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ABSTRACT

We study the implicit bias of gradient descent methods in solving a binary classi-
fication problem over a linearly separable dataset. The classifier is described by
a nonlinear ReLU model and the objective function adopts the exponential loss
function. We first characterize the landscape of the loss function and show that
there can exist spurious asymptotic local minima besides asymptotic global min-
ima. We then show that gradient descent (GD) can converge to either a global or
a local max-margin direction, or may diverge from the desired max-margin direc-
tion in a general context. For stochastic gradient descent (SGD), we show that it
converges in expectation to either the global or the local max-margin direction if
SGD converges. We further explore the implicit bias of these algorithms in learn-
ing a multi-neuron network under certain stationary conditions, and show that the
learned classifier maximizes the margins of each sample pattern partition under
the ReLU activation.

1 INTRODUCTION

It has been observed in various machine learning problems recently that the gradient descent (GD)
algorithm and the stochastic gradient descent (SGD) algorithm converge to solutions with certain
properties even without explicit regularization in the objective function. Correspondingly, theoreti-
cal analysis has been developed to explain such implicit regularization property. For example, it has
been shown in Gunasekar et al. (2018; 2017) that GD converges to the solution with the minimum
norm under certain initialization for regression problems, even without an explicit norm constraint.

Another type of implicit regularization, where GD converges to the max-margin classifier, has been
recently studied in Gunasekar et al. (2018); Ji & Telgarsky (2018); Nacson et al. (2018a); Soudry
et al. (2017; 2018) for classification problems as we describe below. Given a set of training samples
zi = (xi, yi) for i = 1, . . . , n, where xi denotes a feature vector and yi ∈ {−1,+1} denotes the
corresponding label, the goal is to find a desirable linear model (i.e., a classifier) by solving the
following empirical risk minimization problem

min
w∈Rd

L(w) : =
1

n

n∑
i=1

`(yiw
ᵀxi). (1)

It has been shown in Nacson et al. (2018a); Soudry et al. (2017; 2018) that if the loss function `(·)
is monotonically strictly decreasing and satisfies proper tail conditions (e.g., the exponential loss),
and the data are linearly separable, then GD converges to the solution w with infinite norm and the
maximum margin direction of the data, although there is no explicit regularization towards the max-
margin direction in the objective function. Such a phenomenon is referred to as the implicit bias of
GD, and can help to explain some experimental results. For example, even when the training error
achieves zero (i.e., the resulting model enters into the linearly separable region that correctly classi-
fies the data), the testing error continues to decrease, because the direction of the model parameter
continues to have an improved margin. Such a study has been further generalized to hold for various
other types of gradient-based algorithms Gunasekar et al. (2018). Moreover, Ji & Telgarsky (2018)
analyzed the convergence of GD with no assumption on the data separability, and characterized the
implicit regularization to be in a subspace-based form.

The focus of this paper is on the following two fundamental issues, which have not been well ad-
dressed by existing studies.
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• Existing studies so far focused only on the linear classifier model. An important question one
naturally asks is what happens for the more general nonlinear leaky ReLU and ReLU models.
Will GD still converge, and if so will it converge to the max-margin direction? Our study here
provides new insights for the ReLU model that have not been observed for the linear model in the
previous studies.

• Existing studies mainly analyzed the convergence of GD with the only exceptions Ji & Telgarsky
(2018); Nacson et al. (2018b) on SGD. However, Ji & Telgarsky (2018) did not establish the
convergence to the max-margin direction for SGD, and Nacson et al. (2018b) established the
convergence to the max-margin solution only epochwisely for cyclic SGD (not iterationwise for
SGD under random sampling with replacement). Moreover, both studies considered only the
linear model. Here, our interest is to explore the iterationwise convergence of SGD under random
sampling with replacement to the max-margin direction, and our result can shed insights for
online SGD. Furthermore, our study provides new understanding for the nonlinear ReLU and
leaky ReLU models.

1.1 MAIN CONTRIBUTIONS

We summarize our main contributions, where our focus is on the exponential loss function under
ReLU model.

We first characterize the landscape of the empirical risk function under the ReLU model, which is
nonconvex and nonsmooth. We show that such a risk function has asymptotic global minima and
asymptotic spurious local minima. Such a landscape is in sharp contrast to that under the linear
model previously studied in Soudry et al. (2017), where there exist only equivalent global minima.

Based on the landscape property, we show that the implicit bias property in the course of the con-
vergence of GD can fall into four cases: converges to the asymptotic global minimum along the
max-margin direction, converges to an asymptotic local minimum along a local max-margin di-
rection, stops at a finite spurious local minimum, or oscillates between the linearly separable and
misclassified regions without convergence. Such a diverse behavior is also in sharp difference from
that under the linear model Soudry et al. (2017), where GD always converges to the max-margin
direction.

We then take a further step to study the implicit bias of SGD. We show that the expected averaged
weight vector normalized by its expected l2 norm converges to the global max-margin direction or
local max-margin direction, as long as SGD stays either in the linearly separable region or in a region
of the local minima defined by a subset of data samples with positive label. The proof here requires
considerable new technical developments, which are very different from the traditional analysis of
SGD, e.g., Bottou et al. (2016); Duchi & Singer (2009); Nemirovskii et al. (1983); Shalev-Shwartz
et al. (2009); Xiao (2010); Bach & Moulines (2013); Bach (2014). This is because our focus here is
on the exponential loss function without attainable global/local minima, whereas traditional analysis
typically assumed that the minimum of the loss function is attainable. Furthermore, our goal is to
analyze the implicit bias property of SGD, which is also beyond traditional analysis of SGD.

We further extend our analysis to the leaky ReLU model and multi-neuron networks.

1.2 RELATED WORK

Implicit bias of gradient descent: Gunasekar et al. (2018) studied the implicit bias of GD and SGD
for minimizing the squared loss function under bounded global minimum, and showed that some of
these algorithms converge to a global minimum that is closest to the initial point. Another collection
of papers Gunasekar et al. (2018); Ji & Telgarsky (2018); Nacson et al. (2018a); Soudry et al. (2017);
Telgarsky (2013); Soudry et al. (2018) characterized the implicit bias of algorithms for the loss
functions without attainable global minimum. Telgarsky (2013) showed that AdaBoost converges
to an approximate max-margin classifier. Soudry et al. (2017; 2018) studied the convergence of GD
in logistic regression with linearly separable data and showed that GD converges in direction to the
solution of support vector machine at a rate of 1/ ln(t). Nacson et al. (2018a) improved this rate to
ln(t)/

√
t under the exponential loss via normalized gradient descent. Gunasekar et al. (2018) further

showed that steepest descent can lead to margin maximization under generic norms. Ji & Telgarsky
(2018) analyzed the convergence of GD on an arbitrary dataset, and provided the convergence rates

2



Under review as a conference paper at ICLR 2019

along the strongly convex subspace and the separable subspace. Our work studies the convergence
of GD and SGD under the nonlinear ReLU model with the exponential loss, as opposed to the linear
model studied by all the above previous work on the same type of loss functions.

Implicit bias of SGD: Ji & Telgarsky (2018) analyzed the average SGD (under random sampling)
with fixed learning rate and proved the convergence of the population risk, but did not establish the
parameter convergence of SGD in the max-margin direction. Nacson et al. (2018b) established the
convergence of cyclic SGD epochwisely in direction to the max-margin classifier at a rateO(1/ ln t).
Our work differs from these two studies first in that we study the ReLU model, whereas both of these
studies analyzed the linear model. Furthermore, we showed that under SGD with random sampling,
the expectation of the averaged weight vector converges in direction to the max-margin classifier at
a rate O(1/

√
ln t).

Generalization of SGD: There have been extensive studies of the convergence and generalization
performance of SGD under various models, of which we cannot provide a comprehensive list due
to the space limitations. In general, these type of studies either characterize the convergence rate
of SGD or provide the generalization error bounds at the convergence of SGD, e.g., Brutzkus et al.
(2017); Wang et al. (2018); Li & Liang (2018), but did not characterize the implicit regularization
property of SGD, such as the convergence to the max-margin direction as provided in our paper.

2 RELU CLASSIFICATION MODEL

We consider the binary classification problem, in which we are given a set of training samples
{z1, . . . , zn}. Each training sample zi = (xi, yi) contains an input data xi and a corresponding
binary label yi ∈ {−1,+1}. We denote I+ := {i : yi = +1} as the set of indices of samples
with label +1 and denote I− := {i : yi = −1} in a similar way. Their cardinalities are denoted as
n+ and n−, respectively, and are assumed to be non-zero. We consider all datasets that are linearly
separable, i.e., there exists a linear classifier w such that yiwᵀxi > 0 for all i = 1, . . . , n.

We are interested in training a ReLU model for the classification task. In specific, for a given input
data x, the model outputs σ(wᵀxi), where σ(v) = max{0, v} is the ReLU activation function
and w denotes the weight parameters. The predicted label is set to be sgn(wᵀx). Our goal is to
learn a classifier by solving the following empirical risk minimization problem, where we adopt the
exponential loss.

min
w∈Rd

L(w) :=
1

n

n∑
i=1

`(w, zi), where `(w, zi) = exp(−yiσ(wᵀxi)). (P)

The ReLU activation causes the loss function in problem (P) to be nonconvex and nonsmooth. There-
fore, it is important to first understand the landscape property of the loss function, which is critical
for characterizing the implicit bias property of the GD and SGD algorithms.

3 IMPLICIT BIAS OF GD IN LEARNING RELU MODEL

3.1 LANDSCAPE OF RELU MODEL

In order to understand the convergence of GD under the ReLU model, we first study the landscape
of the loss function in problem (P), which turns out to be very different from that under the linear
activation model. As been shown in Soudry et al. (2017); Ji & Telgarsky (2018), the loss function
in problem (P) under linear activation is convex, and achieves asymptotic global minimum, i.e.,
∇L(αw∗)

α→ 0 and L(αw∗)
α→ 0 as the scaling constant α → +∞, only if w∗ is in the linearly

separable region. In contrast, under the ReLU model, the asymptotic critical points can be either
global minimum or (spurious) local minimum depending on the training datasets, and hence the
convergence property of GD can be very different in nature from that under the linear model.

The following theorem characterizes the landscape properties of problem (P). Throughout, we de-
note the infimum of the objective function in problem (P) as L∗ = n−

n . Furthermore, we call a
direction w∗ asymptotically critical if it satisfies∇L(αw∗)→0 as α→ +∞.
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Theorem 3.1 (Asymptotic landscape property). For problem (P) under the ReLU model, any corre-
sponding asymptotic critical direction w∗ fall into one of the following cases:

1. (Asymptotic global minimum): yiw∗ᵀxi > 0 for all i ∈ I+ ∪ I−. Then,

L(αw∗)→ L∗ as α→ +∞.
2. (Asymptotic local minimum): w∗ᵀxi > 0 for all i ∈ J+ and w∗ᵀxi ≤ 0 for all i ∈ (I+ \ J+) ∪
I−, where J+ ⊆ I+. Then,

L(αw∗)→ L∗ + n+−|J+|
n as α→ +∞.

3. (Local minimum): w∗ᵀxi ≤ 0 for all i ∈ I+ ∪ I−. Then,

L(w∗) = L∗ + n+

n .

To further elaborate Theorem 3.1, if w∗ classifies all data correctly (i.e., item 1), then the objective
function possibly achieves global minimum L∗ along this direction. On the other hand, if w∗ clas-
sifies some data with label +1 as −1 (item 2), then the objective function achieves a sub-optimal
value along this direction. In the worst case where all data samples are classified as −1 (item 3), the
ReLU unit is never activated and hence the corresponding objective function has constant value 1.
We note that the cases in items 2 and 3 may or may not take place depending on specific datasets,
but if they do occur, the corresponding w∗ are spurious (asymptotic) local minima. In summary, the
landscape under the ReLU model can be partitioned into different regions, where gradient descent
algorithms can have different implicit bias as we show next.

3.2 CONVERGENCE OF GD

In this subsection, we analyze the convergence of GD in learning the ReLU model. At each iteration
t, GD performs the update

wt+1 = wt − η∇L(wt), (GD)

where η denotes the stepsize. For the linear model whose loss function has infinitely many asymp-
totic global minima, it has been shown in Soudry et al. (2017) that GD always converges to the
max-margin direction. Such a phenomenon is regarded as the implicit bias property of GD. Here,
for the ReLU model, we are also interested in analyzing whether such an implicit-bias property
still holds. Furthermore, since the loss function under the ReLU model possibly contains spurious
asymptotic local minima, the convergence of GD under the ReLU model should be very different
from that under the linear model.

Next, we introduce various notions of margin in order to characterize the implicit bias under the
ReLU model. The global max-margin direction of samples in I+ is defined as

ŵ+ = arg min
‖w‖=1

max
i∈I+

(wᵀxi).

Such a notion of max-margin is natural because the ReLU activation function can suppress negative
inputs. We note that here ŵ+ may not locate in the linearly separable region, and hence it may not
be parallel to any (asymptotic) global minimum. As we show next, only when ŵ+ is in the linearly
separable region, GD may converge in direction to such a max-margin direction under the ReLU
model. Furthermore, for each given subset J+ ⊆ I+, we define the associated local max-margin
direction ŵ+

J as
ŵ+
J = arg min

‖w‖=1

max
i∈J+

(wᵀxi).

We further denote the set of asymptotic local minima with respect to J+ ⊆ I+ (see Theorem 3.1
item 2) as

W+
J := {wᵀxi > 0, ∀i ∈ J+ and wᵀxi ≤ 0, ∀i ∈ (I+ \ J+) ∪ I−}.

Of course,W+
J may or may not be empty for a certain J+, and ŵ+

J may or may not belong toW+
J

depending on the specific training dataset. As we show next, only when there exists a non-empty
W+
J and the corresponding ŵ+

J ∈ W
+
J , GD may converge to such an asymptotic local minimum

ŵ+
J direction under the ReLU model. Next, we present the implicit bias of GD for learning the

ReLU model in problem (P).
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Theorem 3.2. Apply GD to solve problem (P) with arbitrary initialization and a small enough
constant stepsize. Then, the sequence {wt}t generated by GD falls into one of the following cases.

1. L(wt)→ L∗, and ‖ wt

‖wt‖ − ŵ+‖ = O( ln ln t
ln t ) , where ŵ+ is in linearly separable region;

2. the direction of wt does not converge and oscillates between linearly separable and misclassified
regions, where ŵ+ is not in linearly separable region;

3. L(wt)→ L∗ + n+−|J+|
n , and ‖ wt

‖wt‖ − ŵ+
J ‖ = O( ln ln t

ln t ) , where J+ 6= ∅, and ŵ+
J ∈ W

+
J ;

4. L(wt) = L∗ + n+

n , and wt = ŵ+
J , where J+ = ∅, i.e., GD terminates within finite steps.

Theorem 3.2 characterizes various instances of implicit bias of GD in learning the ReLU model,
which the nature of the convergence is different from that in learning the linear model. In spe-
cific, GD can either converge in direction to the global max-margin direction ŵ+ that leads to the
global minimum, or converge to the local max-margin direction ŵ+

J that leads to a spurious local
minimum. Furthermore, it may occur that GD oscillates between the linearly separable region and
the misclassified region due to the suppression effect of ReLU function. In this case, GD does not
have an implicit bias property and convergence guarantee. We provide two simple examples in the
supplementary material to further elaborate these cases.

3.3 IMPLICIT BIAS OF SGD IN LEARNING RELU MODELS

In this subsection, we analyze the convergence property and the implicit bias of SGD for solving
problem (P). At each iteration t, SGD samples an index ξt ∈ {1, . . . , n} uniformly at random with
replacement, and performs the update

wt+1 = wt − ηt∇`(wt, zξt). (SGD)

Similarly to the convergence of GD characterized in Theorem 3.2, SGD may oscillate between the
linearly separable and misclassified regions. Therefore, our major interest here is the implicit bias
of SGD when it does converge either to the asymptotic global minimum or local minimum. Thus,
without loss of generality, we implicitly assume that ŵ+ is in the linearly separable region, and the
relevant ŵ+

J ∈ W
+
J . Otherwise, SGD does not even converge.

The implicit bias of SGD with replacement sampling has not been studied in the existing literature,
and the proof of the convergence and the characterization of the implicit bias requires substantial new
technical developments. In particular, traditional analysis of SGD under convex functions requires
the assumption that the variance of the gradient is bounded Bottou et al. (2016); Bach (2014); Bach
& Moulines (2013). Instead of making such an assumption, we next prove that SGD enjoys a nearly-
constant bound on the variance up to a logarithmic factor of t in learning the ReLU model.

Proposition 1 (Variance bound). Apply SGD to solve problem (P) with any initialization. If there
exists T such that for all t > T , wt either stays in the linearly separable region, or in W+

J , then
with stepsize ηk = (k+ 1)−α where 0.5 < α < 1, the variances of the stochastic gradients sampled
by SGD along the iteration path satisfy that for all t,

t−1∑
k=0

η2
kE‖∇`(wk, zξk)‖2 ≤ O

(
ln t

γ2

)
.

Proposition 1 shows that the summation of the norms of the stochastic gradients grows logarithmi-
cally fast. This implies that the variance of the stochastic gradients is well-controlled. In particular, if
we choose ηk = (k+1)−1/2, then the bound in Proposition 1 implies that the term E‖∇`(wk, zξk)‖2
stays at a constant level. Based on the variance bound in Proposition 1, we next establish the con-
vergence rate of SGD for learning the ReLU model. Throughout, we denote wt := 1

t

∑t−1
k=0 wk as

the averaged iterates generated by SGD.

Theorem 3.3 (Convergence rate of loss). Apply SGD to solve problem (P) with any initialization.
If there exist T such that for all t > T , wt either stays in the linearly separable region, or inW+

J ,
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then with the stepsize ηk = (k+ 1)−α, where 0.5 < α < 1, the averaged iterates generated by SGD
satisfies

EL(wt)− L∗ ≤ O
(

ln2 t

t1−α

)
, ‖Ewt‖ ≥ O(ln t).

If there exist T such that for all t > T , wt stays inW+
J , then with the same stepsize

EL(wt)−
(
L∗ +

n+ − |J+|
n

)
≤ O

(
ln2 t

t1−α

)
, ‖Ewt‖ ≥ O(ln t).

Theorem 3.3 establishes the convergence rate of the expected risk of the averaged iterates generated
by SGD. It can be seen that the convergence of SGD achieves different loss values corresponding to
global and local minimum in different regions. The stepsize is set to be diminishing to compensate
the variance introduced by SGD. In particular, if α is chosen to be sufficiently close to 0.5, then the
convergence rate is nearly of the order O(ln2 t/

√
t), which matches the standard result of SGD in

convex optimization up to an logarithmic order. Theorem 3.3 also implies that the convergence of
SGD is attained as ‖Ewt‖ → +∞ at a rate of O(ln t). We note that the analysis of Theorem 3.3 is
different from that of SGD in traditional convex optimization, which requires the global minimum
to be achieved at a bounded point and assumes the variance of the stochastic gradients is bounded
by a constant Shalev-Shwartz et al. (2009); Duchi & Singer (2009); Nemirovski et al. (2009). These
assumptions do not hold here.
Theorem 3.4 (Implicit bias of SGD). Apply SGD to solve problem (P) with any initialization. If
there exist T such that for all t > T , wt either stays in the linearly separable region, or in W+

J ,
then with the stepsize ηk = (k + 1)−α where 0.5 < α < 1, the sequence of the averaged iterate
{wt}t generated by SGD satisfies∥∥∥∥ Ewt

‖Ewt‖
− ŵ+

∥∥∥∥2

= O
(

1

ln t

)
.

If there exist T such that for all t > T , wt stays inW+
J , then with the same stepsize∥∥∥∥ Ewt

‖Ewt‖
− ŵ+

J

∥∥∥∥2

= O
(

1

ln t

)
.

Theorem 3.4 shows that the direction of the expected averaged iterate E[wt] generated by SGD
converges to the max-margin direction ŵ+, without any explicit regularizer in the objective function.
The proof of Theorem 3.4 requires a detailed analysis of the SGD update under the ReLU model
and is substantially different from that under the linear model Soudry et al. (2018); Ji & Telgarsky
(2018); Nacson et al. (2018a;b). In particular, we need to handle the variance of the stochastic
gradients introduced by SGD and exploit its classification properties under the ReLU model.

We next provide an example class of datasets (which has been studied in Combes et al. (2018)), for
which we show that SGD stays stably in the linearly separable region.
Proposition 2. If the linear separable samples {z1, . . . , zn} satisfy the following conditions given
in Combes et al. (2018):

1. For all (i, j) ∈ I+ × I+ ∪ I− × I−, it holds that xᵀ
i xj > 0;

2. For all (i, j) ∈ I+ × I− ∪ I− × I+, it holds that xᵀ
i xj < 0,

then there exists a t̄ ∈ N such that for all t ≥ t̄ the sequence generated by SGD stays in the
linearly separable region, as long as SGD is not initialized at the local minima described in item 3
of Theorem 3.1.

4 FURTHER EXTENSIONS AND DISCUSSIONS

4.1 LEAKY RELU MODELS

The leaky ReLU activation takes the form σ(v) = max(αv, v), where the parameter (0 ≤ α ≤ 1).
Clearly, leaky ReLU takes the linear and ReLU models as two special cases, respectively corre-
sponding to α = 0 and α = 1. Since the convergence of GD/SGD of the ReLU model is very
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different from that of the linear model, a natural question to ask is whether leaky ReLU with inter-
mediate parameters 0 < α < 1 takes the same behavior as the linear or ReLU model.

It can be shown that the loss function in problem (P) under the leaky ReLU model has only asymp-
totic global minima achieved by w∗ in the separable region with infinite norm (there does not exist
asymptotic local minima). Hence, the convergence of GD is similar to that under the linear model,
where the only difference is that the max-margin classifier needs to be defined based on leaky ReLU
as follows.

For the given set of linearly separable data samples, we construct a new set of data z∗i = (x∗i , y
∗
i ),

in which x∗i = xi, ∀i ∈ I+, x∗i = αxi, ∀i ∈ I−, and y∗i = yi, ∀i ∈ I+ ∪ I−. Essentially, the
data samples with label−1 are scaled by the parameter α of leaky ReLU. Without loss of generality,
we assume that the max-margin classifier for data {x∗i } passes through the origin after a proper
translation. Then, we define the max-margin direction of data X∗ as

ŵ∗ = arg min
‖w‖=1

max
i∈I+∪I−

(y∗iw
ᵀx∗i ).

Then, following the result under the linear model in Soudry et al. (2017), it can be shown that
GD with arbitrary initialization and small constant stepsize for solving problem (P) under the leaky
ReLU model satisfies that L(w) converges to zero, and w converges to the max-margin direction,
i.e., limt→∞

wt

‖wt‖ = ŵ∗, with its norm going to infinity.

Furthermore, following our result of Theorem 3.4, it can be shown that for SGD applied to solve
problem (P) with any initialization, if there exists T such that for all t > T wt stays in the linearly
separable region, then with the stepsize ηk = (k+1)−α, 0.5 < α < 1, the sequence of the averaged
iterate {wt}t generated by SGD satisfies∥∥∥∥ Ewt

‖Ewt‖
− ŵ∗

∥∥∥∥2

= O
(

1

ln t

)
.

Thus, for SGD under the leaky ReLU model, the normalized average of the parameter vector con-
verges in direction to the max-margin classifier.

4.2 MULTI-NEURON NETWORKS

In this subsection, we extend our study of the ReLU model to the problem of training a one-hidden-
layer ReLU neural network withK hidden neurons for binary classification. Here, we do not assume
linear separability of the dataset. The output of the network is given by

f(x) =

K∑
k=1

vkσ(wᵀ
kx) = vᵀσ(W>x), (2)

where W = [w1,w2, · · · ,wK ] with each column wk representing the weights of the kth neuron
in the hidden layer, vᵀ = [ v1, v2, · · · , vK ] denotes the weights of the output neuron, and σ(·)
represents the entry-wise ReLU activation function. We assume that v is a fixed vector whose
entries are nonzero and have both positive and negative values. Such an assumption is natural as it
allows the model to have enough capacity to achieve zero loss. The predicted label is set to be the
sign of f(x), and the objective function under the exponential loss is given by

L(W) =
1

n

n∑
i=1

exp(−yif(xi)). (3)

Our goal is to characterize the implicit bias of GD and SGD for learning the weight parameters W of
the multi-neuron model. In general, such a problem is challenging, as we have shown that GD may
not converge to a desirable classifier even under the single-neuron ReLU model. For this reason, we
adopt the same setting as that in (Soudry et al., 2017, Corollary 8), which assumes that the activated
neurons do not change their activation status and the training error converges to zero after a sufficient
number of iterations, but our result presented below characterizes the implicit bias of GD and SGD
in the original feature space, which is different from that in (Soudry et al., 2017, Corollary 8). We
define a set of vectors {Ai ∈ Rk×1}ni=1, where Aj

i = 1 if the sample xi is activated on the jth
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neuron, i.e., wᵀ
j xi > 0, and set Aj

i = 0 otherwise. Such an Ai vector is referred to as the activation
pattern of xi. We then partition the set of all training samples intom subsets B1,B2, · · · ,Bm, so that
the samples in the same subset have the same ReLU activation pattern, and the samples in different
subsets have different ReLU activation patterns. We call Bh, h ∈ [m] as the h-th pattern partition.
Let w̃h =

∑
k∈{j:Aj

h=1} vkwk. Then, for any sample x ∈ Bh, the output of the network is given by

f(x) =

K∑
k=1

vkσ(wᵀ
kx) =

∑
k∈{j:Aj

h=1}

vkw
ᵀ
kx = w̃ᵀ

hx.

We next present our characterization of the implicit bias property of GD and SGD under the above
ReLU network model. We define the corresponding max-margin direction of the samples in Bh as

ŵh = arg min
‖w‖=1

max
x∈Bh

(wᵀx).

Then the following theorem characterizes the implicit bias of GD under the multi-neuron network.
Theorem 4.1. Suppose that GD optimizes the loss L(W) in eq. (3) to zero and there exists T
such that for all t > T , the neurons in the hidden layer do not change their activation status. If
Ah1 ∧Ah2 = 0 (where ”∧” denotes the entry-wise logic operator “AND” between digits zero or
one) for any h1 6= h2, then the samples in the same pattern partition of the ReLU activation have
the same label, and ∥∥∥∥ w̃t

h

‖w̃t
h‖
− ŵh

∥∥∥∥ = O
( ln ln t

ln t

)
, for all h ∈ [m] .

Differently from (Soudry et al., 2017, Corollary 8) which studies the convergence of the vectorized
weight matrix so that the implicit bias of GD is with respect to features being lifted to an extended
dimensional space, Theorem 4.1 characterizes the convergence of the weight parameters and the
implicit bias in the original feature space. In particular, Theorem 4.1 implies that although the ReLU
neural network is a nonlinear classifier, f(x) is equivalent to a ReLU classifier for the samples in
the same pattern partition (that are from the same class), which converges in direction to the max-
margin classifier ŵh of those data samples. We next let w̆t

h := 1
t

∑t−1
k=0 w̃h(t). Then the following

theorem establishes the implicit bias of SGD.
Theorem 4.2. Suppose that SGD optimizes the loss L(W) in eq. (3) so that there exists T such that
for any t > T , L(W) < 1/n, the neurons in the hidden layer do not change their activation status,
and for any h1 6= h2, Ah1

∧Ah2
= 0. Then, for the stepsize ηk = (k + 1)−α, 0.5 < α < 1, the

samples in the same pattern partition of the ReLU activation have the same label, and∥∥∥∥ Ew̆t
h

‖Ew̆t
h‖
− ŵh

∥∥∥∥2

= O
(

1

ln t

)
, for all h ∈ [m] .

Similarly to GD, the averaged SGD in expectation maximizes the margin for every sample partition.
At the high level, Theorem 4.1 and Theorem 4.2 imply the following generalization performance of
the ReLU network under study. After a sufficiently large number of iterations, the neural network
partitions the data samples into different subsets, and for each subset, the distance from the samples
to the decision boundary is maximized by GD and SGD. Thus, the learned classifier is robust to
small perturbations of the data, resulting in good generalization performance.

5 CONCLUSION

In this paper, we study the problem of learning a ReLU neural network via gradient descent methods,
and establish the corresponding risk and parameter convergence under the exponential loss function.
In particular, we show that due to the possible existence of spurious asymptotic local minima, GD
and SGD can converge either to the global or local max-margin direction, which in the nature of
convergence is very different from that under the linear model in the previous studies. We also
discuss the extensions of our analysis to the more general leaky ReLU model and multi-neuron
networks. In the future, it is worthy to explore the implicit bias of GD and SGD in learning multi-
layer neural network models and under more general (not necessarily linearly separable) datasets.
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Supplementary Materials

A PROOF OF THEOREM 3.1

The gradient∇L(w) is given by

∇L(w) =
1

n

n∑
i=1

∇`(w, zi) = − 1

n

n∑
i=1

yi1{wᵀxi>0} exp(−yiwᵀxi)xi.

If yiw∗ᵀxi ≥ 0 for all xi ∈ I+ ∪ I−, then as α→ +∞, we have, ,

L(αw∗) =
1

n

∑
i∈I−

exp(0) =
n−

n
= L∗,

and
∇L(αw∗) = − 1

n

∑
i∈I+

exp(−αwᵀxi)xi = 0.

Recall that J+ ⊆ I+. If w∗ᵀxi ≤ 0 for all i ∈ (I+ \ J+) ∪ I−, then as α→ +∞, we obtain

L(αw∗) =
1

n

∑
i∈(I+\J+)∪I−

exp(0) =
n+ − |J+|+ n−

n
= L∗ +

n+ − |J+|
n

.

and
∇L(αw∗) = − 1

n

∑
i∈J+

exp(−αwᵀxi)xi = 0.

If w∗ᵀxi ≤ 0 for all i ∈ I+ ∪ I−, then

L(w∗) =
1

n

n∑
i=1

exp(0) = 1 = L∗ +
n+

n
, ∇L(w∗) = 0.

The proof is now complete.

B PROOF OF THEOREM 3.2

First consider the case when ŵ+ is in linearly separable region and the local minimum does not
exist along the updating path. We call the region where all vectors w ∈ Rd satisfy wᵀxi < 0
for all i ∈ I− as negative correctly classified region. As shown in Soudry et al. (2017), L(w) is
non-negative and L-smooth, which implies that

L(wk+1) ≤ L(wk) +∇L(wk)ᵀ(wk+1 −wk) +
L

2
‖wk+1 −wk‖2

= L(wk)− η‖∇L(wk)‖2 +
Lη2

2
‖∇L(wk)‖2

= L(wk)− η(1− Lη

2
)‖∇L(wk)‖2.

Based on the above inequality, we have

L(wk)− L(wk+1)

η(1− Lη
2 )

≥ ‖∇L(wk)‖2,

which, in conjunction with 0 < η < 2/L, implies that
t∑

k=0

‖∇L(wk)‖2 ≤
t∑

k=0

L(wk)− L(wk+1)

η(1− Lη
2 )

=
L(w0)− L(wt+1)

η(1− Lη
2 )

.

Thus, we have ‖∇L(wk)‖2 → 0 as k → +∞. By Theorem 3.1, ‖∇L(wk)‖ vanishes only when
all samples with label −1 are correctly classified, and thus GD enters into the negative correctly

10
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classified region eventually and diverges to infinity. Soudry et al. (2017) Theorem 3 shows that when
GD diverges to infinity, it simultaneously converges in the direction of the max-margin classifier of
all samples satisfying wᵀ

t xi > 0. Thus, under our setting, GD either converges in the direction of
the global max-margin classifer ŵ+:∥∥∥∥ wt

‖wt‖
− ŵ+

∥∥∥∥ = O
( ln ln t

ln t

)
,

or the local max-margin classifier ŵ+
J :∥∥∥∥ wt

‖wt‖
− ŵ+

J

∥∥∥∥ = O
( ln ln t

ln t

)
.

Next, consider the case when ŵ+ is not in linearly separable region, and the local minimum does
not exist along the updating path. In such a case, we conclude that GD cannot stay in the linearly
separable region. Otherwise, it converges in the direction of ŵ+ that is not in linearly separable
region, which leads to a contradiction. If the asymptotic local minimum ŵ+

J exists, then GD may
converge in its direction. If ŵ+

J does not exist, GD cannot stay in both the misclassified region and
linearly separable region, and thus oscillates between these two regions.

In the case when GD reaches a local minimum, by Theorem 3.1, we have ∇L(w∗) = 0, and thus
GD stops immediately and does not diverges to infinity.

C EXAMPLES OF CONVERGENCE OF GD IN RELU MODEL

Example 1 (Figure 1, left). The dataset consists of two samples with label +1 and one sample with
label −1. These samples satisfy xᵀ

1x3 < 0 and xᵀ
1x2 < 0.

For this example, if we initialize GD at the green classifier, then GD converges to the max-margin
direction of the sample (x1,+1). Clearly, such a classifier misclassifies the data sample (x2,+1).

Example 2 (Figure 1, right). The dataset consists of one sample with label +1 and one sample with
label −1. These two samples satisfy 0 < xᵀ

1x2 ≤ 0.5‖x2‖2.

For this example, if we initialize at the green classifier, then GD oscillates around the direction
x2/‖x2‖ and does not converge.

-4 -2 0 2 4 6
-4

-2

0

2

4

6
Convergence of GD to bad direction

w
0

w
2000

maximum margin classifier of x
1

-2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3
Oscillation of GD

w
0

w
3484

w
3485

Figure 1: Failure of GD in learning ReLU models

PROOF OF EXAMPLE 1

Consider the first iteration. Note that the sample z3 has label−1, and from the illustration of Figure 1
(left) we have wᵀ

0x3 < 0, wᵀ
0x2 < 0 and wᵀ

0x1 > 0. Therefore, only the sample z1 contributes to
the gradient, which is given by

∇w0
L(w0) = − exp(−wᵀ

0x1)x1. (4)

11
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By the update rule of GD, we obtain that for all t

wt+1 = wt + η exp(−wᵀ
t x1)x1. (5)

By telescoping eq. (5), it is clear that any wᵀ
t x2 < 0 for all t since xᵀ

1x2 < 0. This implies that the
sample z2 is always misclassified.

PROOF OF EXAMPLE 2

Since we initialize GD at w0 such that wᵀ
0x1 > 0 and wᵀ

0x2 < 0, the sample z2 does not
contribute to the GD update due to the ReLU activation. Next, we argue that there must ex-
ists a t such that wᵀ

t x2 > 0. Suppose such t does not exist, we always have wᵀ
t x1 = (w0 +∑t−1

k=0 exp(−wᵀ
kx1)x1)ᵀx1 > 0. Then, the linear classifier wt generated by GD stays between x1

and x2, and the corresponding objective function reduces to a linear model that depends on the sam-
ple z1 (Note that z2 contributes a constant due to ReLU activation). Following from the results in
Ji & Telgarsky (2018); Soudry et al. (2017) for linear model, we conclude that wt converges to the
max-margin direction x1

‖x1‖ as t→ +∞. Since xᵀ
1x2 > 0, this implies that wᵀ

t x2 > 0 as t→ +∞,
contradicting with the assumption.

Next, we consider the t such that wᵀ
t x1 > 0 and wᵀ

t x2 > 0, the objective function is given by

L(wt) = exp(−wᵀ
t x1) + exp(wᵀ

t x2),

and the corresponding gradient is given by

∇wt
L(wt) = − exp(−wᵀ

t x1)x1 + exp(wᵀ
t x2)x2.

Next, we consider the case that wᵀ
t x1 > 0 for all t. Otherwise, both of x1 and x2 are on the negative

side of the classifier and GD cannot make any progress as the corresponding gradient is zero. In the
case that wᵀ

t x1 > 0 for all t, by the update rule of GD, we obtain that

wᵀ
t+1x2 −wᵀ

t x2 = η exp(−wᵀ
t x1)xᵀ

1x2 − η exp(wᵀ
t x2)‖x2‖2 ≤ −0.5η‖x2‖2. (6)

Clearly, the sequence {w>t x2}t is strictly decreasing with a constant gap, and hence within finite
steps we must have wᵀ

t x2 ≤ 0.

D PROOF OF PROPOSITION 1

Since SGD stays in the linearly separable region eventually, and hence only the data samples in I+

contribute to the gradient update due to the ReLU activation function. For this reason, we reduce
the original minimization problem (P) to the following optimization

min
w∈Rd

L(w) =
1

n+

n∑
i=1

`(w,xi),

`(w,xi) = exp(−wᵀxi)1(xi∈I+), (7)

which corresponds to a linear model with samples in I+. Similarly, if SGD stays in W+
J , only

the data samples in J+ contribute the the gradient update, the original minimization problem (P) is
reduced to

min
w∈Rd

L(w) =
1

|J+|

n∑
i=1

`(w,xi),

`(w,xi) = exp(−wᵀxi)1(xi∈J+), (8)

The proof contains three main steps.

Step 1: For any u, bounding the term E‖wt − u‖2: By the update rule of SGD, we have

‖wt − u‖2 = ‖wt−1 − u‖2 − 2ηt−1〈∇`(wt−1, zξt),wt−1 − u〉+ η2
t−1‖∇`(wt−1, zξt)‖2

= ‖wt−1 − u‖2 − 2ηt−1〈∇L(wt−1),wt−1 − u〉+ η2
t−1‖∇`(wt−1, zξt)‖2 +Mt,

(9)
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where
Mt = 2ηt−1〈∇L(wt−1)−∇`(wt−1, zξt),wt−1 − u〉.

By convexity we obtain that 〈∇L(wt−1),wt−1 − u〉 ≥ L(wt−1) − L(u). Then, eq. (9) further
becomes

‖wt − u‖2 ≤ ‖wt−1 − u‖2 − 2ηt−1(L(wt−1)− L(u)) + η2
t−1‖∇`(wt−1, zξt)‖2 +Mt (10)

Telescoping the above inequality yields that

‖wt −u‖2 ≤ ‖w0 −u‖2 − 2

t−1∑
k=0

ηkL(wk) + 2(

t−1∑
k=0

ηk)L(u) +

t−1∑
k=0

η2
k‖∇`(wk, zξk)‖2 +

t∑
k=1

Mk.

(11)
Taking expectation on both sides of the above inequality and note that EMt = 0 for all t, we further
obtain that

E‖wt − u‖2 ≤ ‖w0 − u‖2 − 2

t−1∑
k=0

ηkEL(wk) + 2(

t−1∑
k=0

ηk)L(u) +

t−1∑
k=0

η2
kE‖∇`(wk, zξk)‖2.

(12)

Note that ` ≤ 1 whenever the data samples are correctly classified and for all i ∈ I+, ‖xi‖ ≤ B,
and without loss of generality, we can assume B <

√
2. Hence, the term E‖∇`(wk, zξk)‖2 can be

upper bounded by

E‖∇`(wk, zξk)‖2 = E`(wk, zξk)‖z2
ξk
‖ ≤ B2E`(wk, zξk)2 ≤ B2E`(wk, zξk) = B2EL(wk).

Then, noting that ηk ≤ 1, eq. (12) can be upper bounded by

E‖wt − u‖2 ≤ ‖w0 − u‖2 − (2−B2)

t−1∑
k=0

ηkEL(wk) + 2(

t−1∑
k=0

ηk)L(u). (13)

Next, set u = (ln(t)/γ)ŵ+ and note that ŵ>+xi ≥ γ for all i ∈ I+, we conclude that L(u) =

(1/n+)
∑
i∈I+

exp(−u>xi) ≤ 1
t . Substituting this into the above inequality and noting that ηk =

(k + 1)−α and 0.5 < α < 1, we further obtain that

E‖wt − u‖2 ≤ ‖w0‖2 +
ln2 t

γ2
+ 2(

t−1∑
k=0

ηk)
1

t
− (2−B2)

t−1∑
k=0

ηkEL(wk)

≤ ‖w0‖2 +
ln2 t

γ2
+

2

(1− α)
t−α − (2−B2)

t−1∑
k=0

ηkEL(wk). (14)

Step 2: lower bounding E‖wt − u‖2: Note that only the samples in I+ contribute to the update
rule. By the update rule of SGD, we obtain that

wt = w0 −
t−1∑
k=0

ηk∇`(wk, zξk) = w0 +

t−1∑
k=0

ηk`(wk, zξk)xξk ,

which further implies that

w>t ŵ+ = w>0 ŵ+ +

t−1∑
k=0

ηk`(wk, zξk)x>ξkŵ+ ≥ w>0 ŵ+ + γ

t−1∑
k=0

ηk`(wk, zξk).

Then, we can lower bound ‖wt − u‖ as

‖wt − u‖ ≥ 〈wt − u, ŵ+〉 ≥ w>t ŵ+ −
ln(t)

γ
ŵ>+ŵ+

≥ w>0 ŵ+ + γ

t−1∑
k=0

ηk`(wk, zξk)− ln(t)

γ
.

13
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Taking the expectation of ‖wt − u‖2:

E‖wt − u‖2 ≥ E
(
w>0 ŵ+ + γ

t−1∑
k=0

ηk`(wk, zξk)− ln(t)

γ

)2

(i)

≥
(
w>0 ŵ+ + γ

t−1∑
k=0

ηkE`(wk, zξk)− ln(t)

γ

)2

=
(
w>0 ŵ+ + γ

t−1∑
k=0

ηkEL(wk)− ln(t)

γ

)2

,

where (i) follows from Jensen’s inequality.

Step 3: Upper bounding
t−1∑
k=0

ηkEL(wk): Combining the upper bound obtained in step 1 and the

lower bound obtained in step 2 yields that

(
w>0 ŵ+ + γ

t−1∑
k=0

ηkEL(wk)− ln(t)

γ

)2

≤ ‖w0‖2 +
ln2 t

γ2
+

2

1− α
t−α− (2−B2)

t−1∑
k=0

ηkEL(wk).

Solving the above quadratic inequality yields that

t−1∑
k=0

ηkEL(wk) ≤ O
( ln t

γ2

)
. (15)

E PROOF OF THEOREM 3.3

The proof exploits the iteration properties of SGD and the bound on the variance of SGD established
in Proposition 1.

We start the proof from eq. (10), following which we obtain

L(wt−1) ≤ 1

2ηt−1
(‖wt−1 − u‖2 − ‖wt − u‖2) + L(u) +

1

2
ηt−1‖∇`(wt−1, zξt)‖2 +

1

2ηt−1
Mt.

(16)
Taking the expectation on both sides of the above inequality yields that

EL(wt−1) ≤ 1

2ηt−1
(E‖wt−1 − u‖2 − E‖wt − u‖2) + L(u) +

1

2
ηt−1E‖∇`(wt−1, zξt)‖2,

which, after telescoping, further yields that

t−1∑
k=0

EL(wk) ≤ tL(u) +
1

2

t−1∑
k=0

1

ηk
(E‖wk − u‖2 − E‖wk+1 − u‖2) +

1

2

t−1∑
k=0

ηkE‖∇`(wk, zξk)‖2.

(17)

14
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By convexity of L in the linearly separable region, we have L
(

1
t

t−1∑
k=0

wk

)
≤ 1

t

t−1∑
k=0

L(wk), which,

in conjunction with eq. (17), yields that

EL
(1

t

t−1∑
k=0

wk

)
≤ L(u) +

1

2t

t−1∑
k=0

1

ηk
(E‖wk − u‖2 − E‖wk+1 − u‖2) +

B2

2t

t−1∑
k=0

ηkEL(wk)

= L(u) +
1

2t

t−1∑
k=0

kα(E‖wk − u‖2 − E‖wk+1 − u‖2) +
B2

2t

t−1∑
k=0

ηkEL(wk)

= L(u) +
1

2t

t−1∑
k=0

[(k + 1)α − kα]E‖wk − u‖2 − tαE‖wt − u‖2 +
B2

2t

t−1∑
k=0

ηkEL(wk)

≤ L(u) +
1

2t

t−1∑
k=0

(k + 1)2α − k2α

(k + 1)α + kα
E‖wk − u‖2 +

B2

2t

t−1∑
k=0

ηkEL(wk)

≤ L(u) +
1

2t
‖w0 − u‖2 +

1

2t

t−1∑
k=1

2α(k + 1)2α−1

2kα
E‖wk − u‖2 +

B2

2t

t−1∑
k=0

ηkEL(wk)

(i)

≤ L(u) +
1

2t
‖w0 − u‖2 +

α4α−1

t
(‖w0‖2 +

ln2 t

γ2
+

2

1− α
t−1−α)

t−1∑
k=1

1

k1−α +
B2

2t

t−1∑
k=0

ηkEL(wk)

≤ L(u) +
1

2t
‖w0 − u‖2 +

α4α−1

t
(‖w0‖2 +

ln2 t

γ2
+

2

1− α
t−1−α)

tα

α
+
B2

2t

t−1∑
k=0

ηkEL(wk)

≤ 1

t
+

1

2t
(‖w0‖2 +

ln2 t

γ2
) +

4α−1

t1−α
(‖w0‖2 +

ln2 t

γ2
+

2

1− α
t−α) +

B2

2t

t−1∑
k=0

ηkEL(wk)

= O(ln2(t)/t1−α)

where (i) follows from the fact that E‖wk − u‖2≤‖w0‖2 + ln2 t
γ2 + 2

1−α t
−1−α for k ≤ t.

Thus, we can see that L(wt) decreases to 0 at a rate of O(ln2(t)/t1−α). If we choose α to be close
to 0.5, the best convergence rate that can be achieved is O(ln2(t)/

√
t).

F PROOF OF THEOREM 3.4

F.1 MAIN PROOF OF THEOREM 3.4

We first present four technical lemmas that are useful for the proof of the main theorem.

Lemma F.1. Given the stepsize ηk+1 = 1/(k + 1)−α and the initialization w0s, then for t ≥ 1, we
have

‖Ewt‖ ≥ −
1

B
ln
(1

t
+

1

2t

(
‖w0s‖2 +

ln2(t)

γ2

)
+

4α−1

t1−α

(
‖w0s‖2 +

ln2 t

γ2
+

2

1− α
t−α
)

+
B2

2t

t−1∑
k=0

ηkEL(wk)
)

(18)

Lemma F.2. Let X+ represent the data matrix of all samples with the label +1, with each row
representing one sample. Then we have:

min
q∈∆n−1

‖X+Tq‖ ≥ max
‖w‖=1

min
i

(X+w)i = γ.
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∆n−1 is the simplex in Rn. If the equality holds (i.e., the strong duality holds) at q and ŵ+, then
they satisfy

ŵ+ =
1

γ
X+q,

and ŵ+ is the max-margin classifier of samples with the label +1.
Lemma F.3. Let γp = ‖E∇L(wp)‖/EL(wp) and η̂p+1 = ηp+1EL(wp) for k ≥ 1. Then we have

lnEL(wk) ≤ lnL(w0)−
k−1∑
p=0

η̂p+1γpγ +
1

2
B4S

k−1∑
p=0

η2
p+1.

Lemma F.4. For 0 ≤ k ≤ t− 1, we have

E〈−wk, ŵ
+〉 ≤ 1

γ
(lnE(L(wk)) + lnn+).

We next apply the lemmas to prove the main theorem. Taking the expectation of the SGD update
rule yields that

Ewk = Ewk−1 − ηk−1E∇L(wk−1).

Applying the above equation recursively, we further obtain that

Ewk = w0 −
k−1∑
p=0

ηpE∇L(wp),

which further leads to

t−1∑
k=0

‖Ewk‖ ≤ t‖w0‖+

t−1∑
k=1

k−1∑
p=0

ηp‖E∇L(wp)‖ = t‖w0‖+

t−2∑
p=0

(t− 1− p)ηp‖E∇L(wp)‖. (19)

Next, we prove the convergence of the direction of E[wt] to the max-margin direction as follows.
1

2

∥∥∥ Ewt

‖Ewt‖
− ŵ+

∥∥∥2

= 1− 〈Ewt, ŵ
+〉

‖Ewt‖
= 1 +

t−1∑
k=0

E〈−wk, ŵ
+〉

t‖Ewt‖
(i)

≤ 1 +

t−1∑
k=0

lnE(L(wk)) + lnn+

γt‖Ewt‖

(ii)

≤ 1 +
lnn+ + lnL(w0)

γ‖Ewt‖
+

t−1∑
k=1

−
k−1∑
p=0

η̂p+1γpγ + 1
2B

4S
k−1∑
p=0

η2
p+1

γt‖Ewt‖

= 1−
t−1∑
k=1

k−1∑
p=0

η̂p+1γp

t‖Ewt‖
+

lnn+ + lnL(w0)

γ‖Ewt‖
+

1

2
B4S

t−1∑
k=1

k−1∑
p=0

η2
p+1

γt‖Ewt‖

=

∥∥∥ t−1∑
k=0

Ewk

∥∥∥− t−2∑
p=0

(t− 1− p)ηp+1‖E∇L(wp)‖

t‖Ewt‖
+

lnn+ + lnL(w0)

γ‖Ewt‖
+

1

2
B4S

t−2∑
p=0

(t− 1− p)η2
p+1

γt‖Ewt‖

≤

t−1∑
k=0

‖Ewk‖ −
t−2∑
p=0

(t− 1− p)ηp+1‖E∇L(wp)‖

t‖Ewt‖
+

lnn+ + lnL(w0)

γ‖Ewt‖
+

1

2
B4S

t−2∑
p=0

η2
p+1

γ‖Ewt‖
(iii)

≤ ‖w0‖
‖Ewt‖

+
lnn+ + lnL(w0)

γ‖Ewt‖
+

1

4(α− 0.5)
B4S

1− t1−2α

γ‖Ewt‖
,

16
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where (i) follows from Lemma F.4, (ii) follows from Lemma F.3 and (iii) is due to eq. (19). Since
following from Lemma F.1 we have that ‖Ewt‖ = O(ln(t)), the above inequality then implies that∥∥∥ Ewt

‖Ewt‖
− ŵ+

∥∥∥2

= O
( 1

ln t

)
.

F.2 PROOF OF TECHNICAL LEMMAS

Proof of Lemma F.1. Since ‖xi‖ ≤ B for all i, we obtain that

exp(−EwT
t xi) ≥ exp(−‖Ewt‖‖xi‖) ≥ exp(−B‖Ewt‖),

L(Ewt) =
1

n+

∑
i∈I+

exp(−Ew>t xi) ≥ exp(−B‖Ewt‖).

By convexity, we have that EL(wt) ≥ L(Ewt), combining which with the above bounds further
yields

‖Ewt‖ ≥ −
1

B
ln(L(Ewt)) ≥ −

1

B
ln(EL(wt)) ≥ −

1

B
ln
( ln2 t

t1−α

)
.

That is, the increasing rate of E‖wt‖ is at least O(ln(t)).

Proof of Lemma F.2. Following from the definition of the max-margin, we have

γ = max
‖w‖=1

min
i

(X+w)i = max
‖w‖≤1

min
i

(X+w)i

= max
w

(−max
i

(−X+w)i − 1‖w‖≤1)

= max
w

(−f∗(−X+w)− g∗(w))

where f∗(a) = max
i

(a)i and g∗(b) = 1‖b‖≤1, and their conjugate functions are f(c) = 1c∈∆n−1

and g(e) = ‖e‖, respectively, where a,b, c,d are generic vectors. We also denote ∂f(c) and ∂g(e)
the subgradient set of f and g at e and c respectively. By the Fenchel-Rockafellar duality Borwein
& Lewis (2010), we obtain that

γ = max
w
−f∗(−X+w)− g(w) ≤ min

q
f(q) + g(X+>q) = min

q∈∆n−1

‖X+>q‖.

In particular, the strong duality holds at q and ŵ+ if and only if −X+w ∈ ∂f(q) and ŵ+ ∈
∂g(X+>q). Thus, we conclude that ŵ+ = ∂g(X+>q) = X+>q

‖X+>q‖ = 1
γX

+>q.

Proof of Lemma F.3. By Taylor’s expansion and the update of SGD, we obtain that

L(wk)

= L(wk−1)− ηk∇L(wk−1)T∇`(wk−1, zξk) +
1

2
η2
k∇`(wk−1, zξk)T∇2L(w̃)∇`(wk−1, zξk),

(20)

where w̃ = θwk−1 + (1 − θ)wk for certain 0 ≤ θ ≤ 1, and is in the linear separable region. Note
that for any v,

vT∇2L(w̃)v =
1

n+

∑
i∈I+

exp(−w̃>xi)v>xix>i v ≤
1

n+

∑
i∈I+

exp(−w̃>xi)‖xi‖2‖v‖2

≤ ‖v‖2B2 1

n+

∑
i∈I+

exp(−w̃Txi) = ‖v‖2B2L(w̃) ≤ ‖v‖2B2S,

where S is the maximum of L(w) in the linearly separable region. We note that S < +∞ because
‖w‖ → ∞ in the linearly separable region and hence L(w) → 0. Taking the expectation on both
sides of eq. (20) and recalling that

E‖∇`(wk−1,xik)‖2 ≤ B2EL(wk−1),
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we obtain that

EL(wk) ≤ EL(wk−1)− ηkE‖∇L(wk−1)‖2 +
1

2
η2
kB

2SE‖∇`(wk−1, zξk)‖2

≤ EL(wk−1)
(

1− ηk
E‖∇L(wk−1)‖2

EL(wk−1)
+

1

2
η2
kB

2S
E‖∇`(wk−1, zξk)‖2

EL(wk−1)

)
≤ EL(wk−1)

(
1− ηkEL(wk−1)

‖E∇L(wk−1)‖2

[EL(wk−1)]2
+

1

2
η2
kB

2S
E‖∇`(wk−1,xik)‖2

EL(wk−1)

)
≤ EL

(
wk−1)(1− ηkEL(wk−1)γ2

k−1 +
1

2
η2
kB

4S
)
.

Define η̂k = ηkEL(wk−1). Then, applying the above bound recursively yields that

EL(wk) ≤ L(w0)

k−1∏
p=0

(1− η̂p+1γ
2
p +

1

2
η2
p+1B

4S) (21)

≤ L(w0)
k−1∏
p=0

exp(−η̂p+1γ
2
p +

1

2
η2
p+1B

4S). (22)

Denote X ∈ Rn×d as the data matrix with each row corresponding to one data sample. The
derivative of the empirical risk can be written as ∇L(w) = XT l(w)/n, where l(w) =
[ `(w, z1), `(w, z2), . . . , `(w, zn)] . Then, we obtain that

EL(wp) =
1

n+

∑
i∈I+

E exp(−w>p xi) =
1

n+
‖E(l(wp))‖1

and
E∇L(wp) =

1

n+

∑
i∈I+

E exp(−w>p xi)xi =
1

n+
X+E(l(wp)).

Based on the above relationships and Lemma F.2, we obtain that

γp =
‖E∇L(wp)‖
EL(wp)

=
‖X+E(l(wp))‖
‖E(l(wp))‖1

= ‖X+ E(l(wp))

‖E(l(wp))‖1
‖ ≥ γ,

Taking logarithm on both sides of eq. (22) and utilizing the above facts, we further obtain that

lnEL(wk) ≤ lnL(w0)−
k−1∑
p=0

η̂p+1γ
2
p +

1

2
B4S

k−1∑
p=0

η2
p+1,

≤ lnL(w0)−
k−1∑
p=0

η̂p+1γpγ +
1

2
B4S

k−1∑
p=0

η2
p+1.

Proof of Lemma F.4. Define h(y) = ln
(

1
n+

∑
i∈I+

exp(yi)
)

, and then its dual function h∗(q) =

lnn+ + qi ln(qi) ≤ lnn+. Following from Lemma F.2, ŵ+ = 1
γX

+Tq. Then, by the Fenchel-
Young inequality, we obtain that

E〈−wk, ŵ
+〉 =

1

γ
〈−Ewk,X

+>q〉 =
1

γ
〈−X+Ewk,q〉

≤ 1

γ
(h(−X+Ewk) + h∗(q)) ≤ 1

γ
(ln(L(Ewk)) + lnn+)

≤ 1

γ
(lnE(L(wk)) + lnn+).

18
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G PROOF OF PROPOSITION 2

Under our ReLU model, in the linearly separable region, the gradient∇L(w) is given by

∇L(w) = − 1

n

n∑
i=1

yi1{wᵀxi>0} exp(−yiwᵀxi)xi = − 1

n

∑
i∈I+

exp(−wᵀxi)xi.

Thus, only samples with positive classification output, i.e. σ(wᵀ
t xξt) > 0, contribute to the SGD

updates.

We first prove ‖wt‖ < +∞ when there exist misclassified samples. Suppose, toward contradiction,
that ‖wt‖ = +∞ as t→ +∞ when misclassified samples exist. Note that

wt = w0 + η

n∑
i=0

αiyixi (23)

Since ‖wt‖ is infinite, at least one of the coefficients αi, i = 1, · · · , n is infinite. No loss of gener-
ality, we assume αp = +∞. Then, the inner product

wᵀ
t xj = wᵀ

0xj + η

n∑
i=0
i6=p

αiyix
ᵀ
i xj + αpypx

ᵀ
pxj . (24)

Based on the data selected in Proposition 2, we obtain for ∀i ∈ I− ∪ I+

∀j ∈ I+, yix
ᵀ
i xj > 0

∀j ∈ I−, yix
ᵀ
i xj < 0,

which, in conjunction with eq. (24), implies that, if there exist j ∈ I+, then the first term in the right
side of eq. (24) is finite, the second term is positive, and the third term is positive and infinite. As
a result, we conclude that for ∀j ∈ I+, wtxj > 0 as t → +∞. Similarly, we can prove that for
∀j ∈ I−, wtxj ≤ 0 as t→ +∞, which contracts that wtxj > 0 . Thus, if there exist misclassified
samples, then we have ‖wt‖ < +∞.

Based on the update rule of SGD, we have, for any j

wᵀ
t+1xj −wᵀ

t xj = η exp(−yξtw
ᵀ
t xξt)yξtx

ᵀ
ξt
xj = 4ξt,j . (25)

It can be shown that
∀j ∈ I− ∪ I+, yξt4ξt,j > 0,

which, combined with eq. (25), implies that, if one sample is correctly classified at iteration t, it
remains to be correctly classified in the following iterations. Next, we prove that when ‖wt‖ < +∞,
all samples are correctly classified within finite steps. Define

ε++ = min
i1∈I+,i2∈I+

|xᵀ
i1
xi2 |;

ε−− = min
i1∈I−,i2∈I−

|xᵀ
i1
xi2 |;

ε+− = min
i1∈I+,i2∈I−

|xᵀ
i1
xi2 |.

Since ‖wt‖ < ∞, there exists a constant C such that ‖wt‖ < C for all t. Let D = maxi∈I+ ‖xi‖.
Then, we obtain, for any j ∈ I+ and ξt ∈ I+,

4ξt,j = η exp(−wᵀ
t xξt)x

ᵀ
ξt
xj ≥ η exp(−CD)ε++,

and for any j ∈ I+ and ξt ∈ I−,

4ξt,j = −η exp(wᵀ
t xξt)x

ᵀ
ξt
xj ≥ ηε+−.

Combining the above two inequalities ∀j ∈ I+ yields

4ξt,j ≥ ηmin {exp(−CD)ε++, ηε+−}. (26)
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Similarly, we can prove ∀j ∈ I−

4ξt,j ≤ −ηmin {exp(−CD)ε+−, ηε−−}. (27)

Combining eq. (25), eq. (26) and eq. (27), we have, when GD is in the misclassified region, the inner
product wᵀ

t xi increases at least ηmin {exp(−CD)ε++, ηε+−} after each iteratio for ∀xi ∈ I+ or
decreases at least ηmin {exp(−CD)ε++, ηε+−} after each iteration for ∀xi ∈ I−. Thus, for a
sufficiently large t, we have

∀i ∈ I+, wᵀ
t xi > 0

∀i ∈ I−, wᵀ
t xi < 0,

which shows that SGD enters into linearly separable eventually. Recall that once a sample is cor-
rectly classified, it remains to be correctly classified in the following iterations. As a result, there
exists t̄ ∈ N such that the SGD stays in linearly separable region for all t ≥ t̄.

H PROOF OF THEOREM 4.1

After T GD iterations, we randomly pick a Ar from {Ai}. Without loss of generality, we assume
that only the first Kr neurons are activated for all xi ∈ Br, and suppose there are nr samples in Br.
We first use contradiction to show that all elements in the set Vr = {v1, v2, · · · , vKr

}must be either
all positive or all negative.

According to the update rule of GD, we have, for any 1 ≤ K1 < K2 ≤ Kr

∇wt
K1
L(W) = −vK1

n

∑
xi∈Br

exp(−yiw̃tᵀ
r xi)yixi,

∇wt
K2
L(W) = −vK2

n

∑
xi∈Bi

exp(−yiw̃tᵀ
r xi)yixi,

which implies that
∇wt

K1
L(W) =

vK1

vK2

∇wt
K2
L(W),

wt+1
K1

= wt
K1
− η∇wt

K1
L(W),

wt+1
K2

= wt
K2
− η∇wt

K2
L(W) = wt

K2
− vK2

vK1

η∇wt
K1
L(W). (28)

Define the empirical risk Lr(w̃r) over the samples in Br as

Lr(w̃t
r) =

1

nr

∑
xi∈Br

exp(−yif(xi)) =
1

nr

∑
xi∈Br

exp(−yiw̃tᵀ
r xi).

Using that facts that L(W) converges to 0 and Lr(w̃t
r) ≤ (n/nr)L(W) implies that Lr(w̃t

r) con-
verges to 0. Thus, we have yiw̃tᵀ

r xi ≥ 0 for all xi ∈ Br, and ‖w̃t
r‖ → +∞ as t→ +∞. Based on

eq. (28) we have, for any 1 ≤ k ≤ Kr

wt
k = wTk +

vk
v1

∆wt. (29)

Recalling that w̃t
r =

∑Kr

k=1 vkw
t
k, we rewrite w̃t

r as

w̃t
r =

Kr∑
k=1

vkw
T
k +

(
Kr∑
k=1

v2
k

v1

)
∆wt (30)

Noting that the norm of the first term in the right side of eq. (30) is finite and recalling that ‖w̃t
r‖ =

+∞, we have, ‖∆wt‖ = +∞, which, in conjunction with eq. (29), implies that ‖wt
k‖ = +∞ for

all 1 ≤ k ≤ Kr.

Next, let us look at the update of w1 and w2. If there exist two elements in Vr that have different
signs (without loss of generality, we assume v1 > 0 and v2 < 0), then

wt+1
1 = wt

1 − η∇wt
1
L(W), (31)

wt+1
2 = wt

2 − η∇wt
2
L(W) = wt

1 + η
∣∣∣v1

v2

∣∣∣∇wt
1
L(W) (32)
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which can be rewriten as

wt
1 = wT1 −

t−1∑
s=T+1

η∇wt
1
L(W) = wT1 + ∆wt,

wt
2 = wT2 −

∣∣∣v1

v2

∣∣∣∆wt.

Recalling that ‖∆wt‖ = +∞ as t → +∞ and noting that the first two neurons are activated after
T iterations, we have, for ∀xi ∈ Br

wtᵀ
1 xi = wT ᵀ

1 xi + ∆wtᵀxi > 0,

wtᵀ
2 xi = wT ᵀ

2 xi −
v1

v2
∆wtᵀxi > 0. (33)

Since ∆wt belongs to the space spanned by the samples in Br, ∆wt cannot be perpendicular to
all xi ∈ Br. Thus, when t → +∞, we can find a sample xr ∈ Br such that ‖∆wtᵀxr‖ = +∞.
If ∆wtᵀxr > 0, then we have wtᵀ

2 xr < 0, which contradicts eq. (33). If ∆wtᵀxr < 0, then
wtᵀ

1 xr < 0, which also contradicts eq. (33). As a result, all elements in Vr have the same sign.

Next, we prove that all samples in the same pattern partition have the same label. First consider the
case when all elements in Vr are positive. If there exists a sample xsp ∈ Br such that ysp = −1
when t = +∞, then

L(W) =
1

n

n∑
i=1

exp(−yif(xi)) >
1

n
exp(−yspw̃tᵀ

r xsp) =
1

n
exp

( Kr∑
k=1

vkw
tᵀ
k xsp

)
>

1

n
,

which contradicts that L(W) converges to 0.

Next, consider the case when all elements in Vr are negative. If there exists a sample xsp ∈ Br such
that ysp = +1, we have

L(W) =
1

n

n∑
i=1

exp(−yif(xi)) >
1

n
exp(−yspw̃tᵀ

r xsp) =
1

n
exp(−

Kr∑
k=1

vkw
tᵀ
k xsp) >

1

n
,

which also leads a contradiction. Combining these two results, we conclude that if all elements in
Vr are positive, then all samples in Br have label +1, and if all elements in Vr are negative, then all
samples in Br have label −1.

Finally, note that w̃r is updated by

w̃t+1
r = w̃t

r + η

Kr∑
k=1

vk∇wt
k
L(W) = w̃t

r +
η

n

( Kr∑
k=1

v2
k

) ∑
xi∈Br

exp(−yiw̃tᵀ
r xi)yixi,

which can be rewritten as

w̃t+1
r = w̃t

r + η
nr
n

( Kr∑
k=1

v2
k

)
∇Lr(w̃t

r). (34)

Applying Theorem 3.2 to eq. (34) with stepsize η̂ = ηn/
(
nr
∑Kr

k=1 v
2
k

)
, we obtain that w̃t

r converges
in the direction of the max-marigin classifier over all samples in Br, i.e.,∥∥∥∥ w̃t

r

‖w̃t
r‖
− ŵr

∥∥∥∥ = O
( ln ln t

ln t

)
.

I PROOF OF THEOREM 4.2

After T GD iterations, we randomly pick a Ar from {Ai}. Without loss of generality, we assume
that only the first Kr neurons are activated for all xi ∈ Br, and suppose there are nr samples in Br.
We first use contradiction to show that all elements in the set Vr = {v1, v2, · · · , vKr}must be either
all positive or all negative.
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According to the update rule of SGD, for any 1 ≤ K1 < K2 ≤ Kr

∇wt
K1
`(W) = −vK1

exp(−yξtw̃tᵀ
r xξt)yξtxξt ,

∇wt
K2
`(W) = −vK2

exp(−yξtw̃tᵀ
r xξt)yξtxξt ,

which implies that
∇wt

K1
`(W) =

vK1

vK2

∇wt
K2
`(W),

wt+1
K1

= wt
K1
− ηt∇wt

K1
`(W),

wt+1
K2

= wt
K2
− ηt∇wt

K2
`(W) = wt

K2
− vK2

vK1

ηt∇wt
K1
`(W). (35)

Then we prove w̃t
r diverges to infinity as t → +∞. If w̃t

r does not diverges to infinity, then there
exist a positive constant F < +∞ such that ∀t ≥ 0, ‖w̃t

r‖ < F . According to the update rule of
SGD

w̃t+1
r = w̃t

r + ηt
( Kr∑
k=1

v2
k

)
exp(−yξtw̃tᵀ

r xξt)yξtxξt .

For all xξt ∈ Br, we have yξtw̃
tᵀ
r xξt > 0, thus ‖w̃t

r‖ is strictly increasing at each step. Since ‖w̃t
r‖

is upper bounded by F and is in the linearly separable region, we can find a constant εr > 0 such
that

‖w̃t+1
r ‖ ≥ ‖w̃t

r‖+ ηtεr.

Recall ηt = 1/(t+ 1)−α, telescoping the above inequality from step T to t = +∞

‖w̃t
r‖ ≥ ‖w̃Tr ‖+ εr

t−1∑
s=T+1

1

(1 + s)α
,

since 0.5 < α < 1, the R.H.S of the above inequation goes to infinity, thus ‖w̃t
r‖ = +∞ when

t→ +∞, which is a contradiction. Thus, w̃t
r diverges to infinity.

Based on eq. (28) we have, for any 1 ≤ k ≤ Kr

wt
k = wTk +

vk
v1

∆wt. (36)

Recalling that w̃t
r =

∑Kr

k=1 vkw
t
k, we rewrite w̃t

r as

w̃t
r =

Kr∑
k=1

vkw
T
k +

(
Kr∑
k=1

v2
k

v1

)
∆wt (37)

Noting that the norm of the first term in the right side of eq. (37) is finite and recalling that ‖w̃t
r‖ =

+∞, we have, ‖∆wt‖ = +∞, which, in conjunction with eq. (36), implies that ‖wt
k‖ = +∞ for

all 1 ≤ k ≤ Kr.

Next, let us look at the update of w1 and w2. If there exist two elements in Vr that have different
signs (without loss of generality, we assume v1 > 0 and v2 < 0), then

wt+1
1 = wt

1 − ηt∇wt
1
`(W), (38)

wt+1
2 = wt

2 − ηt∇wt
2
`(W) = wt

1 + ηt

∣∣∣v1

v2

∣∣∣∇wt
1
`(W). (39)

which can be rewriten as

wt
1 = wT1 −

t−1∑
s=T+1

ηt∇wt
1
`(W) = wT1 + ∆wt,

wt
2 = wT2 −

∣∣∣v1

v2

∣∣∣∆wt.
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Recalling that ‖∆wt‖ = +∞ as t → +∞ and noting that the first two neurons are activated after
T iterations, we have, for ∀xi ∈ Br and t > T , the following two inequalities always hold

wtᵀ
1 xi = wT ᵀ

1 xi + ∆wtᵀxi > 0,

wtᵀ
2 xi = wT ᵀ

2 xi −
v1

v2
∆wtᵀxi > 0. (40)

Since ∆wt belongs to the space spanned by the samples in Br, ∆wt cannot be perpendicular to
all xi ∈ Br. Thus, when t → +∞, we can find a sample xr ∈ Br such that ‖∆wtᵀxr‖ = +∞.
If ∆wtᵀxr > 0, then we have wtᵀ

2 xr < 0, which contradicts eq. (40). If ∆wtᵀxr < 0, then
wtᵀ

1 xr < 0, which also contradicts eq. (40). As a result, all elements in Vr have the same sign.

Next, we prove that all samples in the same pattern partition have the same label. First consider the
case when all elements in Vr are positive. If there exists a sample xsp ∈ Br such that ysp = −1
when t = +∞, then

L(W) =
1

n

n∑
i=1

exp(−yif(xi)) >
1

n
exp(−yspw̃tᵀ

r xsp) =
1

n
exp(

Kr∑
k=1

vkw
tᵀ
k xsp) >

1

n
,

which contradicts that L(W) < 1/n.

Next, consider the case when all elements in Vr are negative. If there exists a sample xsp ∈ Br such
that ysp = +1, we have

L(W) =
1

n

n∑
i=1

exp(−yif(xi)) >
1

n
exp(−yspw̃tᵀ

r xsp) =
1

n
exp(−

Kr∑
k=1

vkw
tᵀ
k xsp) >

1

n
,

which also leads a contradiction. Combining these two results, we conclude that if all elements in
Vr are positive, then all samples in Br have label +1, and if all elements in Vr are negative, then all
samples in Br have label −1.

Finally, note that w̃r is updated by

w̃t+1
r = w̃t

r + ηt

Kr∑
k=1

vk∇wt
k
`(W) = w̃t

r + ηt
( Kr∑
k=1

v2
k

)
exp(−yiw̃tᵀ

r xi)yixi,

which can be rewritten as

w̃t+1
r = w̃t

r + ηt
( Kr∑
k=1

v2
k

)
∇`r(w̃t

r). (41)

Applying Theorem 3.4 to eq. (41) with stepsize η̂t = ηt
(∑Kr

k=1 v
2
k

)−1
, we obtain that w̆t

r converges
in the direction of the max-marigin classifier over all samples in Br, i.e.,∥∥∥∥ Ew̆t

r

‖Ew̆t
r‖
− ŵr

∥∥∥∥2

= O
(

1

ln t

)
.
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