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ABSTRACT

We systematically explore regularizing neural networks by penalizing low entropy
output distributions. We show that penalizing low entropy output distributions,
which has been shown to improve exploration in reinforcement learning, acts as
a strong regularizer in supervised learning. Furthermore, we connect a maximum
entropy based confidence penalty to label smoothing through the direction of the
KL divergence. We exhaustively evaluate the proposed confidence penalty and
label smoothing on 6 common benchmarks: image classification (MNIST and
Cifar-10), language modeling (Penn Treebank), machine translation (WMT’14
English-to-German), and speech recognition (TIMIT and WSJ). We find that both
label smoothing and the confidence penalty improve state-of-the-art models across
benchmarks without modifying existing hyperparameters, suggesting the wide ap-
plicability of these regularizers.

1 INTRODUCTION

Large neural networks with millions of parameters achieve strong performance on image classifica-
tion (Szegedy et al., 2015a), machine translation (Wu et al., 2016), language modeling (Jozefowicz
et al., 2016), and speech recognition (Graves et al., 2013). However, despite using large datasets,
neural networks are still prone to overfitting. Numerous techniques have been proposed to prevent
overfitting, including early stopping, L1/L2 regularization (weight decay), dropout (Srivastava et al.,
2014), and batch normalization (Ioffe & Szegedy, 2015). These techniques, along with most other
forms of regularization, act on the hidden activations or weights of a neural network. Alternatively,
regularizing the output distribution of large, deep neural networks has largely been unexplored.

In this paper, we systematically evaluated two output regularizers: a maximum entropy based confi-
dence penalty and label smoothing (uniform and unigram) for large, deep neural networks on 6 com-
mon benchmarks: image classification (MNIST and Cifar-10), language modeling (Penn Treebank),
machine translation (WMT’14 English-to-German), and speech recognition (TIMIT and WSJ). We
find that both label smoothing and the confidence penalty improve state-of-the-art models across
benchmarks without modifying existing hyperparameters.

2 RELATED WORK

The maximum entropy principle (Jaynes, 1957) has a long history with deep connections to many
areas of machine learning including unsupervised learning, supervised learning, and reinforcement
learning. In supervised learning, we can search for the model with maximum entropy subject to
constraints on empirical statistics, which naturally gives rise to maximum likelihood in log-linear
models (see (Berger et al., 1996) for a review). Deterministic annealing Rose (1998) is a general
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approach for optimization that is widely applicable, avoids local minima, and can minimize discrete
objectives, and it can be derived from the maximum entropy principle. Closely related to our work,
Miller et al. (1996) apply deterministic annealing to train multilayer perceptrons, where an entropy
based regularizer is introduced and slowly annealed. However, their focus is avoiding poor initial-
ization and local minima, and while they find that deterministic annealing helps, the improvement
diminishes quickly as the number of hidden units exceeds eight.

3 DIRECTLY PENALIZING CONFIDENCE

A network is overconfident when it places all probability on a single class in the training set, which is
often a symptom of overfitting (Szegedy et al., 2015b). Confident predictions correspond to output
distributions that have low entropy. The confidence penalty constitutes a regularization term that
prevents these peaked distributions, leading to better generalization.

In particular, neural networks produce a conditional distribution pθ(y|x) over classes y given an
input x through a softmax function. To penalize confident output distributions, we add the negative
entropy to the negative log-likelihood during training

L(θ) = −
∑

log pθ(y|x)− βH(pθ(y|x)),

where β controls the strength of the confidence penalty.

3.1 CONNECTION TO LABEL SMOOTHING

Label smoothing estimates the marginalized effect of label noise during training. When the prior
label distribution is uniform, label smoothing is equivalent to adding the KL divergence between the
uniform distribution u and the network’s predicted distribution pθ to the negative log-likelihood

L(θ) = −
∑

log pθ(y|x)−DKL(u‖pθ(y|x)).

By reversing the direction of the KL divergence, we recover the confidence penalty. This interpre-
tation suggests further confidence regularizers that use alternative target distributions instead of the
uniform distribution. We leave the exploration of these regularizers to future work.

4 EXPERIMENTS

We evaluated the confidence penalty and label smoothing on MNIST and CIFAR-10 for image clas-
sification, Penn Treebank for language modeling, WMT’14 English-to-German for machine trans-
lation, and TIMIT and WSJ for speech recognition. See Appendix 6 for implementation details and
full results.

4.1 IMAGE CLASSIFICATION

As a preliminary experiment, we evaluated the approaches on the standard MNIST digit recognition
task. We trained fully-connected, ReLu activation neural networks with 1024 units per layer and two
hidden layers. We also plotted the norm of the gradient as training progressed in Figure 1. We ob-
served that label smoothing and confidence penalty had smaller gradient norms and converged more
quickly than models regularized with dropout. If the output distributions is peaked on a misclassified
example, the model receives a large gradient. This may explain why the regularized models have
smaller gradient norms.

Model Layers Size Test
Dropout 2 1024 1.28± 0.06%
Label Smoothing 2 1024 1.23± 0.06%
Confidence Penalty 2 1024 1.17± 0.06%

Table 1: Test error (%) for permutation-invariant MNIST.
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For the CIFAR-10 dataset, we used a densely connected convolutional neural network, which repre-
sents the current state-of-the-art on CIFAR-10 (Huang et al., 2016a). We use the small configuration
from (Huang et al., 2016a), which consists of 40-layers, with a growth rate of 12. Adding confidence
penalty to dropout reduced test error by 0.27% absolute (Table 4).

4.2 LANGUAGE MODELING

For language modeling, we found that confidence penalty significantly outperforms label noise and
label smoothing (Table 2). We performed word-level language modeling experiments using the Penn
Treebank dataset (PTB) (Marcus et al., 1993). We used the hyper-parameter settings from the large
configuration in (Zaremba et al., 2014).

Model Parameters Validation Test
Zaremba et al. (2014) - Regularized LSTM 66M 82.2 78.4

Regularized LSTM (label noise) 66M 79.7 77.7
Regularized LSTM (label smoothing) 66M 78.9 76.6
Regularized LSTM (unigram smoothing) 66M 79.1 76.3
Regularized LSTM (confidence penalty) 66M 77.8 74.7

Table 2: Validation and test perplexity for word-level Penn Treebank.

4.3 MACHINE TRANSLATION

For machine translation, we evaluated the confidence penalty on the WMT’14 English-to-German
translation task using Google’s production-level translation system Wu et al. (2016). We found
label smoothing slightly outperformed confidence penalty (Table 6). When applied without dropout,
both lead to an improvement of just over 1 BLEU point (dropout leads to an improvement of just
over 2 BLEU points). However, when combined with dropout, the effect of both regularizers was
diminished.

4.4 SPEECH RECOGNITION

4.4.1 TIMIT

As our base model, we used a sequence-to-sequence model with attention. The encoder consisted
of 3 bidirectional LSTM layers, the decoder consisted of a single unidirectional LSTM layer, and
the attention network consisted of a single layer feed-forward network. Label smoothing led to an
absolute improvement over the dropout baseline of 1.6%, while the confidence penalty led to an
absolute improvement of 1.2% (Table 7).

4.4.2 WALL STREET JOURNAL

For the WSJ corpus we used attention-based sequence-to-sequence networks that directly predicted
characters. Table 8 compares the performance of the regularized networks with several recent results.
We observe that the benefits of label smoothing (WER reduction from 14.2 to 11) improve over
the recently proposed Latent Sequence Decompositions (LSD) method (Chan et al., 2016) which
reduces the WER from 14.7 to 12.9 by extending the space of output tokens to dynamically chosen
character n-grams.

5 CONCLUSION

Motivated by recent successes of output regularizers (Szegedy et al., 2015b; Xie et al., 2016), we
conduct a systematic evaluation of two output regularizers: the confidence penalty and label smooth-
ing. We show that this form of regularization, which has been shown to improve exploration in
reinforcement learning, also acts as a strong regularizer in supervised learning. We find that both the
confidence penalty and label smoothing improve a wide range of state-of-the-art models, without
the need to modify hyper-parameters.
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APPENDIX

6 IMPLEMENTATION DETAILS AND RESULTS

All models were implemented using TensorFlow (Abadi et al., 2016) and trained on NVIDIA Tesla
K40 or K80 GPUs.

6.1 IMAGE CLASSIFICATION

6.1.1 MNIST

We used the standard split into 60k training images and 10k testing images. We use the last 10k
images of the training set as a held-out validation set for hyper-parameter tuning and then retrained
the models on the entire dataset with the best configuration.

We trained fully-connected, ReLu activation neural networks with 1024 units per layer and two
hidden layers. Weights were initialized from a normal distribution with standard deviation 0.01.
Models were optimized with stochastic gradient descent with a constant learning rate 0.05 (except
for dropout where we set the learning rate to 0.001).

For label smoothing, we varied the smoothing parameter in the range [0.05, 0.1, 0.2, 0.3, 0.4, 0.5],
and found 0.1 to work best for both methods. For the confidence penalty, we varied the weight
values over [0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 8.0] and found a confidence penalty weight of 1.0 to work
best.

Model Layers Size Test
Wan et al. (2013) - Unregularized 2 800 1.40%
Srivastava et al. (2014) - Dropout 3 1024 1.25%
Wan et al. (2013) - DropConnect 2 800 1.20%
Srivastava et al. (2014) - MaxNorm + Dropout 2 8192 0.95%
Dropout 2 1024 1.28± 0.06%
Label Smoothing 2 1024 1.23± 0.06%
Confidence Penalty 2 1024 1.17± 0.06%

Table 3: Test error (%) for permutation-invariant MNIST.

6.1.2 CIFAR-10

CIFAR-10 is an image classification dataset consisting of 32x32x3 RGB images of 10 classes. The
dataset is split into 50k training images and 10k testing images. We use the last 5k images of the
training set as a held-out validation set for hyper-parameter tuning, as is common practice.

For our experiments, we used a densely connected convolutional neural network, which represents
the current state-of-the-art on CIFAR-10 (Huang et al., 2016a). We use the small configuration from
(Huang et al., 2016a), which consists of 40-layers, with a growth rate of 12. All models were trained
for 300 epochs, with a batch-size of 50 and a learning rate 0.1. The learning rate was reduced by
a factor of 10 at 150 and 225 epochs. We present results for training without data-augmentation.
We found that the confidence penalty did not lead to improved performance when training with data
augmentation, however neither did other regularization techniques, including dropout.

For our final test scores, we trained on the entire training set. For label smoothing, we tried smooth-
ing parameter values of [0.05, 0.1, 0.2, 0.3, 0.4, 0.5], and found 0.1 to work best. For the confidence
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penalty, we performed a grid search over confidence penalty weight values of [0.1, 0.25, 0.5, 1.0,
1.5] and found a confidence penalty weight of 0.1 to work best.

Model Layers Parameters Test
He et al. (2015) - Residual CNN 110 1.7M 13.63%
Huang et al. (2016b) - Stochastic Depth Residual CNN 110 1.7M 11.66%
Larsson et al. (2016) - Fractal CNN 21 38.6M 10.18%
Larsson et al. (2016) - Fractal CNN (Dropout) 21 38.6M 7.33%
Huang et al. (2016a) - Densely Connected CNN 40 1.0M 7.00%
Huang et al. (2016a) - Densely Connected CNN 100 7.0M 5.77%
Densely Connected CNN (Dropout) 40 1.0M 7.04%
Densely Connected CNN (Dropout + Label Smoothing) 40 1.0M 6.89%
Densely Connected CNN (Dropout + Confidence Penalty) 40 1.0M 6.77%

Table 4: Test error (%) on Cifar-10 without data augmentation.

6.2 LANGUAGE MODELING

We performed word-level language modeling experiments using the Penn Treebank dataset (PTB)
(Marcus et al., 1993). We used the hyper-parameter settings from the large configuration in
(Zaremba et al., 2014). Briefly, we used a 2-layer, 1500-unit LSTM, with 65% dropout applied
on all non-recurrent connections. We trained using stochastic gradient descent for 55 epochs, de-
caying the learning rate by 1.15 after 14 epochs, and clipped the norm of the gradients when they
were larger than 10.

For label noise and label smoothing, we performed a grid search over noise and smoothing values of
[0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5]. For label noise, we found 0.1 to work best. For label smoothing,
we found 0.1 to work best. For the confidence penalty, we performed a grid search over confidence
penalty weight values of [0.1, 0.5, 1.0, 2.0, 3.0]. We found a confidence penalty weight of 2.0 to
work best.

For reference, we also include results of the existing state-of-the-art models for the word-level lan-
guage modeling task on PTB. Variational dropout (Gal, 2015) applies a fixed dropout mask (stochas-
tic for each sample) at each time-step, instead of resampling at each time-step as in traditional
dropout. Note, that we do not include the variational dropout results that use Monte Carlo (MC)
model averaging, which achieves lower perplexity on the test set but requires 1000 model evalua-
tions, which are then averaged. Recurrent highway networks (Zilly et al., 2016) currently represent
the state-of-the-art performance on PTB.

Model Parameters Validation Test
Zaremba et al. (2014) - Regularized LSTM 66M 82.2 78.4
Gal (2015) - Variational LSTM 66M 77.9 75.2
Press & Wolf (2016) - Tied Variational LSTM 51M 79.6 75.0
Merity et al. (2016) - Pointer Sentinel LSTM 21M 72.4 70.9
Zilly et al. (2016) - Variational RHN 32M 71.2 68.5
Zilly et al. (2016) - Tied Variational RHN 24M 68.1 66.0
Regularized LSTM (label noise) 66M 79.7 77.7
Regularized LSTM (label smoothing) 66M 78.9 76.6
Regularized LSTM (unigram smoothing) 66M 79.1 76.3
Regularized LSTM (confidence penalty) 66M 77.8 74.7

Table 5: Validation and test perplexity for word-level Penn Treebank.
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6.3 MACHINE TRANSLATION

For machine translation, we evaluated the confidence penalty on the WMT’14 English-to-German
translation task using Google’s production-level translation system Wu et al. (2016). The training set
consists of 5M sentence pairs, and we used newstest2012 and newtests2013 for validation and new-
stest2014 for testing. We report tokenized BLEU scores as computed by the multi-bleu.perl
script from the Moses translation machine translation package.

Our model was an 8-layer sequence-to-sequence model with attention (Bahdanau et al., 2014). The
first encoder was a bidirectional LSTM, the remaining encoder and decoder layers were unidirec-
tional LSTMs, and the attention network was a single layer feed-forward network. Each layer had
512 units (compared to 1024 in (Wu et al., 2016)). The model was trained using 12 replicas running
concurrently with asynchronous updates. Dropout of 30% was applied as described in (Zaremba
et al., 2014). Optimization used a mix of Adam and SGD with gradient clipping. Unlike (Wu et al.,
2016), we did not use reinforcement learning to fine-tune our model. We used a beam size of 12
during decoding. For more details, see (Wu et al., 2016).

For label smoothing, we performed a grid search over values [0.05, 0.1, 0.2, 0.3, 0.4, 0.5] and found
0.1 to work best for both uniform and unigram smoothing. For the confidence penalty, we searched
over values of [0.5, 2.5, 4.5] and found a value of 2.5 to work best . For machine translation, we
found label smoothing slightly outperformed confidence penalty.

Model Parameters Validation Test
Buck et al. (2014) - PBMT - - 20.7
Cho et al. (2015) - RNNSearch - - 16.9
Zhou et al. (2016) - Deep-Att - - 20.6
Luong et al. (2015) - P-Attention 164M - 20.9
Wu et al. (2016) - WPM-16K 167M - 24.4
Wu et al. (2016) - WPM-32K 278M - 24.6
WPM-32K (without dropout) 94M 22.33 21.24
WPM-32K (label smoothing) 94M 23.85 22.42
WPM-32K (confidence penalty) 94M 23.25 22.52
WPM-32K (dropout) 94M 24.1± 0.1 23.41± 0.04
WPM-32K (dropout + label smoothing) 94M 24.3± 0.1 23.52± 0.03
WPM-32K (dropout + unigram smoothing) 94M 24.3± 0.1 23.57± 0.02
WPM-32K (dropout + confidence penalty) 94M 24.3± 0.1 23.4± 0.1

Table 6: Validation and test BLEU for WMT’14 English-to-German. For the last four model con-
figurations, we report the mean and standard error of the mean (SEM) over 5 random initializations.

6.4 SPEECH RECOGNITION

6.4.1 TIMIT

In the TIMIT corpus, the training set consists of 3512 utterances, the validation set consists of 184
utterances and the test set consists of 192 utterances. All 61 phonemes were used during training
and decoding, and during scoring, these 61 phonemes were reduced to 39 to compute the phoneme
error rate (PER).

As our base model, we used a sequence-to-sequence model with attention. The encoder consisted
of 3 bidirectional LSTM layers, the decoder consisted of a single unidirectional LSTM layer, and
the attention network consisted of a single layer feed-forward network. All layers consisted of 256
units. Dropout of 15% was applied as described in Zaremba et al. (2014). We trained the model
with asynchronous SGD with 5 replicas. We used a batch size of 32, a learning rate of 0.01, and
momentum of 0.9. Gradients were clipped at 5.0. For more details, see Norouzi et al. (2016).

For label smoothing, we performed a grid search over values [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6,
0.8] and found 0.2 to work best. For the confidence penalty, we performed a grid search over values
of [0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0] and found a value of 1.0 to work best.
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Model Parameters Validation Test
Mohamed et al. (2012) - DNN-HMM - - 20.7
Norouzi et al. (2016) - RML 6.5M 18.0 19.9
Graves et al. (2006) - CTC 6.8M - 18.4
Graves et al. (2013) - RNN Transducer 4.3M - 17.7
Tóth (2014) - CNN - 13.9 16.7
Dropout 6.5M 21.0± 0.1 23.2± 0.4
Dropout + Label Smoothing 6.5M 19.3± 0.1 21.6± 0.2
Dropout + Confidence Penalty 6.5M 19.9± 0.2 22.0± 0.4

Table 7: Validation and test phoneme error rates (PER) for TIMIT. We report the mean and SEM
over 5 random initializations.

6.4.2 WALL STREET JOURNAL

For the WSJ corpus we used attention-based sequence-to-sequence networks that directly predicted
characters. We used the SI284 subset for training, DEV93 for validation, and EVAL92 for test-
ing. We used 240-dimensional vectors consisting of 80-bin filterbank features augmented with their
deltas and delta-deltas with per-speaker normalized mean and variances computed with Kaldi Povey
et al. (2011). We did not use text-only data or separate language models during decoding.

Network architecture details were as follows. The encoder of the network consisted of 4 bidirectional
LSTM layers each having 256 units, interleaved with 3 time-subsampling layers, configured to drop
every second frame (Bahdanau et al., 2016; Chan et al., 2015). The decoder used a single LSTM
layer with 256 units. The attention vectors were computed with a single layer feedforward network
having 64 hidden units and the convolutional filters as described in Chorowski et al. (2015). Weights
were initialized from a uniform distribution [−0.075, 0.075]. All models used weight decay of 10−6,
additive Gaussian weight noise with standard deviation 0.075, applied after 20K steps, and were
trained for 650K steps. We used the ADAM optimizer asynchronously over 8 GPUs. We used a
learning rate of 10−3, which was reduced to 10−4 after 400K and 10−5 after 500K steps.

We tested three methods of increasing the entropy of outputs: the confidence penalty and two vari-
ants of label smoothing: uniform and unigram. All resulted in improved Word Error Rates (WER),
however the unigram smoothing resulted in the greatest WER reduction, and we found it to be least
sensitive to its hyperparameter (the smoothing value). Furthermore, uniform smoothing and con-
fidence penalty required masking network outputs corresponding to tokens that never appeared as
labels, such as the start-of-sequence token.

Model Parameters Validation Test
Graves & Jaitly (2014) - CTC 26.5M - 27.3
Bahdanau et al. (2016) - seq2seq 5.7M - 18.6
Chan et al. (2016) - Baseline 5.1M - 14.7
Chan et al. (2016) - LSD 5.9M - 12.9

Baseline 6.6M 17.9 14.2
Uniform Label Smoothing 6.6M 14.7 11.3
Unigram Label Smoothing 6.6M 14.0± 0.25 11.0± 0.35
Confidence Penalty 6.6M 17.2 12.7

Table 8: Validation and test word error rates (WER) for WSJ. For Baseline, Uniform Label Smooth-
ing and Confidence Penalty we report the average over two runs. For the best setting (Unigram
Label Smoothing), we report the average over 6 runs together with the standard deviation.

10



Workshop track - ICLR 2017

0 10 20 30 40 50 60 70 80 90

Steps (x1e4)

0.0

0.5

1.0

1.5

2.0

G
ra

d
ie

n
t 

n
o
rm

No regularization

Label Smoothing

Dropout

Confidence Penalty

Figure 1: Norm of the gradient as training proceeds on the MNIST dataset. We plot the norm of
the gradient while training with confidence penalty, dropout, label smoothing, and without regular-
ization. We use early stopping on the validation set, which explains the difference in training steps
between methods. Both confidence penalty and label smoothing result in smaller gradient norm.
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