
Probabilistic Neural Programs

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present probabilistic neural programs, a framework for program induction that1

permits flexible specification of both a computational model and inference algo-2

rithm while simultaneously enabling the use of deep neural networks. Probabilistic3

neural programs combine a computation graph for specifying a neural network with4

an operator for weighted nondeterministic choice. Thus, a program describes both5

a collection of decisions as well as the neural network architecture used to make6

each one. We evaluate our approach on a challenging diagram question answering7

task where probabilistic neural programs correctly execute nearly twice as many8

programs as a baseline model.9

1 Introduction10

In recent years, deep learning has produced tremendous accuracy improvements on a variety of11

tasks in computer vision and natural language processing. A natural next step for deep learning is to12

consider program induction, the problem of learning computer programs from (noisy) input/output13

examples. Compared to more traditional problems, such as object recognition that require making14

only a single decision, program induction is difficult because it requires making a sequence of15

decisions and possibly learning control flow concepts such as loops and if statements.16

Prior work on program induction has described two general classes of approaches. First, in the17

noise-free setting, program synthesis approaches pose program induction as completing a program18

“sketch,” which is a program containing nondeterministic choices (“holes”) to be filled by the learning19

algorithm [13]. Probabilistic programming languages generalize this approach to the noisy setting by20

permitting the sketch to specify a distribution over these choices as a function of prior parameters21

and further to condition this distribution on data, thereby training a Bayesian generative model to22

execute the sketch correctly [6]. Second, neural abstract machines define continuous analogues of23

Turing machines or other general-purpose computational models by “lifting” their discrete state and24

computation rules into a continuous representation [9, 11, 7, 12]. Both of these approaches have25

demonstrated success at inducing simple programs from synthetic data but have yet to be applied to26

practical problems.27

We observe that there are (at least) three dimensions along which we can characterize program28

induction approaches:29

1. Computational Model – what abstract model of computation does the model learn to control?30

(e.g., a Turing machine)31

2. Learning Mechanism – what kinds of machine learning models are supported? (e.g., neural32

networks, Bayesian generative models)33

3. Inference – how does the approach reason about the many possible executions of the34

machine?35

Submitted to Neural Abstract Machines & Program Induction (NAMPI 2016) Workshop. Do not distribute.



def mlp(v: Tensor):
Pp[CgNode] =
for {

w1 <- param("w1")
b1 <- param("b1")
h1 = ((w1 * v) + b1).tanh
w2 <- param("w2")
b2 <- param("b2")
out = (w2 * h1) + b2

} yield {
out

}

val dist: Pp[Int] = for {
s <- mlp(new Tensor(...))
v <- choose(Array(0, 1), s)
y <- choose(Array(2, 3), s)

} yield {
v + y

}
// tensor parameters initialized to 0
val params: NnParams
println(dist.beamSearch(10, params))
// output: 2 (0.25), 3 (0.25),
// 3 (0.25), 4 (0.25)

Figure 1: Probabilistic neural programs defining a multilayer perceptron (left) and applying it to
create a probability distribution over program executions (right).

Neural abstract machines conflate some of these dimensions: they naturally support deep learning, but36

commit to a particular computational model and approximate inference algorithm. These choices are37

suboptimal as (1) the bias/variance trade-off suggests that training a more expressive computational38

model will require more data than a less expressive one suited to the task at hand, and (2) recent39

work has suggested that discrete inference algorithms may outperform continuous approximations40

[5]. In contrast, probabilistic programming supports the specification of different (possibly task-41

specific) computational models and inference algorithms, including discrete search and continuous42

approximations. However, these languages are restricted to generative models and cannot leverage43

the power of deep neural networks.44

We present probabilistic neural programs, a framework for program induction that permits flexible45

specification of the computational model and inference algorithm while simultaneously enabling46

the use of deep neural networks. Our approach builds on computation graph frameworks [1, 3] for47

specifying neural networks by adding an operator for weighted nondeterministic choice that is used48

to specify the computational model. Thus, a program sketch describes both the decisions to be made49

and the architecture of the neural network used to score these decisions. Importantly, the computation50

graph interacts with nondeterminism: the scores produced by the neural network determine the51

weights of nondeterministic choices, while the choices determine the network’s architecture. As52

with probabilistic programs, various inference algorithms can be applied to a sketch. Furthermore, a53

sketch’s neural network parameters can be estimated using stochastic gradient descent from either54

input/output examples or full execution traces.55

We evaluate our approach on a challenging diagram question answering task, which recent work has56

demonstrated can be formulated as learning to execute a certain class of probabilistic programs. On57

this task, we find that the enhanced modeling power of neural networks improves accuracy.58

2 Probabilistic Neural Programs59

Probabilistic neural programs build on computation graph frameworks for specifying neural networks60

by adding an operator for nondeterministic choice. We have developed a Scala library for probabilistic61

neural programming that we use to illustrate the key concepts.62

Figure 1 (left) defines a multilayer perceptron as a probabilistic neural program. This definition63

resembles those of other computation graph frameworks. Network parameters and intermediate64

values are represented as computation graph nodes with tensor values. They can be manipulated65

with standard operations such as matrix-vector multiplication and hyperbolic tangent. Evaluating66

this function with a tensor yields a program sketch object that can be evaluated with a set of network67

parameters to produce the network’s output.68

Figure 1 (right) shows how to use the choose function to create a nondeterministic choice. This69

function nondeterministically selects a value from a list of options. The score of each option is70

given by the value of a computation graph node that has the same number of elements as the list.71

Evaluating this function with a tensor yields a program sketch object that represents a function72

from neural network parameters to a probability distribution over values. The log probability of a73

value is proportional to the sum of the scores of the choices made in the execution that produced it.74

2



What happens to the snake population if the
field mouse population decreases?
λf.cause(decrease(mice), f(snakes))

Does the deer eat the grass?
eats(deer,grass)

How many organisms eat the grass?
count(λx.eats(x,grass))

Are rabbits a tertiary consumer?
tertiary-consumer(rabbits)

Figure 2: A food web diagram with annotations generated from a computer vision system (left) along
with related questions and their associated program sketches (right).

Performing (approximate) inference over this object – in this case, using beam search – produces75

an explicit representation of the distribution. Multiple nondeterministic choices can be combined76

to produce more complex sketches; this capability can be used to define complex computational77

models, including general-purpose models such as Turing machines. The library also has functions78

for conditioning on observations.79

Although various inference algorithms may be applied to a program sketch, in this work we use80

a simple beam search over executions. This approach accords with the recent trend in structured81

prediction to combine greedy inference or beam search with powerful non-factoring models [2, 10, 4].82

The beam search maintains a queue of partial program executions, each of which is associated with a83

score. Each step of the search continues each execution until it encounters a call to choose, which84

adds zero or more executions to the queue for the next search step. The lowest scoring executions are85

discarded to maintain a fixed beam width. As an execution proceeds, it may generate new computation86

graph nodes; the search maintains a single computation graph shared by all executions to which these87

nodes are added. The search simultaneously performs the forward pass over these nodes as necessary88

to compute scores for future choices.89

The neural network parameters are trained to maximize the loglikelihood of correct program execu-90

tions using stochastic gradient descent. Each training example consists of a pair of program sketches,91

representing an unconditional and conditional distribution. The gradient computation is similar to that92

of a loglinear model with neural network factors. It first performs inference on both the conditional93

and unconditional distributions to estimate the expected counts associated with each nondeterministic94

choice. These counts are then backpropagated through the computation graph to update the network95

parameters.96

3 Diagram Question Answering with Probabilistic Neural Programs97

We consider the problem of learning to execute program sketches in a food web computational98

model using visual information from a diagram. This problem is motivated by recent work [8],99

which has demonstrated that diagram question answering can be formulated as translating natural100

language questions to program sketches in this model, then learning to execute these sketches. Figure101

2 shows some example questions from this work, along with the accompanying diagram that must be102

interpreted to determine the answers. The diagram (left) is a food web, which depicts a collection of103

organisms in an ecosystem with arrows to indicate what each organism eats. The right side of the104

figure shows questions pertaining to the diagram and their associated program sketches.105

The possible executions of each program sketch are determined by a domain-specific computational106

model that is designed to reason about food webs. The nondeterministic choices in this model107

correspond to information that must be extracted from the diagram. Specifically, there are two108

functions that call choose to nondeterministically return a boolean value. The first function,109

organism(x), should return true if the text label x is an organism (as opposed to e.g., the image110

title). The second function, eat(x, y), should return true if organism x eats organism y. These111

functions do influence program control flow. The food web model also includes various other112

functions, e.g., for reasoning about population changes, that call organism and eat to extract113

3



Execution choose
Method Accuracy Accuracy
LOGLINEAR 8.6% 78.2%
2-LAYER PNP 12.5% 78.7%
MAXPOOL PNP 14.9% 82.5%

Table 1: Result of Probabilistic Programs on the executions of sketches from the FOODWEBS dataset.
“choose Accuracy” refers to overall nondeterminism accuracy, whereas “Execution Accuracy”
determines if the entire program was executed correctly.

information from the diagram. [8] has a more thorough description of the theory; our goal is to learn114

to make the choices in this theory.115

We consider three models for learning to make the choices for both organism and eat: a non-neural116

(LOGLINEAR) model, as well as two probabilistic neural models (2-LAYER PNP and MAXPOOL117

PNP). All three learn models for both organism and eat using outputs from a computer vision118

system trained to detect organism, text, and arrow relations between them. [8] defines a set of119

hand-engineered features heuristically created from the outputs of this vision system. LOGLINEAR120

and 2-LAYER PNP use only these features, and the difference is simply in the greater expressivity of121

a two-layer neural network. However, one of the major strengths of neural models is their ability to122

learn latent feature representations automatically, and our third model also uses the direct outputs123

of the vision system not made into features. The architecture of MAXPOOL PNP reflects this124

and contains additional input layers that maxpool over detected relationships between objects and125

confidence scores. The expectation is that our neural network modeling of nondeterminism will learn126

better latent representations than the manually defined features.127

4 Experiments128

We evaluate probabilistic neural programs on the FOODWEBS dataset introduced by [8]. This data set129

contains a training set of ~2,900 programs and a test set of ~1,000 programs. These programs are130

human annotated gold standard interpretations for the questions in the data set, which corresponds to131

assuming that the translation from questions to programs is perfect. We train our probabilistic neural132

programs using correct execution traces of each program, which are also provided in the data set.133

We evaluate our models using two metrics. First, execution accuracy measures the fraction of134

programs in the test set that are executed completely correctly by the model. This metric is challenging135

because correctly executing a program requires correctly making a number of choose decisions.136

Our 1,000 test programs had over 35,000 decisions, implying that to completely execute a program137

correctly means getting on average 35 choose decisions correct without making any mistakes.138

Second, choose accuracy measures the accuracy of each decision independently, assuming all139

previous decisions were made correctly.140

Table 1 compares the accuracies of our three models on the FOODWEBS dataset. The improvement141

in accuracy between the baseline (LOGLINEAR) and the probabilistic neural program (2-LAYER142

PNP) is due to the neural network’s enhanced modeling power. Though the choose accuracy143

does not improve by a large margin, the improvements translate into large gains in entire program144

correctness. Finally, as expected, the inclusion of lower level features (MAXPOOL PNP) not possible145

in LOGLINEAR significantly improved performance. Note that this task requires performing computer146

vision, and thus it is not expected that any model achieve 100% accuracy.147

5 Conclusion148

We have presented probabilistic neural programs, a framework for program induction that permits149

flexible specification of computational models and inference algorithms while simultaneously en-150

abling the use of deep learning. A program sketch describes a collection of nondeterministic decisions151

to be made during execution, along with the neural architecture to be used for scoring these decisions.152

The network parameters of a sketch can be trained from data using stochastic gradient descent. We153

demonstrate that probabilistic neural programs improve accuracy on a diagram question answer-154

ing task which can be formulated as learning to execute program sketches in a domain-specific155

computational model.156

4



References157

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Gregory S.158

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,159

Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh160

Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster,161

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay162

Vasudevan, Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,163

and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on heterogeneous distributed systems.164

arXiv preprint arXiv:1603.04467, 2016.165

[2] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav166

Petrov, and Michael Collins. Globally normalized transition-based neural networks. CoRR, abs/1603.06042,167

2016.168

[3] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-169

jardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A CPU and GPU math compiler170

in Python.171

[4] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural network172

grammars. In Proceedings of the 2016 Conference of the North American Chapter of the Association for173

Computational Linguistics: Human Language Technologies, pages 199–209, San Diego, California, June174

2016. Association for Computational Linguistics.175

[5] Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor,176

and Daniel Tarlow. Terpret: A probabilistic programming language for program induction. arXiv preprint177

arXiv:1608.04428, 2016.178

[6] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum.179

Church: a language for generative models. In Proc. of Uncertainty in Artificial Intelligence, 2008.180

[7] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,181

2014.182

[8] Jayant Krishnamurthy, Oyvind Tafjord, and Aniruddha Kembhavi. Semantic parsing to probabilistic183

programs for situated question answering. EMNLP, 2016.184

[9] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing latent programs with185

gradient descent. CoRR, abs/1511.04834, 2015.186

[10] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,187

and Erwin Marsi. Maltparser: A language-independent system for data-driven dependency parsing. Natural188

Language Engineering, 13:95–135, 2007.189

[11] Scott E. Reed and Nando de Freitas. Neural programmer-interpreters. CoRR, abs/1511.06279, 2015.190

[12] Sebastian Riedel, Matko Bošnjak, and Tim Rocktäschel. Programming with a differentiable forth interpreter.191

arXiv preprint arXiv:1605.06640, 2016.192

[13] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Combinatorial193

sketching for finite programs. In Proceedings of the 12th International Conference on Architectural Support194

for Programming Languages and Operating Systems, ASPLOS XII, pages 404–415, New York, NY, USA,195

2006. ACM.196

5


	Introduction
	Probabilistic Neural Programs
	Diagram Question Answering with Probabilistic Neural Programs
	Experiments
	Conclusion

