
Under review as a conference paper at ICLR 2018

GATED CONVNETS FOR LETTER-BASED ASR

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper we introduce a new speech recognition system, leveraging a simple
letter-based ConvNet acoustic model. The acoustic model requires only audio
transcription for training – no alignment annotations, nor any forced alignment
step is needed. At inference, our decoder takes only a word list and a language
model, and is fed with letter scores from the acoustic model – no phonetic word
lexicon is needed. Key ingredients for the acoustic model are Gated Linear Units
and high dropout. We show near state-of-the-art results in word error rate on the
LibriSpeech corpus (Panayotov et al., 2015) with MFSC features, both on the
CLEAN and OTHER configurations.

1 INTRODUCTION

Top speech recognition systems are either complicated pipelines or using more data that is publicly
available. We set out to show that it is possible to train a nearly state of the art speech recognition
system for read speech, with a public dataset (LibriSpeech), on a GPU-equipped workstation. Thus,
we present an end-to-end system for speech recognition, going from Mel-Frequency Spectral Coeffi-
cients (MFSCs) to the transcription in words. The acoustic model is trained using letters (graphemes)
directly, which take out the need for an intermediate (human or automatic) phonetic transcription.

The classical pipeline to build state of the art systems for speech recognition consists in first training
an HMM/GMM model to force align the units on which the final acoustic model operates (most often
context-dependent phone states). This approach takes its roots in HMM/GMM training (Woodland
& Young, 1993). The improvements brought by deep neural networks (DNNs) (Mohamed et al.,
2012; Hinton et al., 2012) and convolutional neural networks (CNNs) (Sercu et al., 2016; Soltau
et al., 2014) for acoustic modeling only extend this training pipeline. The current state of the art on
LibriSpeech belongs to this approach too (Panayotov et al., 2015; Peddinti et al., 2015b), with an
additional step of speaker adaptation (Saon et al., 2013; Peddinti et al., 2015a). Recently, Senior et al.
(2014) proposed GMM-free training, but the approach still requires to generate a forced alignment.

An approach that cut ties with the HMM/GMM pipeline (and with forced alignment) was to train with
a recurrent neural network (RNN) (Graves et al., 2013) for phoneme transcription. There are now
competitive end-to-end approaches of acoustic models toppled with RNNs layers as in (Hannun et al.,
2014; Miao et al., 2015; Saon et al., 2015; Amodei et al., 2016), trained with a sequence criterion
(Graves et al., 2006). However these models are computationally expensive, and thus often take a
long time to train. On conversational speech (that is not the topic of this paper), the state of the art
is still held by complex ConvNets+RNNs acoustic models, coupled to domain-adapted language
models (Xiong et al., 2017; Saon et al., 2017).

Compared to classical approaches that need phonetic annotation (often derived from a phonetic
dictionary, rules, and generative training), we propose to train the model end-to-end, using graphemes
directly. Compared to sequence criterion based approaches that train directly from speech signal
to graphemes (Miao et al., 2015), we propose an RNN-free architecture based on convolutional
networks for the acoustic model, toppled with a simple sequence-level variant of CTC.

We reach the clean speech performance of (Peddinti et al., 2015b), but without performing speaker
adaptation. Our word-error-rate on clean speech is better than (Amodei et al., 2016), while being
worse on noisy speech, but they train on 11,900 hours while we only train on the 960h available in
LibriSpeech’s train set. The rest of the paper is structured as follows: the next section presents the
convolutional networks used for acoustic modeling, along with the automatic segmentation criterion
and decoding approaches. The last section shows experimental results on LibriSpeech.

1

Under review as a conference paper at ICLR 2018

MFSC GLU-ConvNet

T frames

"cat"

...
...

...

...
...
...
...

a

b

<sil>

x

y

z

T frames

Figure 1: Overview of our acoustic model, which computes MFSC features which are fed to a
Gated ConvNet. The ConvNet output one score for each letter in the dictionary, and for each MFSC
frame. At inference time, theses scores are fed to a decoder (see Section 2.4) to form the most likely
sequence of words. At training time, the scores are fed to the ASG criterion (see Figure 2) which
promotes sequences of letters leading to the transcrition sequence (here “c a t”).

2 ARCHITECTURE

Our acoustic model (see an overview in Figure 1) is a Convolutional Neural Network (ConvNet)
(LeCun & Bengio, 1995), with Gated Linear Units (GLUs) (Dauphin et al., 2017). The model is fed
with 40 MFSCs features, and is trained with a variant of the Connectionist Temporal Classification
(CTC) criterion (Graves et al., 2006), which does not have blank labels but embarks a simple duration
model through letter transitions scores (Collobert et al., 2016). During training, we use dropout on the
neural network outputs. At inference, the acoustic model is coupled with a decoder which performs a
beam search, constrained with a count-based language model. We detail each of these components in
the following.

2.1 MFSC FEATURES

Our system relies on Mel-Frequency Spectral Coefficients (MFSCs), which are obtained by averaging
spectrogram values with mel-scale filters. MFSCs are the step preceding the cosine transform
required to compute Mel-Frequency Cepstrum Coefficients (MFCCs), often found in classical
HMM/GMM speech systems (Woodland & Young, 1993) because of their dimensionality compression
(13 coefficients are often enough to span speech frequencies). Compared to spectrogram coefficients,
MFSCs have the advantage to be more robust to small time-warping deformations.

2.2 GATED CONVNETS FOR ACOUSTIC MODELING

Our acoustic model is fed with the MFSC frames, and output letter scores for each input frame. At
each time step, there is one score per letter in a given dictionary L. Words are separated by a special
letter <sil>.

The acoustic model architecture is based on a 1D Gated Convolutional Neural Network (Gated
ConvNet) (Dauphin et al., 2017). Gated ConvNets stack 1D convolutions with Gated Linear Units.
More formally, given an input sequence X ∈ RT×di with T frames of d-dimensional vectors, the ith
layer of our network performs the following computation:

hi(X) = (X ∗Wi + bi)⊗ σ(X ∗Vi + ci) , (1)

where ∗ is the convolution operator, Wi, Vi ∈ Rdi+1×di×ki and b, c ∈ Rdi+1

are the learned
parameters (with convolution kernel size ki), σ(·) is the sigmoid function and ⊗ is the element-wise
product between matrices.

Gated ConvNets have been shown to reduce the vanishing gradient problem, as they provide a linear
path for the gradients while retaining non-linear capabilities, leading to state-of-the-art performance
both for natural language modeling and machine translation tasks (Dauphin et al., 2017; Gehring
et al., 2017).

2.2.1 FEATURE NORMALIZATION AND ZERO-PADDING

Each MFSC input sequence is normalized with mean 0 and variance 1. Given an input sequence
X ∈ RT×d, a convolution with kernel size k will output T − k + 1 frames, due to border effects.

2

Under review as a conference paper at ICLR 2018

∅ ∅ ∅

C C C C

∅ ∅ ∅

A A A A

∅ ∅ ∅

T T T T

∅ ∅ ∅

(a)

C C C C

A A A A

T T T T

(b)

A

B

...

Z

A

B

...

Z

A

B

...

Z

A

B

...

Z

A

B

...

Z

A

B

...

Z

(c)

Figure 2: (a) The CTC graph which represents all the acceptable sequences of letters for the
transcription “cat” over 6 frames. (b) The same graph used by ASG, where blank labels have been
discarded. (c) The fully connected graph describing all possible sequences of letter; this graph is used
for normalization purposes in ASG. Un-normalized transitions scores are possible on edges of these
graphs. At each time step, nodes are assigned a conditional un-normalized score, output by the Gated
ConvNet acoustic model.

To compensate those border effects, we pad the MFSC features X0 with zeroed frames. To take
in account the whole network, the padding size is

∑
i(k

i − 1), divided in two equal parts at the
beginning and the end of the sequence.

2.3 ACOUSTIC MODEL TRAINING

Most large labeled speech databases provide only a text transcription for each audio file. In a
classification framework (and given our acoustic model produces letter predictions), one would need
the segmentation of each letter in the transcription to train properly the model. Manually labeling the
segmentation of each letter would be tedious. Several solutions have been explored in the speech
community to alleviate this issue:

1. HMM/GMM models use an iterative EM procedure: during the Estimation step, the best
segmentation is inferred according to the current model, during the Maximization step the
model is optimized using the current inferred segmentation. This approach is also often used
to boostrap the training of neural network-based acoustic models.

2. In the context of hybrid HMM/NN systems, the MMI criterion (Bahl et al., 1986) maximizes
the mutual information between the acoustic sequence and word sequences or the Minimum
Bayes Risk (MBR) criterion (Gibson & Hain, 2006). Recent state-of-the-art systems leverage
the MMI criterion (Povey et al., 2016).

3. Standalone neural network architectures have also been trained using the Connectionist
Temporal Classification (CTC), which jointly infers the segmentation of the transcription
while increase the overall score of the right transcription (Graves et al., 2006). In (Amodei
et al., 2016) it has been shown that letter-based acoustic models trained with CTC could
compete with existing phone-based systems, assuming enough training data is provided.

In this paper, we chose a variant of the Connectionist Temporal Classification. CTC considers all
possible sequence sub-word units (e.g. letters), which can lead to the correct transcription. It also
allow a special “blank” state to be optionally inserted between each sub-word unit. The rational
behind the blank state is two-folds: (i) modeling “garbage” frames which might occur between

3

Under review as a conference paper at ICLR 2018

each letter and (ii) identifying the separation between two identical consecutive sub-word unit in a
transcription. Figure 2a shows the CTC graph describing all the possible sequences of letters leading
to the word “cat”, over 6 frames. We denote Gctc(θ, T) the CTC acceptance graph over T frames
for a given transcription θ, and π = π1, . . . , πT ∈ Gctc(θ, T) a path in this graph representing a
(valid) sequence of letters for this transcription. CTC assumes that the network output probability
scores, normalized at the frame level. At each time step t, each node of the graph is assigned with its
corresponding log-probability letter i (that we denote f ti (X)) output by the acoustic model (given an
acoustic sequence X). CTC minimizes the Forward score over the graph Gctc(θ, T):

CTC(θ, T) = − logadd
π∈Gctc(θ,T)

T∑
t=1

f tπt
(X) , (2)

where the “logadd” operation (also called “log-sum-exp”) is defined as logadd(a, b) = log(exp(a) +
exp(b)). This overall score can be efficiently computed with the Forward algorithm.

2.3.1 THE ASG CRITERION

Blank labels introduce complexity when decoding letters into words. Indeed, with blank labels “ø”,
a word gets many entries in the sub-word unit transcription dictionary (e.g. the word “cat” can be
represented as “c a t”, “c ø a t”, “c ø a t”, “c ø a ø t”, etc... – instead of only “c a t”). We replace the
blank label by special letters modeling repetitions of preceding letters. For example “caterpillar” can
be written as “caterpil1ar”, where “1” is a label to represent one repetition of the previous letter.

Removing blank labels from the CTC acceptance graph Gctc(θ, T) (shown in Figure 2a) leads to a
simpler graph that we denote Gasg(θ, T) (shown in Figure 2b). Unfortunately, in practice we observed
that most models do not train with this simplification of CTC. Adding unormalized transition scores
gi,j(·) on each edge of the graph, when moving from label i to label j fix the issue. We observed
in practice that normalized transitions led to similar issue that not having transitions. Considering
unnormalized transition scores implies implementing a sequence-level normalization, to avoid the
model to diverge (represented by the graph Gasg(θ, T), as shown in Figure 2c). This leads to the
following criterion, dubbed ASG for “Auto SeGmentation”:

ASG(θ, T) = − logadd
π∈Gasg(θ,T)

T∑
t=1

(f tπt
(X)+gπt−1,πt

(X))+ logadd
π∈Gfull(θ,T)

T∑
t=1

(f tπt
(X)+gπt−1,πt

(X)) .

(3)
The left-hand part in Equation (3) promotes the score of sequences letters leading to the right
transcription (as in Equation (2) for CTC), and the right-hand part demotes the score of all sequences
of letters (as does the frame-level normalization – that is the softmax on the acoustic model – for
CTC). As for CTC, these two parts can be efficiently computed with the Forward algorithm. When
removing transitions in Equation (3), the sequence-level normalization becomes equivalent to the
frame-level normalization and the ASG criterion is mathematically equivalent to CTC with no blank
labels.

2.3.2 OTHER TRAINING CONSIDERATIONS

We apply dropout at the output to all layers of the acoustic model. Dropout retains each output with a
probability p, by applying a multiplication with a Bernoulli random variable taking value 1/p with
probability p and 0 otherwise (Srivastava et al., 2014).

Following the original implementation of Gated ConvNets (Dauphin et al., 2017), we found that
using both weight normalization (Salimans & Kingma, 2016) and gradient clipping (Pascanu et al.,
2013) were speeding up training convergence. The clipping we implemented performs:

∼
∇C = max(||∇C||, ε) ∇C||∇C|| , (4)

where C is either the CTC or ASG criterion, and ε is some hyper-parameters which controls the
maximum amplitude of the gradients.

4

Under review as a conference paper at ICLR 2018

Table 1: Architectures details. “#conv.” is the number of convolutional layers. Dropout amplitude,
“#hu” (number of output hidden units) and “kw” (convolution kernel width) are provided for the first
and last layer (all are linearly increased with layer depth). The size of the final layer is also provided.

Architecture #conv. dropout dropout #hu #hu kw kw #hu
first layer last layer first layer last layer first layer last layer full connect

Low Dropout 17 0.25 0.25 200 750 13 27 1500
High Dropout 19 0.20 0.60 200 1000 13 29 2000

2.4 BEAM-SEARCH DECODER

We wrote our own one-pass decoder, which performs a simple beam-search with beam threholding,
histogram pruning and language model smearing Steinbiss et al. (1994). We kept the decoder as
simple as possible (under 1000 lines of C code). We did not implement any sort of model adaptation
before decoding, nor any word graph rescoring. Our decoder relies on KenLM Heafield et al.
(2013) for the language modeling part. It also accepts unnormalized acoustic scores (transitions and
emissions from the acoustic model) as input. The decoder attempts to maximize the following:

L(θ) = logadd
π∈Gasg(θ,T)

T∑
t=1

(fπt
(x) + gπt−1,πt

(x)) + α logPlm(θ) + β|θ|+ γ|{i|πi = <sil>} , (5)

where Plm(θ) is the probability of the language model given a transcription θ, α, β, and γ are three
hyper-parameters which control the weight of the language model, the word insertion penalty, and
the silence insertion penalty, respectively.

The beam of the decoder tracks paths with highest scores according to Equation (5), by bookkeeping
pair of (language model, lexicon) states, as it goes through time. The language model state corresponds
the (n − 1)-gram history of the n-gram language model, while the lexicon state is the sub-word
unit position in the current word hypothesis. To maintain diversity in the beam, paths with identical
(language model, lexicon) states are merged. Note that traditional decoders combine the scores of the
merge paths with a max(·) operation (as in a Viterbi beam-search) – which would correspond to a
max(·) operation in Equation (5) instead of logadd(·). We consider instead the logadd(·) operation,
as it takes in account the contribution of all the paths leading to the same transcription, in the same
way we do during training (see Equation (3)). In Section 3.1, we show that this leads to better
accuracy in practice.

3 EXPERIMENTS

We benchmarked our system on LibriSpeech, a large speech database freely available for down-
load (Panayotov et al., 2015). We kept the original 16 kHz sampling rate. We considered the two
available setups in LibriSpeech: CLEAN data and OTHER. We picked all the available data (about
960h of audio files) for training, and the available development sets (both for CLEAN, and OTHER)
for tuning all the hyper-parameters of our system. Test sets were used only for the final evaluations.

The letter vocabulary L contains 30 graphemes: the standard English alphabet plus the apostrophe,
silence (<SIL>), and two special “repetition” graphemes which encode the duplication (once or
twice) of the previous letter (see Section 2.3.1). Decoding is achieved with our own decoder (see
Section 2.4), with the standard 4-gram language model provided with LibriSpeech1, which contains
200, 000 words. In the following, we either report letter-error-rates (LERs) or word-error-rates
(WERs).

MFSC features are computed with 40 coefficients, a 25 ms sliding window and 10 ms stride.

We implemented everything using TORCH72. The ASG criterion as well as the decoder were imple-
mented in C (and then interfaced into TORCH).

1http://www.openslr.org/11.
2http://www.torch.ch.

5

http://www.openslr.org/11
http://www.torch.ch

Under review as a conference paper at ICLR 2018

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35 40

epoch

WER

LER

(a)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30 35 40

epoch

WER

LER

(b)

Figure 3: LibriSpeech Letter Error Rate (LER) and Word Error Rate (WER) for the first training
epochs of our LOW DROPOUT architecture. (a) is on dev-clean, (b) on dev-other.

Table 2: Comparison in LER and WER of variants of our model on LibriSpeech. When not specified,
decoding is performed with the logadd(·) operation to aggregate similar hypothesis (see Section 2.4).

dev-clean dev-other
model LER WER LER WER

LOW DROPOUT (p = 0.2) 2.7 4.8 9.8 15.2
HIGH DROPOUT (p = 0.2→ 0.6) 2.3 4.6 9.0 13.8
HIGH DROPOUT + max(·) decoding – 4.7 – 14.0

3.1 ARCHITECTURE

We tuned our acoustic model architectures by grid search, validating on the dev sets. We consider
here two architectures, with low and high amount of dropout (see the parameter p in Section 2.3.2).
Table 1 reports the details of our architectures. The amount of dropout, number of hidden units, as
well as the convolution kernel width are increased linearly with the depth of the neural network. Note
that as we use Gated Linear Units (see Section 2.2), each layer is duplicated as stated in Equation (1).
Convolutions are followed by a fully connected layer, before the final layer which outputs 30 scores
(one for each letter in the dictionary). This leads to about 130M and 208M of trainable parameters
for the LOW DROPOUT and HIGH DROPOUT architectures, respectively.

Figure 3 shows the LER and WER on the LibriSpeech development sets, for the first 40 training
epochs of our LOW DROPOUT architecture. LER and WER appear surpringly well correlated, both
on the “clean” and “other” version of the dataset.

In Table 2, we report WERs on the LibriSpeech development sets, both for our LOW DROPOUT and
HIGH DROPOUT architectures. Increasing dropout regularize the acoustic model in a way which
impacts significantly generalization, the effect being stronger on noisy speech. We also report the
WER for the decoder ran with the max(·) operation (instead of logadd(·) for other results) used to
aggregate paths in the beam with identical (language model, lexicon) states. It appears advantageous
(as there is no complexity increase in the decoder) to use the logadd(·) aggregation.

3.2 COMPARISON WITH OTHER SYSTEMS

In Table 3, we compare our system with several of the best systems on LibriSpeech reported in
the literature. We highlighted the acoustic model architectures, as well as the type of underlying
sub-word unit. Note that phone-based acoustic models output in general senomes; senomes are
carefully selected through a complicated procedure involving a phonetic-context-based decision tree
built from another GMM/HMM system. Phone-based system also require an additional word lexicon
which translates words into a sequence of phones. Most systems also perform speaker adaptation;
iVectors compute a speaker embedding capturing both speaker and environment information (Xue

6

Under review as a conference paper at ICLR 2018

Table 3: Comparison of different ASR systems. We report the type of acoustic model used for various
systems, as well as the type of sub-word unit. HMM stands for Hidden Markov Model, CNN for
ConvNet; when not specified, CNNs are 1D (also called Time-Delay Neural Networks – TDNN – in
the literature). pNorm is a particular non-linearity (Waibel, 1989). We also report extra information
(besides word transcriptions) which might be used by each system, including speaker adaptation, or
any other domain-specific data.

Acoustic Model Sub-word Spkr Adapt. Extra Resources

(Panayotov et al., 2015) HMM+DNN+pNorm phone fMLLR phone lexicon
(Amodei et al., 2016) 2D-CNN+RNN letter none 11.9Kh train set, Common Crawl LM
(Peddinti et al., 2015b) HMM+CNN phone iVectors phone lexicon
(Povey et al., 2016) HMM+CNN phone iVectors phone lexicon, phone LM, data augm.
(Ko et al., 2015) HMM+CNN+pNorm phone iVectors phone lexicon, data augm.

this paper GLU-CNN letter none none

Table 4: Comparison in WER of our model with other systems on LibriSpeech.

test-clean test-other

(Panayotov et al., 2015) 5.5 14.0
(Amodei et al., 2016) 5.3 13.3
(Peddinti et al., 2015b) 4.8 -
(Povey et al., 2016) 4.3 -
(Ko et al., 2015) - 12.5

this paper 4.8 14.5
this paper (no decoder) 6.7 20.8

et al., 2014), while fMMLR is a two-pass decoder technique which computes a speaker transform in
the first pass (Gales & Woodland, 1996).

DEEP SPEECH 2 (Amodei et al., 2016) is the system which is the most related to ours. In contrast to
other systems which combine a Hidden Markov Model (HMM) with a ConvNet, DEEP SPEECH 2 is
a standalone neural network. In contrast to our system, DEEP SPEECH 2 embarks a more complicated
acoustic model composed of a ConvNet and a Recurrent Neural Network (RNN), while our system
is a simple ConvNet. Both Deep Speech 2 and our system rely on letters for acoustic modeling,
alleviating the need of a phone-based word lexicon. DEEP SPEECH 2 relies on a lot of speech data
(combined with a very large 5-gram language model) to make the letter-base approach competitive ,
while we limited ourselves to the available data in the LibriSpeech benchmark.

In Table 4, we report a comparison in WER performance for all systems introduced in Table 3. Our
system is very competitive with existing approaches. DEEP SPEECH 2 – which is also a letter-based
system – is outperformed on clean data, even though our system has been trained with an order of
magnitude less data. We report also the WER with no decoder, that is taking the raw output of the
neural network, with no alterations. The Gated ConvNet appears very good at modeling true words.

Using a single GPU (no batching), our HIGH DROPOUT Gated ConvNet goes over the CLEAN (5.4h)
and OTHER (5.1h) test sets in 4min26s and 4min43s, respectively. The decoder runs over the CLEAN
and OTHER sets in 3min56s and 30min5s, using only one CPU thread – which (considering the
decoder alone) corresponds to a .01 and 0.1 Real Time Factor (RTF), respectively.

4 CONCLUSION

We have introduced a simple end-to-end automatic speech recognition system, which combines a
large (208M parameters) but efficient ConvNet acoustic model, an easy sequence criterion which
can infer the segmentation, and a simple beam-search decoder. The decoding results are competitive
on the LibriSpeech corpus (4.8% WER dev-clean). Our approach breaks free from HMM/GMM

7

Under review as a conference paper at ICLR 2018

pre-training and forced alignment, as well as not being as computationally intensive as RNN-based
approaches (Amodei et al., 2016). We based all our work on a publicly available (free) dataset, all of
which should make it easier to reproduce. Further work should include leveraging speaker identity,
training from the raw waveform, data augmentation, training with more data, better language models.

REFERENCES

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie Chen, Jingdong Chen,
Zhijie Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2 : End-to-end
speech recognition in english and mandarin. In International Conference on Machine Learning
(ICML), pp. 173–182, 2016.

Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, and Robert L. Mercer. Maximum mutual information
estimation of hidden Markov model parameters for speech recognition. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 49–52, 1986.

Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. Wav2letter: an end-to-end convnet-based
speech recognition system. arXiv:1609.03193, 2016.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional nets. In International Conference on Machine Learning (ICML), 2017.

Mark J. F. Gales and Phil C. Woodland. Mean and variance adaptation within the MLLR framework.
Computer Speech and Language, 10(4):249–264, 1996.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning. In International Conference on Machine Learning (ICML), 2017.

Matthew Gibson and Thomas Hain. Hypothesis spaces for minimum Bayes risk training in large
vocabulary speech recognition. In Interspeech, pp. 2406—-2409, 2006.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6645–6649, 2013.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neural networks. In
International Conference on Machine Learning (ICML), pp. 369–376. ACM, 2006.

Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,
Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. Deep speech: Scaling up
end-to-end speech recognition. arXiv:1412.5567, 2014.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable modified
kneser-ney language model estimation. In Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 690–696, 2013.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep neural
networks for acoustic modeling in speech recognition. Signal Processing Magazine, 29(6):82–97,
2012.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. Audio augmentation for
speech recognition. In Interspeech, 2015.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, pp. 255–257, 1995.

Yajie Miao, Mohammad Gowayyed, and Florian Metze. Eesen: End-to-end speech recognition
using deep RNN models and WFST-based decoding. In Automatic Speech Recognition and
Understanding Workshop (ASRU), 2015.

Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hinton. Acoustic modeling using deep belief
networks. Transactions on Audio, Speech, and Language Processing, 20(1):14–22, 2012.

8

Under review as a conference paper at ICLR 2018

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an ASR corpus
based on public domain audio books. In International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5206–5210, 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning (ICML), 2013.

Vijayaditya Peddinti, Guoguo Chen, Vimal Manohar, Tom Ko, Daniel Povey, and Sanjeev Khudanpur.
JHU ASpIRE system: Robust LVCSR with TDNNs, iVector adaptation, and RNN-LMs. In
Automatic Speech Recognition and Understanding Workshop (ASRU), 2015a.

Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. A time delay neural network architecture
for efficient modeling of long temporal contexts. In Interspeech, 2015b.

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahremani, Vimal Manohar, Xingyu Na,
Yiming Wang, and Sanjeev Khudanpur. Purely sequence-trained neural networks for ASR based
on lattice-free MMI. In Interspeech, pp. 2751–2755, 2016.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in Neural Information Processing
Systems (NIPS), pp. 901–909. 2016.

George Saon, Hagen Soltau, David Nahamoo, and Michael Picheny. Speaker adaptation of neural
network acoustic models using I-Vectors. In Automatic Speech Recognition and Understanding
Workshop (ASRU), pp. 55–59, 2013.

George Saon, Hong-Kwang J Kuo, Steven Rennie, and Michael Picheny. The IBM 2015 english
conversational telephone speech recognition system. arXiv:1505.05899, 2015.

George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dimi-
triadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, et al. English
conversational telephone speech recognition by humans and machines. arXiv:1703.02136, 2017.

Andrew Senior, Georg Heigold, Michiel Bacchiani, and Hank Liao. GMM-free DNN training. In
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5639–5643,
2014.

Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilingual convolu-
tional neural networks for LVCSR. In International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4955–4959, 2016.

Hagen Soltau, George Saon, and Tara N. Sainath. Joint training of convolutional and non-
convolutional neural networks. In International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5572–5576, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research (JMLR), 15(Jun):1929–1958, 2014.

Volker Steinbiss, Bach-Hiep Tran, and Hermann Ney. Improvements in beam search. In International
Conference on Spoken Language Processing (ICSLP), volume 94, pp. 2143–2146, 1994.

Alex Waibel. Modular construction of time-delay neural networks for speech recognition. Neural
Computation, 1(1):39–46, 1989.

Philip C. Woodland and Steve J. Young. The HTK tied-state continuous speech recogniser. In
Eurospeech, 1993.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas Stolcke, Dong
Yu, and Geoffrey Zweig. The Microsoft 2016 conversational speech recognition system. In
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5255–5259,
2017.

Shaofei Xue, Ossama Abdel-Hamid, Hui Jiang, Li-Rong Dai, and Qingfeng Liu. Fast adaptation of
deep neural network based on discriminant codes for speech recognition. Transactions on Audio,
Speech and Language Processing, 22(12):1713–1725, 2014.

9

	Introduction
	Architecture
	MFSC Features
	Gated ConvNets for Acoustic Modeling
	Feature Normalization and Zero-Padding

	Acoustic Model Training
	The ASG Criterion
	Other Training Considerations

	Beam-Search Decoder

	Experiments
	Architecture
	Comparison with other systems

	Conclusion

