement policies is to compute the possible whereabouts
and their likelihood for all players at t seconds in the future. The player with the highest likelihood
wins a position. The resulting area won by an agent is sometimes called an agents dominant region
as she is likely to control this area (Taki & Hasegawa, 2000). Figure 5 (right) shows the same game
situation as in Figure 1. The green dots visualize k = 90 mixture components of the player em-
phasized by the red circle; darker green corresponding to higher likelihood. Prediction is performed
for t = 3 seconds into the future. The red zone denotes the controlled zone of that player and the
two blue zones correspond to the two blue defenders below and right of the player. We show more
examples and evaluations of the likelihood of the movement models in Appendix C.2.

5 CONCLUSION

We presented a purely data-driven approach to learning to rate agents’ actions in collective spatial
environments. On the example of soccer, we took an MDP-based approach where agents perceive
positions and attributes of other players as the state representation and perform their movements
from the continuous action space to pursue a joint goal. We proposed an efficient deep architecture
to simultaneously optimize a policy which models realistic movements and a value function that
rates them. The choice of model facilitates efficient learning and sampling of actions. Empirically,
our model successfully captured the contribution of individual movements to the collective goal.

3https://www.ad.nl/nederlands-voetbal/rapport-glanzende-cijfers-voor-de-oranje-leeuwinnen a986670a0/
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Appendices
A PROOF OF PROPOSITION 1

The integral in Equation 4 can be written as a sum over the components of the mixture model∫
m̃+i

π(m̃+i|s+)Q̄(s+, m̃+i) dm̃+i =
∑
l

π̂(l|s+, i)Q̂(s+, m̂l(s+, i)). (9)

Proof. We have ∫
m̃+i

π(m̃+i|s+)Q̄(s+, m̃+i)dm̃+i

=

∫
m̃+i

π(m̃+i|s+)
∑
l

p(m̂l(s+, i)|s+,m+i)

Q̂(s+, m̂l(s+, i))dm̃+i

=

∫
m̃+i

∑
l

p(m̂l(s+, i),m+i|s+)Q̂(s+, m̂l(s+, i))dm̃+i

=
∑
l

∫
m̃+i

π̂(l|s+, i)

N (m+i|m̂l(s+, i), σl(s+, i))Q̂(s+, m̂l(s+, i))dm̃+i

=
∑
l

π̂(l|s+, i)Q̂(s+, m̂l(s+, i))

where
∫
m̃+i N (m+i|m̂l(s+, i), σl(s+, i))dm̃+i = 1.

10



Under review as a conference paper at ICLR 2019

Table 2: Per-layer definition of the convolu-
tional model.

kernel #kernels max.
shape pooling

layer 1 (5,5) 32 –
layer 2 (5,5) 64 (2,2)
layer 3 (5,5) 64 –
layer 4 (5,5) 128 (2,2)
layer 5 (5,5) 128 (2,2)
layer 6 (5,5) 128 (2,2) Figure 6: Average V AUC.

B DESCRIPTION OF THE DEEP MODEL

Input: The input to the network is represented by a three dimensional ‘image-like’ tensor I ∈
R105×68×12 shown in Figure 2. The tensor encodes the size of the pitch (105× 68) and provides 12
channels that are used as follows: Channels 1-3 contain the positions of the agents (channels 1-2 for
team red and team blue) and the ball (channel 3), respectively; tensor elements corresponding to the
position of an agent or the ball are set to 1. Channels 4-9 contain the directions of movements and
velocities of agents of team red (channels 4-5), team blue (channels (6-7)), and the ball (channels
8-9). By doing so, input features that belong to a specific agent are given by the slice (x, y, :) that
is located at the agent’s (x, y) position. Further channels encode ball possession (channel 10), the
position of the goals (channel 11) as well as the boundaries of the pitch (channel 12). Note that
channels 11 and 12 are constant and do not change over time.

Architecture: The detailed definition of layers in deep convolutional net is sketched in Table 2.

Parameters: Recall that the feature representation of the agents serves as the input to the fully
connected layer generating all outputs (Figure 4). Let Ψconv be the set of all parameters of the
convolutional net except for the fully connected layer. Furthermore, let ΨQ̂,O ∈ Rd,k denote the
parameters of the fully connected layer that are involved in the computation of Q̂. Analogously,
Ψπ̂,O ∈ Rd,k, Ψσ,O ∈ Rd,k, and Ψm̂,O ∈ Rd,2k denote the parameters for π̂, σ, and m̂, respectively.
Hence, the layout of the net imposes a massively shared structure between the convolutional layers
and the quantities of interest. In other words, the parameters of the convolutional net Ψconv are
shared between all agents and outputs and we have Ψω = Ψconv ∪Ψω,O, for all ω ∈ {Q̂, π̂, m̂l, σ̂l}.
Optimization: For a given input representation of a state s, the deep model outputs π̂(l|s, i),
m̂l(s, i), σl(s, i), and Q̂(s, m̂l(s, i)) for all agents 1 ≤ i ≤ n and mixture components 1 ≤ l ≤ k.
The parameters of the model are adjusted by minimizing the compositive objective function,

min
Ψ

(ΩQ̄(ΨQ̂; Ψπ̂,Ψm̂,Ψσ̂) + ΩL(Ψπ̂,Ψm̂,Ψσ̂)),

with standard optimizers for deep models such as stochastic gradient descent.

Figure 7: Likelihood for different numbers of components in the movement mixture.

11



Under review as a conference paper at ICLR 2019

Figure 8: Predicted movements (top row) and advantages (bottom row) with mixtures using k = 5
(left), k = 15 (center), and k = 90 (right). Darker green marks higher likelihood (top row) and
higher advantage values (bottom row), respectively. Predictions are shown for the circled player and
the real next position is depicted by an empty circle.

Figure 9: The slowly moving agent on the left has a circular-shaped movement distribution as there
is only little time needed for turning in any direction. The running agent on the right (marked by the
red circle) realizes an ellipsoidal-shaped movement distribution.

C ADDITIONAL EVALUATIONS

C.1 V EVALUATION

To get a better understanding of the quality of the estimated V of the third baseline, figure 6 shows
the performance of state valuation in terms of average AUCs. We compute the value of a frame in
a positively labeled episode and compare it with all frames of all negatively labeled episodes where
the ball has the same distance to the opponent goal. We hence estimate the probability that V assigns
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higher scores to a frame from a successful episode than to one of a negative episode. Unsurprisingly,
the closer the ball is to the opponent’s dangerous zone, the better the AUC.

C.2 MOVEMENT MODEL

The movement policy is learned by adapting a Gaussian mixture model to the data points. Intuitively,
the more mixture components, the better the approximation of the continuous space. Figure 7 con-
firms this and shows that the likelihood increases for further numbers of components, where the
model predicts movements that span 3 seconds. See also Figure 8 (top row) for an exemplary situ-
ation with k = {5, 15, 90} components. The bottom row demonstrates the advantage values of the
respective movements.

Furthermore, the movement policy nicely adapts to the context of the player as shown in Figure 9
which depicts two different exemplary situations of predicted movements by a learned policy with
k = 90 mixture components. The running agent on the right realizes a very different movement
distribution than the slowly moving player on the left.
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