
Under review as a conference paper at ICLR 2018

PREDICT RESPONSIBLY: INCREASING FAIRNESS BY
LEARNING TO DEFER

Anonymous authors
Paper under double-blind review

ABSTRACT

When machine learning models are used for high-stakes decisions, they should
predict accurately, fairly, and responsibly. To fulfill these three requirements, a
model must be able to output a reject option (i.e. say “I Don’t Know”) when it
is not qualified to make a prediction. In this work, we propose learning to defer,
a method by which a model can defer judgment to a downstream decision-maker
such as a human user. We show that learning to defer generalizes the rejection
learning framework in two ways: by considering the effect of other agents in
the decision-making process, and by allowing for optimization of complex objec-
tives. We propose a learning algorithm which accounts for potential biases held by
decision-makers later in a pipeline. Experiments on real-world datasets demon-
strate that learning to defer can make a model not only more accurate but also
less biased. Even when operated by highly biased users, we show that deferring
models can still greatly improve the fairness of the entire pipeline.

1 INTRODUCTION

Recent machine learning advances have increased our reliance on learned automated systems in
complex, high-stakes domains such as loan approvals (Burrell, 2016), medical diagnosis (Esteva
et al., 2017), and criminal justice (Kirchner et al., 2016). This growing use of automated decision-
making has raised questions about the obligations of classification systems. In many high-stakes
situations, machine learning systems should satisfy (at least) three objectives: predict accurately
(predictions should be broadly effective indicators of ground truth), predict fairly (predictions should
be unbiased with respect to different types of input), and predict responsibly (predictions should not
be made if the model cannot confidently satisfy the previous two objectives).

Given these requirements, we propose learning to defer. When deferring, the algorithm does not
output a prediction; rather it says “I Don’t Know” (IDK), indicating it has insufficient information to
make a responsible prediction, and that a more qualified external decision-maker (DM) is required.
For example, in medical diagnosis, the deferred cases would lead to more medical tests, and a
second expert opinion. Learning to defer extends the common rejection learning framework (Chow,
1957; Cortes et al., 2016) in two ways. Firstly, it considers the expected output of the DM on each
example, more accurately optimizing the output of the joint DM-model system. Furthermore, it can
be used with a variety of training objectives, whereas most rejection learning research focuses solely
on classification accuracy. We believe that algorithms that can defer, i.e., yield to more informed
decision-makers when they cannot predict responsibly, are an essential component to accountable
and reliable automated systems.

In this work, we show that the standard rejection learning paradigm (learning to punt) is inade-
quate, if these models are intended to work as part of a larger system. We propose an alternative
decision making framework (learning to defer) to learn and evaluate these models. We find that
embedding a deferring model in a pipeline can improve the accuracy and fairness of the pipeline as
a whole, particularly if the model has insight into decision makers later in the pipeline. We simulate
such a pipeline where our model can defer judgment to a better-informed decision maker, echoing
real-world situations where downstream decision makers have more resources or information. We
propose different formulations of these models along with a learning algorithm for training a model
that can work optimally with such a decision-maker. Our experimental results on two real-world

1



Under review as a conference paper at ICLR 2018

datasets, from the legal and health domains, show that this algorithm learns models which, through
deferring, can work with users to make fairer, more responsible decisions.

2 RELATED WORK

Notions of Fairness. One of the most challenging aspect of machine learning approaches to fairness
is formulating an operational definition. Several works have focused on the goal of treating similar
people similarly (individual fairness) and the resulting necessity of fair-awareness – showing that
it may be essential to give the algorithm knowledge of the sensitive variable (Dwork et al., 2011;
Zemel et al., 2013; Dwork et al., 2017).

Some definitions of fairness center around statistical parity (Kamiran & Calders, 2009; Kamishima
et al., 2012), calibration (Pleiss et al., 2017; Guo et al., 2017) or disparate impact/equalized odds
(Chouldechova, 2016; Hardt et al., 2016; Kleinberg et al., 2016; Zafar et al., 2017). It has been shown
that disparate impact and calibration cannot be simultaneously satisfied (Chouldechova, 2016; Klein-
berg et al., 2016). Hardt et al. (2016) present the related notion of “equal opportunity”. In a sub-
sequent paper, Woodworth et al. (2017) argue that in practice fairness criteria should be part of the
learning algorithm, not post-hoc. Zafar et al. (2017) and Bechavod & Ligett (2017) develop and
implement learning algorithms that integrate equalized odds into learning via regularization.

Incorporating IDK. While we are the first to propose learning to defer, some works have examined
the “I don’t know” (IDK) option (cf. rejection learning, see Cortes et al. (2016) for a thorough sur-
vey), beginning with Chow (1957; 1970) who studies the tradeoff between error-rate and rejection
rate. Cortes et al. (2016) develop a framework for integrating IDK directly into learning. KWIK
(Knows-What-It-Knows) learning is proposed in Li et al. (2011) as a theoretical framework. Atten-
berg et al. (2011) discuss the difficulty of a model learning what it doesn’t know (particularly rare
cases), and analyzes how human users can audit such models. Wang et al. (2017) propose a cascad-
ing model, which can be learned from end-to-end; higher levels can say IDK and pass the decision
on to lower levels. Similarly, Kocak et al. (2017); Cortes et al. (2016); Bartlett & Wegkamp (2008)
provide algorithms for saying IDK in classification and Ripley (2007) provides a statistical overview
of the problem, including both “don’t know” and “outlier” options. However, none of these works
look at the fairness impact of this procedure.

A few papers have addressed topics related to both fairness and IDK. Bower et al. (2017) describe
fair sequential decision making but do not have an IDK concept, nor do they provide a learning
procedure. In Joseph et al. (2016), the authors show theoretical connections between KWIK-learning
and a proposed method for fair bandit learning. Grgi-Hlaca et al. (2017) discuss fairness that can
arise out of a mixture of classifiers. However, they do not provide a learning procedure, nor do they
address sequential decision making, which we believe is of great practical importance. Varshney &
Alemzadeh (2017) propose “safety reserves” and “safe fail” options which combine learning with
rejection and fairness/safety, but do not suggest how such options may be learned or analyze the
effect of a larger decision-making framework.

AI Safety. Finally, our work also touches on aspects of the AI safety literature - we provide a method
by which a machine learns to work optimally with a human. This is conceptually similar to work
such as Milli et al. (2017); Soares et al. (2015), which discuss the situations in which a robot should
be compliant/cooperative with a human. The idea of a machine and human jointly producing a fair
classifier also relates to Hadfield-Menell et al. (2016), which describes algorithms for machines to
align with human values.

3 A JOINT DECISION-MAKING FRAMEWORK

Previous works in rejection learning (see Sec. 2) have proposed models that can choose to not
classify (say IDK/reject). In these works, the standard method is to optimize the accuracy-IDK
tradeoff: how much can a model improve its accuracy on the cases it does classify by saying IDK to
some cases?

We find this paradigm inadequate. In many of the high-stakes applications this type of work is aimed
at, an IDK is not the end of the story. Rather, a decision must be made eventually on every example,
whether the model chooses to classify it or not.

2



Under review as a conference paper at ICLR 2018

Figure 1: Data flow within larger system contain-
ing an IDK classifier (model). When the model
predicts, the system outputs the model’s predic-
tion; when the model says IDK, the system out-
puts the decision-maker’s (DM’s) prediction. Re-
jection learning considers the “IDK Model” to be
the system output.

Say our model is trained to detect melanoma,
and when it says IDK, a human doctor can
run an extra suite of medical tests. The model
learns that it is very inaccurate at detecting
amelanocytic (non-pigmented) melanoma, and
says IDK if this might be the case. However,
suppose that the doctor is even less accurate
at detecting amelanocytic melanoma than the
model is. Then, we may prefer the model to
make a prediction despite its uncertainty. Con-
versely, if there are some patients that the doc-
tor knows well, then they may have a more in-
formed, nuanced opinion than the model. Then,
we may prefer the model to say IDK more fre-
quently relative to its internal uncertainty.

Saying IDK on the wrong examples can also have fairness consequences. If the doctor’s decisions
bias against a certain group, then it is probably preferable for our model (if it is less biased) to defer
less frequently on the cases of that group. In short, the model we train is part of a larger pipeline,
and we should be training and evaluating the performance of the pipeline with this model included,
rather than solely focusing on the model itself.

To enable this, we define a general two-step framework for decision-making (Fig 1). The first step is
an automated model whose parameters we want to learn. The second step is some external decision
maker (DM) which we do not have control over; this could be a human user or a more resource-
intensive tool. The decision-making flow is done as a cascade, where the first-step model can either
predict (positive/negative) or say IDK. If it predicts, the DM trusts the model completely, and outputs
that prediction. However, if it says IDK, the DM makes its own decision. We assume that the DM is
more powerful than the model we train — reflecting a number of practical scenarios where decision
makers later in the chain have more resources for efficiency, security, or contextual reasons.

This system can be expressed by Y sys = sY DM + (1− s)Y model, where Y model, Y DM , Y sys are
the model, DM, and system output respectively, and s is a binary IDK decision variable (s = 1
means IDK). Suppose we want to optimize some loss function L(Y, Y sys). In learning to defer, we
train s and Y model to optimizeL(Y, sY DM+(1−s)Y model). In Appendix A, we prove that learning
to defer is equivalent to rejection learning for a broad class of loss functions, including classification
error, if the DM is an oracle. Since our DM is rarely an oracle, learning to defer therefore yields a
modeling advantage over rejection learning. Furthermore, learning to defer allows us to optimize a
variety of objectives L(Y, Y sys), whereas most rejection learning research focuses on classification
error.

In the rest of this work, we show how to learn fair IDK models in this framework. The paper
proceeds as follows: in Sec. 4 we give some background on the fairness setup; in Sec. 5 we describe
two methods of learning IDK models and how we may learn them in a fair way; and in Sec. 6 we
give a learning algorithm for optimizing models to succeed in this framework. In Sec. 7 we show
results on two real-world datasets.

4 BACKGROUND: FAIR CLASSIFICATION

In fair binary classification, we have data X , labels Y , predictions Ŷ , and sensitive attribute A,
assuming for simplicity that Y, Ŷ , A ∈ {0, 1}. In this work we assume that A is known (fair-aware)
and that it is a single binary attribute (e.g., gender, race, age, etc.); extensions to more general
settings are straightforward. The aim is twofold: firstly, that the classifier is accurate i.e., Yi = Ŷi;
and secondly, that the classifier is fair with respect to A i.e., Ŷ does not discriminate unfairly against
examples with a particular value of A. Classifiers with fairness constraints provably achieve worse
error rates (cf. Chouldechova (2016); Kleinberg et al. (2016)). We thus define a loss function which
trades off between these two objectives, relaxing the hard constraint proposed by models like (Hardt
et al., 2016) and yielding a regularizer, similar to (Kamishima et al., 2012; Bechavod & Ligett, 2017).
We use disparate impact (DI) as our fairness metric (Chouldechova, 2016), as it is becoming widely

3



Under review as a conference paper at ICLR 2018

used and also forms the legal basis for discrimination judgements in the U.S. Baldus & Cole (1980).
Here we define a continuous relaxation of DI, using probabilistic output p = P [Y = 1] ∈ [0, 1]:

DIreg,Y=0(Y,A, p) = |E(p|A = 0, Y = 0)− E(p|A = 1, Y = 0)|
DIreg,Y=1(Y,A, p) = |E(1− p|A = 0, Y = 1)− E(1− p|A = 1, Y = 1)|

DIreg(Y,A, p) =
1

2
(DIreg,Y=0(Y,A, p) +DIreg,Y=1(Y,A, p))

(1)

Note that constraining DI = 0 is equivalent to equalized odds (Hardt et al., 2016). If we constrain
p ∈ {0, 1}, we say we are using hard thresholds; allowing p ∈ [0, 1] is soft thresholds. We include a
hyperparameter α to balance accuracy and fairness; there is no “correct” way to weight these. When
we learn such a model, p is a function of X parametrized by θ. Our regularized fair loss function
(LFair, or LF ) combines cross-entropy for accuracy with this fairness metric:

LF (Y,A,X; θ) = −
[∑

i

Yi log p(xi; θ) + (1− Yi) log (1− p(xi; θ))
]
+ αDIreg(Y,A, p(X; θ))

(2)

5 SAYING IDK: LEARNING TO PUNT

We now discuss two model formulations that can output IDK: ordinal regression, and neural net-
works with weight uncertainty. Both of these models build on binary classifiers by allowing them
to express some kind of uncertainty. In this section, we discuss these IDK models and how to train
them to be fair; in the following section we address how to train them to take into account the
downstream decision-maker.

5.1 ORDINAL REGRESSION

Figure 2: Binary classification (one threshold) vs.
IDK classification (two thresholds)

.

We extend binary classifiers to include a third
option, yielding a model that can classify ex-
amples as “positive”, “negative” or “IDK”. This
allows the model to punt, i.e., to output IDK
when it prefers not to commit to a positive or
negative prediction. We base our IDK mod-
els on ordinal regression with three categories
(positive, IDK, and negative). These models in-
volve learning two thresholds τ = (t0, t1) (see
Figure 2). We can train with either hard or soft
thresholds. If soft, each threshold ti, i ∈ {0, 1}
is associated with a sigmoid function σi, where
σi(x) = σ(x− ti); recall that σ(x) = 1

1+e−x .

These thresholds yield an ordinal regression, which produces three values for every score x:
P (x), I(x), N(x) ∈ [0, 1], s.t. P (x) + I(x) + N(x) = 1. Using hard thresholds simply restricts
P, I,N ∈ {0, 1}3 (one-hot vector). We can also calculate a score p(x) ∈ [0, 1], which we interpret
as the model’s prediction disregarding uncertainty. These values are:

P (x) = σ1(x); I(x) = σ0(x)− σ1(x); N(x) = 1− σ0(x); p(x) =
P (x)

P (x) +N(x)
(3)

P represents the model’s bet that x is “positive”, N the bet that x is “negative”, and I is the model
hedging its bets; this rises with uncertainty. Note that p is minimized at P = N ; this is also where
I is maximized. At test time, we use the thresholds to partition the examples. On each example,
the model outputs a score x ∈ R (the logit for the ordinal regression), and a prediction p. If
t0 < x < t1, then we replace the model’s prediction p with IDK. If x ≤ t0 or x ≥ t1, we leave p as
is. To encourage fairness, we can learn a separate set of thresholds for each group: (t0,A=0, t1,A=0)
and (t0,A=1, t1,A=1); then apply the appropriate set of thresholds to each example. We can also
regularize IDK classifiers for fairness. When training this model, P , I , and N are parametrized
functions, with model parameters θ and thresholds τ . Using soft thresholds, the regularized loss

4



Under review as a conference paper at ICLR 2018

function LFairPunt (LFP ) is:

LFP (Y,A,X; θ, τ) =−
[∑

i

Yi logP (xi; θ, τ) + (1− Yi) logN(xi; θ, τ)− γ log I(xi; θ, τ)
]

+ α(DIreg(Y,A, P (X; θ, τ)) +DIreg(Y,A,N(X; θ, τ)))
(4)

Note that we add a term penalizing I(X), to prevent the trivial solution of always outputting IDK. In
addition, we regularize the disparate impact for P (X) andN(X) separately. This was not necessary
in the binary case, since these two probabilities would have always summed to 1. We learn soft
thresholds end-to-end; for hard thresholds we use a post-hoc thresholding scheme (see Appendix
D).

5.2 BAYESIAN WEIGHT UNCERTAINTY

We can also take a Bayesian approach to uncertainty by learning a distribution over the weights of a
neural network (Blundell et al., 2015). In this method, we use variational inference to approximate
the posterior distribution of the model weights given the data. When sampling from this distribution,
we can obtain an estimate of the uncertainty. If sampling several times yields widely varying results,
we can state the model is uncertain on that example.

This model outputs a prediction p and an uncertainty π for example x. We calculate these by
sampling J times from the model, yielding J predictions zj ∈ [0, 1]. Our prediction p is the sample
mean µ = 1

J

∑J
j=1 zj . To numerically represent our uncertainty, we can use signal-to-noise ratio,

defined as S = |µ−0.5|
σ , based on µ and the sample standard deviation σ =

√∑J
j=1(zj−µ)2
J−1 . The

reciprocal of this (π = 1/S) allows high values to be more uncertain, while π = σ(log(1/S))
(where σ is the logistic function) yields uncertainty values in a [0, 1] range. At test time, the system
can threshold this uncertainty; any example with uncertainty beyond a threshold is punted to the
DM.

We can regularize this Bayesian model to improve fairness as in the standard binary classifier. In
the likelihood term for the variational inference, we can simply add the disparate impact regularizer
(Eq. 1), making solutions of low disparate impact more likely. With weights w and variational
parameters θ, our variational lower bound LV is then:

LV(Y,A,X,w; θ) = −KL[q(w|θ)||Prior(w)]+

Eq(w|θ)

[
−
[∑

i

Yi log p(xi; θ) + (1− Yi) log (1− p(xi; θ))
]
+ αDIreg(Y,A, p(X; θ))

]
(5)

6 LEARNING TO DEFER

IDK models come with a consequence: when a model punts, the prediction is made instead by some
external, possibly biased decision maker (DM) e.g., a human expert. In this work we assume that
this DM is possibly biased, but is more accurate than the model; perhaps the DM is a judge with
detailed information on repeat offenders, and with more information about the defendant than the
model has, or a doctor who can conduct a suite of complex medical tests.

Here we introduce a distinction between learning to punt and learning to defer. In learning to punt,
the goal is absolute: the model’s aim is to identify the examples where it has a low chance of being
correct. In learning to defer, the model has some information about the DM and takes this into
account in its IDK decisions. Hence the goal is relative: the model’s aim is to identify the examples
where the DM’s chance of being correct is much higher than its own. If the model punts mostly on
cases where the DM is very inaccurate or unfair, then the joint predictions made by the model-DM
pair may be poor, even if the model’s own predictions are good. We can think of learning to punt as
DM-unaware learning, and learning to defer as DM-aware learning.

5



Under review as a conference paper at ICLR 2018

To conduct DM-aware learning, we can modify the model presented in Section 5 to take an extra
input: the DM’s scores on every case in the training set. The model is then optimized for some loss
function L(Y,A,X); for our purposes, this loss will be a combination of accuracy and fairness. We
propose the following general method, drawing inspiration from mixture-of-experts (Jacobs et al.,
1991). We introduce a mixing parameter π for each example x, which is the probability of deferral;
that is, the probability that the DM makes the final decision on the example x, rather than the model.
Then, 1− π is the probability that the model’s decision becomes the final output of the system. Let
s ∼ Ber(π). Our mixing parameter π corresponds to our model’s uncertainty estimate — I(x)
in ordinal regression, σ(log( 1

S )) in the Bayesian neural network. Let p be the first stage model’s
predictions and Ỹ be the DM’s predictions. We can express the joint system’s predictions p̂ as

p̂ = sỸ + (1− s)p; s ∈ {0, 1}; p̂, Ỹ , p ∈ [0, 1] (6)

In learning this model, we can parametrize p and π by θ = (θp, θπ), which may be shared param-
eters. We can then define our loss function (LDefer, or LD) as an expectation over the Bernoulli
variables si ∼ Ber(π(xi, θπ)):

LD(Y,A,X; θ) =EsL(Y,A,X; θ)

=Es

[
−
∑
i

[
Yi log p̂(xi; θ) + (1− Yi) log(1− p̂(xi; θ))− γ log π(xi; θπ)

]
+ αDIreg(Y,A,X; θ)

] (7)

We call this learning to defer. When optimizing this function, the model learns to recognize when
there is relevant information that is not present in the data it has been given by comparing its own
predictions to the DM’s predictions. Full details of how this loss function is calculated are provided
in Appendix E.

7 RESULTS

Experimental Setup. To evaluate our models, we measure three quantities: classification error,
disparate impact, and deferral rate. We train an independent model to simulate predictions made by
an external DM. This DM is trained on a version of the dataset with extra attributes, simulating the
extra knowledge/accuracy that the DM may have. However, the DM is not trained to be fair. When
our model outputs IDK we take the output of the DM instead (see Figure 1).

Datasets and Experiment Details. We show results on two datasets: the COMPAS dataset (Kirch-
ner et al., 2016), where we predict a defendant’s recidivism (committing a crime while on bail)
without discriminating by race, and the Heritage Health dataset, where we predict a patient’s Charl-
son Index (a comorbidity indicator related to likelihood of death) without discriminating by age.
For COMPAS, we give the DM the ground truth for a defendant’s violent recidivism; for Health, we
give the DM the patient’s primary condition group. Appendix C contains additional details on both
datasets.

We trained all models using a one-hidden-layer fully connected neural network with a logistic or
ordinal regression on the output, where appropriate. We used 5 sigmoid hidden units for COMPAS
and 20 sigmoid hidden units for Health. We used ADAM (Kingma & Ba, 2014) for gradient de-
scent. We split the training data into 80% training, 20% validation, and stopped training after 50
consecutive epochs without achieving a new minimum loss on the validation set.

In the ordinal regression model, we trained with soft thresholds since we needed the model to be
differentiable end to end. In the post-hoc model, we searched threshold space in a manner which did
not require differentiability, so we used hard thresholds. This is equivalent to an ordinal regression
which produces one-hot vectors i.e. P, I,N ∈ {0, 1}. See Appendices D and E for additional details
on both of these cases.

Displaying Results. Each model contains hyperparameters, such as the coefficients (α, γ) for train-
ing and/or post-hoc optimization. We show the results of several models, with various hyperparam-
eter settings, to illustrate how they mediate the tradeoff of accuracy and fairness. Each plotted point
is a median of 5 runs at a given hyperparameter setting. We only show points on the Pareto front of

6



Under review as a conference paper at ICLR 2018

0.22 0.24 0.26 0.28 0.30 0.32 0.34
Error Rate

0.00

0.05

0.10

0.15

0.20

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
punt-unfair
binary-fair

(a) COMPAS dataset

0.16 0.18 0.20 0.22 0.24
Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
punt-unfair
binary-fair

(b) Health dataset

Figure 3: Comparing the performance of punting IDK and binary models, with and without a fair-
ness regularizer. The figure illustrates the trade-off between accuracy (x-axis) and fairness (y-axis).
Bottom left hand corner is optimal. The purple star is a baseline model, trained only to optimize ac-
curacy; green squares is a model also optimizing fairness; the red diamond optimizes accuracy while
allowing IDK; and blue circles are the full model with all three terms. Yellow star shows the second
stage model DM alone. Each point is the median of 5 runs on the test set at a given hyperparameter
setting.

0.22 0.24 0.26 0.28 0.30 0.32 0.34
Error Rate

0.00

0.05

0.10

0.15

0.20

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
defer-fair

(a) COMPAS dataset

0.16 0.18 0.20 0.22 0.24
Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
defer-fair

(b) Health dataset

Figure 4: Comparison of DM-aware and -unaware learning (i.e., Section 5 vs. Section 6). Most of
the results are the same as in Figure 3; the new results here show the performance of a DM-aware
model (defer-fair), depicted by the green triangles. Of particular note is the improvement of this
model relative to the punting model (the blue circles).

the results, i.e., those for which no other point had both better error and DI. Finally, all results are
calculated on a held-out test set.

7.1 LEARNING TO PUNT AND DEFER

In Figure 3, we compare punting models to binary models, with and without fairness regularization.
These IDK models have not learned to defer, i.e. they did not receive access to the DM scores during
training (see Fig. 4). The results show that, on both datasets, the IDK models achieve a stronger
combination of fairness and accuracy than the binary models. Graphically, we observe this by noting
that the line of points representing IDK model results are closer to the lower left hand corner of the
plot than the line of points representing binary model results. Some of this improvement is driven by
the extra accuracy in the DM. However, we note that the model-DM combination achieves a more
effective accuracy-fairness tradeoff than any of the three baselines: the accurate but unfair DM; the
fair but inaccurate binary model with DI regularization; and the unfair and inaccurate unregularized

7



Under review as a conference paper at ICLR 2018

0.22 0.24 0.26 0.28 0.30 0.32 0.34
Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM_biased
punt-fair
defer-fair

(a) COMPAS dataset

0.16 0.18 0.20 0.22 0.24
Error Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM_biased
punt-fair
defer-fair

(b) Health dataset

Figure 5: Results obtained with a highly biased DM (trained with α = −0.1). Note that DM-aware
still improves relative to DM-unaware learning in this case.

binary model. Learning to punt can therefore be a valuable tool for anyone who designs or oversees
a many-part system - a simple first stage capable of expressing uncertainty can improve the fairness
of a more accurate DM.

Figure 4 demonstrates a clear improvement over the punting models (DM-unaware, Sec. 5). If
we have access to examples of past DM behavior, learning to defer provides an effective way to
improve the fairness of the entire system. For insight here, we can inspect the different roles IDK
plays in their respective loss functions. In the DM-unaware IDK model, punting is penalized at a
constant rate, determined by γ. However, in the DM-aware model, deferring penalized in a way
which is dependent on the output of the DM on that example. We can consider the unaware model to
be optimizing the expected DM-aware loss function for a DM with constant expected loss on each
examples, such as an oracle (see Appendix A). Then, we can see any improvement by the DM-aware
model as effective identification of the examples on which the expected loss of the DM is unusually
high; in other words, identifying the inconsistencies or biases of the DM.

7.2 RESULTS: DEFERRING TO A BIASED DM

Punt Defer Punt Defer
Model

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f I
DK

s p
re

di
ct

ed

A=0
A=1
A=0,Y=0
A=0,Y=1
A=1,Y=0
A=1,Y=1

Figure 6: Comparison of IDK predictions be-
tween deferring and punting model on COMPAS
dataset. Total IDKs are normalized to 1. A = 1 is
the protected group (black people). Y is the addi-
tional information given to the DM (violent recidi-
vism) - Y = 1 means violent recidivism occurred.
Pink is A = 1, green is A = 0. Diagonal cross-
hatch is Y = 0, horizontal cross-hatch is Y=1. DM
is trained to be extremely unfair with α = −0.1.

One advantage of deferring is that it can ac-
count for specific characteristics of a DM. To
test this, we considered the case of a DM which
is extremely biased (Fig. 5). We find that the
advantage of a deferring model holds in this
case, as it compensates for the DM’s extreme
bias. We can further analyze where the model
chooses to defer. Recall that the DM is given
extra information; in this case the violent re-
cidivism of the defendant (true for about 7% of
the dataset), which is difficult to predict from
the other attributes. Fig. 6 compares the IDKs
predicted by a punting model and a deferring
model - split by group (race) on the left, and by
group and violent recidivism on the right. Both
models achieved roughly 27% error; the defer-
ring model had 2% DI and the punting model
had 4%. On the left, we see that the deferring
model says IDK to more black people (the pink
bar). On the right however, we see that the de-
ferring model says IDK to a higher percentage of violently recidivating non-black people, and a
lower percentage of violently recidivating black people. This improves DI - the extra information
the DM has received is more fully used on the non-protected group. The punting model cannot

8



Under review as a conference paper at ICLR 2018

adjust this way; the deferring model can, since it receives noisy access to this information through
the DM scores in training.

8 CONCLUSION

In this work, we propose the idea of learning to defer. We propose a model which learns to defer
fairly, and show that these models can better navigate the accuracy-fairness tradeoff. We also con-
sider deferring models as one part of a decision pipeline. To this end, we provide a framework for
evaluating deferring models by incorporating other decision makers’ output into learning. We give
an algorithm for learning to defer in the context of a larger system, and show how to train a deferring
model to optimize the performance of the pipeline as a whole.

This is a powerful, general framework, with ramifications for many complex domains where auto-
mated models interact with other decision-making agents. A model with a low deferral rate could be
used to cull a large pool of examples, with all deferrals requiring further examination. Conversely,
a model with a high deferral rate can be thought of as flagging the most troublesome, incorrect, or
biased decisions by a DM, with all non-deferrals requiring further investigation. Automated models
often operate within larger systems, with many moving parts. Through deferring, we show how
models can learn to predict responsibly within their surrounding systems. Automated models often
operate within larger systems, with many moving parts. Through deferring, we show how models
can learn to predict responsibly within their surrounding systems. Building models which can de-
fer to more capable decision makers is an essential step towards fairer, more responsible machine
learning.

REFERENCES

Josh Attenberg, Panagiotis G Ipeirotis, and Foster J Provost. Beat the machine: Challenging workers
to find the unknown unknowns. Human Computation, 11(11), 2011.

David C Baldus and James WL Cole. Statistical proof of discrimination. Shepard’s Incorporated of
Colorado Springs, 1980.

P. Bartlett and M. Wegkamp. Classification with a reject option using a hinge loss. JMLR, 2008.

Yahav Bechavod and Katrina Ligett. Learning Fair Classifiers: A Regularization-Inspired Approach.
arXiv:1707.00044 [cs, stat], June 2017. URL http://arxiv.org/abs/1707.00044.
arXiv: 1707.00044.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in
Neural Networks. arXiv:1505.05424 [cs, stat], May 2015. URL http://arxiv.org/abs/
1505.05424. arXiv: 1505.05424.

Amanda Bower, Sarah N. Kitchen, Laura Niss, Martin J. Strauss, Alexander Vargas, and Suresh
Venkatasubramanian. Fair Pipelines. arXiv:1707.00391 [cs, stat], July 2017. URL http:
//arxiv.org/abs/1707.00391. arXiv: 1707.00391.

Jenna Burrell. How the machine thinks: Understanding opacity in machine learning algorithms. Big
Data & Society, 3(1):2053951715622512, 2016.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. arXiv:1610.07524 [cs, stat], October 2016. URL http://arxiv.
org/abs/1610.07524. arXiv: 1610.07524.

C. Chow. An optimum character recognition system using decision function. IEEE T. C., 1957.

C. Chow. On optimum recognition error and reject trade-off. IEEE T. C., 1970.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In International
Conference on Algorithmic Learning Theory, pp. 67–82. Springer, 2016.

9

http://arxiv.org/abs/1707.00044
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1707.00391
http://arxiv.org/abs/1707.00391
http://arxiv.org/abs/1610.07524
http://arxiv.org/abs/1610.07524


Under review as a conference paper at ICLR 2018

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
Through Awareness. arXiv:1104.3913 [cs], April 2011. URL http://arxiv.org/abs/
1104.3913. arXiv: 1104.3913.

Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Max Leiserson. Decoupled classifiers
for fair and efficient machine learning. arXiv:1707.06613 [cs], July 2017. URL http://
arxiv.org/abs/1707.06613. arXiv: 1707.06613.

Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and
Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639):115–118, 2017.

Nina Grgi-Hlaca, Muhammad Bilal Zafar, Krishna P. Gummadi, and Adrian Weller. On Fairness,
Diversity and Randomness in Algorithmic Decision Making. arXiv:1706.10208 [cs, stat], June
2017. URL http://arxiv.org/abs/1706.10208. arXiv: 1706.10208.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. CoRR, abs/1706.04599, 2017. URL http://arxiv.org/abs/1706.04599.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. In Advances in neural information processing systems, pp. 3909–3917,
2016.

Moritz Hardt, Eric Price, and Nathan Srebro. Equality of Opportunity in Supervised Learn-
ing. arXiv:1610.02413 [cs], October 2016. URL http://arxiv.org/abs/1610.02413.
arXiv: 1610.02413.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. Fairness in Learn-
ing: Classic and Contextual Bandits. arXiv:1605.07139 [cs, stat], May 2016. URL http:
//arxiv.org/abs/1605.07139. arXiv: 1605.07139.

F. Kamiran and T. Calders. Classifying without discriminating. In 2nd International Conference on
Computer, Control and Communication, 2009. IC4 2009, pp. 1–6, February 2009. doi: 10.1109/
IC4.2009.4909197.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier
with prejudice remover regularizer. Machine Learning and Knowledge Discovery in Databases,
pp. 35–50, 2012.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Lauren Kirchner, Surya Mattu, Jeff Larson, and Julia Angwin. Machine Bias: There’s
Software Used Across the Country to Predict Future Criminals. And it’s Biased
Against Blacks., May 2016. URL https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent Trade-Offs in the Fair
Determination of Risk Scores. arXiv:1609.05807 [cs, stat], September 2016. URL http:
//arxiv.org/abs/1609.05807. arXiv: 1609.05807.

Mustafa A. Kocak, David Ramirez, Elza Erkip, and Dennis E. Shasha. SafePredict:
A Meta-Algorithm for Machine Learning That Uses Refusals to Guarantee Correctness.
arXiv:1708.06425 [cs, math, stat], August 2017. URL http://arxiv.org/abs/1708.
06425. arXiv: 1708.06425.

Lihong Li, Michael L. Littman, Thomas J. Walsh, and Alexander L. Strehl. Knows what it knows: a
framework for self-aware learning. Machine Learning, 82(3):399–443, March 2011. ISSN 0885-
6125, 1573-0565. doi: 10.1007/s10994-010-5225-4. URL https://link.springer.
com/article/10.1007/s10994-010-5225-4.

10

http://arxiv.org/abs/1104.3913
http://arxiv.org/abs/1104.3913
http://arxiv.org/abs/1707.06613
http://arxiv.org/abs/1707.06613
http://arxiv.org/abs/1706.10208
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1610.02413
http://arxiv.org/abs/1605.07139
http://arxiv.org/abs/1605.07139
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://arxiv.org/abs/1609.05807
http://arxiv.org/abs/1609.05807
http://arxiv.org/abs/1708.06425
http://arxiv.org/abs/1708.06425
https://link.springer.com/article/10.1007/s10994-010-5225-4
https://link.springer.com/article/10.1007/s10994-010-5225-4


Under review as a conference paper at ICLR 2018

0.22 0.24 0.26 0.28 0.30 0.32 0.34
Error Rate

0.00

0.05

0.10

0.15

0.20

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
punt-oracle

(a) COMPAS dataset

0.16 0.18 0.20 0.22 0.24
Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
punt-oracle

(b) Health dataset

Figure 7: Comparing model performance between expected loss training with oracle as DM to IDK
training unaware of DM. At test time, same DM is used.

Smitha Milli, Dylan Hadfield-Menell, Anca Dragan, and Stuart Russell. Should Robots be Obe-
dient? arXiv:1705.09990 [cs], May 2017. URL http://arxiv.org/abs/1705.09990.
arXiv: 1705.09990.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q. Weinberger. On Fairness
and Calibration. arXiv:1709.02012 [cs, stat], September 2017. URL http://arxiv.org/
abs/1709.02012. arXiv: 1709.02012.

Brian D Ripley. Pattern recognition and neural networks. Cambridge university press, 2007.

Nate Soares, Benja Fallenstein, Stuart Armstrong, and Eliezer Yudkowsky. Corrigibility. In Work-
shops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Kush R Varshney and Homa Alemzadeh. On the safety of machine learning: Cyber-physical sys-
tems, decision sciences, and data products. Big data, 5(3):246–255, 2017.

Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, and Joseph E. Gonzalez. IDK Cascades:
Fast Deep Learning by Learning not to Overthink. arXiv:1706.00885 [cs], June 2017. URL
http://arxiv.org/abs/1706.00885. arXiv: 1706.00885.

Blake Woodworth, Suriya Gunasekar, Mesrob I. Ohannessian, and Nathan Srebro. Learning Non-
Discriminatory Predictors. arXiv:1702.06081 [cs], February 2017. URL http://arxiv.
org/abs/1702.06081. arXiv: 1702.06081.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. Fair-
ness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Dis-
parate Mistreatment. arXiv:1610.08452 [cs, stat], pp. 1171–1180, 2017. doi: 10.1145/3038912.
3052660. URL http://arxiv.org/abs/1610.08452. arXiv: 1610.08452.

Richard Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning Fair Represen-
tations. In PMLR, pp. 325–333, February 2013. URL http://proceedings.mlr.press/
v28/zemel13.html.

A COMPARISON OF ORACLE TRAINING TO IDK DM-UNAWARE

In Section 7.1, we discuss that DM-unaware IDK training is similar to DM-aware training, except
with a training DM who treats all examples similarly, in some sense. Here we show experimental
evidence. The plots in Figure 7 compare these two models: DM-unaware, and DM-aware with an
oracle at training time, and the standard DM at test time. We can see that these models trade off
between error rate and DI in almost an identical manner.

We can show that when for a broad class of objective functions (including classification error and
cross entropy), these are provably equivalent. Note that this class does not include our fairness
regularizer; for that we show the experimental evidence in Figure 7.

11

http://arxiv.org/abs/1705.09990
http://arxiv.org/abs/1709.02012
http://arxiv.org/abs/1709.02012
http://arxiv.org/abs/1706.00885
http://arxiv.org/abs/1702.06081
http://arxiv.org/abs/1702.06081
http://arxiv.org/abs/1610.08452
http://proceedings.mlr.press/v28/zemel13.html
http://proceedings.mlr.press/v28/zemel13.html


Under review as a conference paper at ICLR 2018

Let Y be the ground truth label, Y DM be the DM output, Y model be the model output, s be the IDK
decision indicator (s = 0 for predict, s = 1 for IDK), and Y sys be the output of the joint DM-model
system. Suppose these are all binary variables.

The standard rejection learning (DM-unaware) loss (which has no concept of Y DM ) is (Cortes et al.,
2016):

Lpunt(Y, Y model, s) =
∑
i

(1− si)1[Yi 6= Y modeli ] + sγpunt (8)

We can describe the learning-to-defer system output as

Y sys = sY DM + (1− s)Y model (9)

If we wish to train the system output Y sys to optimize some loss function L(Y, Y sys), we can
simply train s and Y model to optimize L(Y, sY DM + (1 − s)Y model). This deferring framework
is strictly more expressive than the rejection learning model, as it can be used on many different
objectives L, while rejection learning is mostly used with classification accuracy. We now show
that if we take the DM to be an oracle (always outputs ground truth), learning to defer reduces
to rejection learning for a broad class of objective functions, including classification error, cross
entropy, and mean squared error.

Theorem. Let Y sys = sY DM+(1−s)Y model, where s ∈ {0, 1}. LetL(Y, Y sys) =
∑
i `(Yi, Y

sys
i )

be the objective we aim to minimize, where Yi = argmin
Y sys
i

`(Yi, Y
sys
i ) and `(Yi, Yi) = 0. Then, if

the DM is an oracle, the learning-to-defer and learning-to-punt objectives are equivalent.

Proof. As in Eq. 8, the standard rejection learning objective is

Lpunt(Y, Y model, s) =
∑
i

(1− si)`(Yi, Y modeli ) + sγpunt (10)

where the first term encourages a low loss ` for non-IDK examples and the second term penalizes
IDK at a constant rate, with γpunt ≥ 0. In rejection learning, ` is usually classification error (cf.
Cortes et al. (2016); Chow (1957)). Note that this objective has no notion of DM output (Y DM ).

If we include a similar γdefer penalty, the deferring loss function is

Ldefer(Y, Y DM , Y model, s) =
∑
i

`(Yi, Y
sys
i ) + sγdefer

=
∑
i

`(Yi, siY
DM
i + (1− si)Y modeli ) + sγdefer

=
∑
i

si`(Yi, Y
DM
i ) + (1− si)`(Yi, Y modeli ) + sγdefer

(11)

Now, if the DM is an oracle, then Y DM = Y , meaning `(Y, Y DM ) = 0, giving us

Ldefer(Y, Y DM , Y model, s) =
∑
i

si · 0 + (1− si)`(Yi, Y modeli ) + sγdefer

=
∑
i

(1− si)`(Yi, Y modeli ) + sγdefer

= Lpunt(Y, Y model, s)

(12)

if we set γdefer = γpunt. �

B RESULTS: BINARY CLASSIFICATION WITH FAIR REGULARIZATION

The results in Figures 8 and 9 roughly replicate the results from (Bechavod & Ligett, 2017), who
also test on the COMPAS dataset. Their results are slightly different for two reasons: 1) we use a
1-layer NN and they use logistic regression; and 2) our training/test splits are different from theirs -
we have more examples in our training set. However, the main takeaway is similar: regularization
with a disparate impact term is a good way to reduce DI without making too many more errors.

12



Under review as a conference paper at ICLR 2018

(a) COMPAS dataset (b) Health dataset

Figure 8: Relationship of DI to α, the coefficient on the DI regularizer, 5 runs for each value of α

(a) COMPAS dataset (b) Health dataset

Figure 9: Relationship of error rate to α, the coefficient on the DI regularizer, 5 runs for each value
of α

C DATASET DETAILS

We show results on two datasets. The first is the COMPAS recidivism dataset, made available by
ProPublica (Kirchner et al., 2016) 1. This dataset concerns recidivism: whether or not a criminal
defendant will commit a crime while on bail. The goal is to predict whether or not the person will
recidivate, and the sensitive variable is race (split into black and non-black). We used information
about counts of prior charges, charge degree, sex, age, and charge type (e.g., robbery, drug posses-
sion). We provide one extra bit of information to our DM - whether or not the defendant violently
recidivated. This clearly delineates between two groups in the data - one where the DM knows the
correct answer (those who violently recidivated) and one where the DM has no extra information
(those who did not recidivate, and those who recidivated non-violently). This simulates a real-world
scenario where a DM, unbeknownst to the model, may have extra information on a subset of the
data. The simulated DM had a 24% error rate, better than the baseline model’s 29% error rate. We
split the dataset into 7718 training examples and 3309 test examples.

The second dataset is the Heritage Health dataset2. This dataset concerns health and hospitalization,
particularly with respect to insurance. For this dataset, we chose the goal of predicting the Charlson
Index, a comorbidity indicator, related to someone’s chances of death in the next several years. We
binarize the Charlson Index of a patient as 0/greater than 0. We take the sensitive variable to be
age and binarize by over/under 70 years old. This dataset contains information on sex, age, lab test,
prescription, and claim details. The extra information available to the DM is the primary condition
group of the patient (given in the form of a code e.g., ’SEIZURE’, ’STROKE’, ’PNEUM’). Again,
this simulates the situation where a DM may have extra information on the patient’s health that the
algorithm does not have access to. The simulated DM had a 16% error rate, better than the baseline
model’s 21% error rate. We split the dataset into 46769 training examples and 20044 test examples.

D DETAILS ON OPTIMIZATION: HARD THRESHOLDS

We now explain the post-hoc threshold optimization search procedure we used. In theory, any
procedure can work. Since it is a very small space (one dimension per threshold = 4 dimensions),
we used a random search. We sampled 1000 combinations of thresholds, picked the thresholds
which minimized the loss on one half of the test set, and evaluated these thresholds on the other half

1downloaded from https://github.com/propublica/compas-analysis
2Downloaded from https://www.kaggle.com/c/hhp

13



Under review as a conference paper at ICLR 2018

of the test set. We do this for several values of α, γ in thresholding, as well as several values of α
for the original binary model.

We did not sample thresholds from the [0, 1] interval uniformly. Rather we used the following
procedure. We sampled our lower thresholds from the scores in the training set which were below
0.5, and our upper thresholds from the scores in the training set which were above 0.5. Our sampling
scheme was guided by two principles: this forced 0.5 to always be in the IDK region; and this
allowed us to sample more thresholds where the scores were more dense. If only choosing one
threshold per class, we sampled from the entire training set distribution, without dividing into above
0.5 and below 0.5.

This random search was significantly faster than grid search, and no less effective. It was also faster
and more effective than gradient-based optimization methods for thresholds - the loss landscape
seemed to have many local minima.

E DETAILS ON TRAINING WITH EXPECTED LOSS: SOFT THRESHOLDS

We go into more detail regarding the regularization term for expected disparate impact in Equation
7. When using soft thresholds, it is not trivial to calculate the expected disparate impact regularizer:

DIexp(Y,A, Ŷ ) = Eπ̂DIreg(Y,A, Ŷ )

= Eπ̂
1

2
(DIreg,Y=0(Y,A, p) +DIreg,Y=1(Y,A, p))

(13)

due to the difficulties involved in taking the expected value of an absolute value. We instead chose
to calculate a version of the regularizer with squared underlying terms:

DIsoft(Y,A, Ŷ ) = Eπ̂
1

2
(DIreg,Y=0(Y,A, Ŷ )2 +DIreg,Y=1(Y,A, Ŷ )2)

= Eπ̂(E(Ŷi|A = 0, Y = 0)− E(Ŷi|A = 1, Y = 0))2

+ Eπ̂(E(1− Ŷi|A = 0, Y = 1)− E(1− Ŷi|A = 1, Y = 1))2

=Eπ̂

(∑n
i (1− Yi)(1−Ai)Ŷi∑n
i (1− Yi)(1−Ai)

−
∑n
i (1− Yi)AiŶi∑n
i (1− Yi)Ai

)2

+Eπ̂

(∑n
i Yi(1−Ai)(1− Ŷi)∑n

i Yi(1−Ai)
−
∑n
i YiAi(1− Ŷi)∑n

i YiAi

)2

(14)

Then, we can expand Ŷi as
Ŷi = π̂iỸi + (1− π̂i)pi (15)

where Ỹi ∈ [0, 1] and S(xi) ∈ [0, 1] are the DM and machine predictions respectively. For brevity
we will not show the rest of the calculation, but with some algebra we can obtain a closed form
expression for DIsoft(Y,A, Ŷ ) in terms of Y,A, Ỹ and S.

F RESULTS: LEARNING TO DEFER, BY DEFERRAL RATE

Models which rarely defer behave very differently from those which frequently defer. In Figure 10,
we break down the results from Section 7.1 by deferral (or punting) rate. First, we note that even for
models with similar deferral rates, we see a similar fairness/accuracy win for the DM-aware models.
Next, we can look separately at the low and high deferral rate models. We note that the benefit
of DM-aware training is much larger for high deferral rate models. This suggests that the largest
benefit of learning to defer comes from a win in fairness, rather than accuracy.

14



Under review as a conference paper at ICLR 2018

0.22 0.24 0.26 0.28 0.30 0.32 0.34
Error Rate

0.00

0.05

0.10

0.15

0.20

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
defer-fair

(a) COMPAS, Low Deferral Rate
(0-30%)

0.22 0.24 0.26 0.28 0.30 0.32 0.34
Error Rate

0.00

0.05

0.10

0.15

0.20

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
defer-fair

(b) COMPAS, Med Deferral Rate
(30-70%)

0.22 0.24 0.26 0.28 0.30 0.32 0.34
Error Rate

0.00

0.05

0.10

0.15

0.20

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
defer-fair

(c) COMPAS, High Deferral
Rate (70-100%)

0.16 0.18 0.20 0.22 0.24
Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
defer-fair

(d) Health, Low Deferral Rate (0-
20%)

0.16 0.18 0.20 0.22 0.24
Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Di
sp

ar
at

e 
Im

pa
ct

baseline-acc
DM
punt-fair
defer-fair

(e) Health, Med Deferral Rate
(20-40%)

0.16 0.18 0.20 0.22 0.24
Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Di

sp
ar

at
e 

Im
pa

ct

baseline-acc
DM
punt-fair
defer-fair

(f) Health, High Deferral Rate
(40-100%)

Figure 10: Comparison of DM-aware and -unaware learning. Split into 3 bins, low, medium, and
high deferral rate for each dataset. Bins are different between datasets due to the differing distribu-
tions of deferral rate observed during hyperparameter search.

15


	Introduction
	Related Work
	A Joint Decision-Making Framework
	Background: Fair Classification
	Saying IDK: Learning to Punt
	Ordinal Regression
	Bayesian Weight Uncertainty

	Learning to Defer
	Results
	Learning to Punt and Defer
	Results: Deferring to a Biased DM

	Conclusion
	Comparison of Oracle Training to IDK DM-Unaware
	Results: Binary Classification with Fair Regularization
	Dataset Details
	Details on Optimization: Hard Thresholds
	Details on Training with Expected Loss: Soft Thresholds
	Results: Learning to Defer, by Deferral Rate

