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Abstract

We propose and analyze several inexact regularized Newton-type methods for finding a
global saddle point of convex-concave unconstrained min-max optimization problems. Com-
pared to first-order methods, our understanding of second-order methods for min-max op-
timization is relatively limited, as obtaining global rates of convergence with second-order
information can be much more involved. In this paper, we examine how second-order infor-
mation is used to speed up extra-gradient methods, even under inexactness. In particular,
we show that the proposed methods generate iterates that remain within a bounded set and
that the averaged iterates converge to an ε-saddle point within O(ε−2/3) iterations in terms
of a restricted gap function. We also provide a simple routine for solving the subproblem at
each iteration, requiring a single Schur decomposition and O(log log(1/ε)) calls to a linear
system solver in a quasi-upper-triangular system. Thus, our method improves the existing
line-search-based second-order min-max optimization methods (Monteiro & Svaiter, 2012;
Bullins & Lai, 2022; Jiang & Mokhtari, 2025) by shaving off an O(log log(1/ε)) factor in the
required number of Schur decompositions. Finally, we conduct experiments on synthetic
and real data to demonstrate the efficiency of the proposed methods.

1 Introduction

Let Rm and Rn be finite-dimensional Euclidean spaces and assume that the function f : Rm × Rn 7→ R has
a bounded and Lipschitz-continuous Hessian. We consider the following min-max optimization problem:

min
x∈Rm

max
y∈Rn

f(x,y), (1.1)

and aim to develop methods for finding a global saddle point; i.e., a tuple (x?,y?) ∈ Rm × Rn such that

f(x?,y) ≤ f(x?,y?) ≤ f(x,y?), for all x ∈ Rm, y ∈ Rn.

Throughout this paper, we will assume that the function f(x,y) is convex in x for all y ∈ Rn and concave in
y for all x ∈ Rm. This convex-concave setting has been the focus of intense research in optimization, game
theory, economics and computer science for several decades (Von Neumann & Morgenstern, 1953; Dantzig,
1963; Blackwell & Girshick, 1979; Facchinei & Pang, 2007; Ben-Tal et al., 2009), and variants of this problem
class have recently attracted significant interest in machine learning and data science, with applications
to generative adversarial networks (GANs) (Goodfellow et al., 2014; Arjovsky et al., 2017), adversarial
learning (Sinha et al., 2018), multi-agent systems (Shamma, 2008), and many other fields; see Facchinei &
Pang (2007) and references therein for a wide range of concrete problems.

Motivated by these applications, several classes of optimization algorithms have been proposed for finding a
global saddle point of Eq. (1.1) in the convex-concave setting. An important algorithm is the extragradient
(EG) method (Korpelevich, 1976; Antipin, 1978; Nemirovski, 2004). The method’s rate of convergence for
smooth and strongly-convex-strongly-concave functions and bilinear functions (i.e., when f(x,y) = x>Ay
for some square, full-rank matrix A) was shown to be linear by Korpelevich (1976) and Tseng (1995). Subse-
quently, Nemirovski (2004) showed that the method enjoys an O(ε−1) convergence guarantee for constrained
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problems with a bounded domain and a convex-concave function f . In unbounded domains, Solodov & Svaiter
(1999) generalized EG to the hybrid proximal extragradient (HPE) method which provides a framework for
analyzing the iteration complexity of several existing methods, including EG and Tseng’s forward-backward
splitting (Tseng, 2000), while Monteiro & Svaiter (2010) provided an O(ε−1) guarantee for HPE in both
bounded and unbounded domains. In addition to EG, there are other methods that can achieve the same
convergence guarantees, such as optimistic gradient descent ascent (OGDA) (Popov, 1980) and dual extrap-
olation (DE) (Nesterov, 2007); for a survey, see Hsieh et al. (2019) and the references therein. All methods
are referred to as optimal first-order methods since they matched the lower bound (Ouyang & Xu, 2021).

Focusing on convex minimization problems for the moment, significant effort has been devoted to developing
first-order methods that are characterized by simplicity of implementation and analytic tractability (Nes-
terov, 1983). In particular, it has been recognized that first-order methods are suitable for solving large-scale
machine learning problems in which low-accuracy solutions may suffice (Sra et al., 2012; Lan, 2020). In
contrast, second-order methods are known to enjoy superior convergence properties over their first-order
counterparts in theory: the accelerated cubic regularized Newton method (Nesterov, 2008) and accelerated
Newton proximal extragradient method (Monteiro & Svaiter, 2013) provably converge at a rate of O(ε−1/3)
and Õ(ε−2/7) respectively, both exceeding the best possible O(ε−1/2) bound for first-order methods (Ne-
mirovski & Yudin, 1983). Two optimal second-order methods with the rate of O(ε−2/7) have been recently
proposed by Carmon et al. (2022) and Kovalev & Gasnikov (2022), independently. In practice, first-order
methods may perform poorly in ill-conditioned problems and are known to be sensitive to the parameter
choices in real-world applications in which second-order methods are recognized to be more robust and
reliable (Pilanci & Wainwright, 2017; Roosta-Khorasani & Mahoney, 2019; Berahas et al., 2020).

In the context of convex-concave min-max problems, two issues arise: (i) achieving acceleration with second-
order information is less tractable analytically; and (ii) acquiring accurate second-order information is
computationally expensive in general. Aiming to address the first issue, a line of work has generalized
practical first-order methods to their higher-order counterparts (Monteiro & Svaiter, 2012; Bullins & Lai,
2022; Jiang & Mokhtari, 2025), where the state-of-the-art iteration bound is O(ε−2/3 log log(1/ε)) (Jiang &
Mokhtari, 2025). All these methods require a nontrivial implicit search scheme at every iteration, and this
can be prohibitive in practice.1 Another line of work has extended second-order convex optimization methods
to their min-max counterparts (Nesterov, 2006; Huang et al., 2022; Chen et al., 2025a). Specifically, the
first extension of the cubic regularized Newton method (Nesterov & Polyak, 2006) was provided in Nesterov
(2006) and was shown to achieve a global convergence rate of O(ε−1). Huang et al. (2022) proposed a two-
phase extension of cubic regularized Newton method (Nesterov & Polyak, 2006) and provided a theoretical
guarantee under the error bound condition with a parameter 0 < θ ≤ 1 (Huang et al., 2022, Assumption 5.1):
the global rate is linear under a Lipschitz-type condition (θ = 1) and O(ε−(1−θ)/θ2) under a Hölder-type
condition (θ ∈ (0, 1)). These conditions exclude important problem classes and are in general unverifiable.
Very recently, Chen et al. (2025a) has shown an improved upper bound of Õ(ε−4/7) iteration bound by
generalizing the optimal second-order optimization method (Carmon et al., 2022) to solve convex-concave
min-max problems. Despite the appealing theoretical convergence guarantee, this method is a nested-loop
algorithm and can thus be complex to implement.

Finally, it is worth mentioning that the existing second-order min-max optimization algorithms require exact
second-order information; as a result, given the implicit nature of the inner loop subproblems involved, the
methods’ robustness to inexact information cannot be taken for granted. It is thus natural to ask:

Can we develop explicit second-order min-max optimization algorithms that retain the same convergence
guarantee even with inexact second-order information?

Our paper offers an affirmative answer to this question. Inspired by recent advances on variational inequalities
(VIs) (Lin & Jordan, 2025), we start by presenting a “conceptual" second-order min-max optimization method
with an iteration complexity of O(ε−2/3). Our convergence analysis closely follows that of Lin & Jordan

1By “implicit,” we mean that the method’s inner-loop subproblem for computing the kth iterate involves the iterate being
updated, leading to an implicit update rule. By contrast, “explicit” means that any inner-loop subproblem for computing the
kth iterate does not involve the new iterate.

2



Under review as submission to TMLR

(2025) although it is simpler in that it leverages the specific structure of unconstrained min-max optimization
problems. Although our proof is not new, we include it for completeness.

We then propose a class of second-order min-max optimization methods that require only inexact second-
order information and inexact subproblem solutions. Notably, the proposed inexact Jacobian regularity
condition allows for using randomized sampling for solving finite-sum min-max problems. This yields con-
siderable computational savings since the sample size increases gracefully from a very small sample set.
We prove that our inexact methods can achieve an iteration complexity of O(ε−2/3) and the corresponding
subsampled variants achieve the same bound with high probability. Our new subroutine for solving each
subproblem involves a single Schur decomposition andO(log log(1/ε)) calls to a linear system solver in a quasi-
upper-triangular system. Thus, the total complexity bound is O((m+n)ωε−2/3 +(m+n)2ε−2/3 log log(1/ε))
where ω ≈ 2.3728 is the matrix multiplication constant (Demmel et al., 2007). In addition, we conduct
experiments on synthetic and real data to demonstrate the efficiency of the proposed methods.

Our approach builds on existing algorithmic components: (i) the overall scheme is inspired by Lin & Jordan
(2025); (ii) the subproblem reformulation is inspired by Adil et al. (2022); (iii) the use of the safeguarded
Newton method and the corresponding iteration complexity bound of O(log log(1/ε)) extend the analysis
of Conn et al. (2000); Cartis et al. (2011); (iv) the subsampling techniques are inspired by Xu et al. (2020).
However, we remark that combining these components to yield a theoretically sound and practically efficient
algorithm is far from straightforward.

While Adil et al. (2022) showed how to formulate the subproblem as a root-finding problem, a central
challenge remains: how to solve such problems efficiently. Techniques such as the generalized conjugate
gradient method with Lanczos processes—which are effective in the minimization setting—do not directly
extend to the min-max setting. In this context, Huang et al. (2022) proposed an alternative formulation (see
Eq. (16) in their paper) and applied a damped Newton method. However, they did not provide theoretical
guarantees, even in a local sense, due to the absence of key properties such as the non-singularity of the
Jacobian matrix. Even when adopting the root-finding formulation from Adil et al. (2022), identifying
a suitable solver is highly nontrivial. At first glance, bisection might seem preferable due to its global
convergence guarantee, unlike Newton’s method. One of our major contributions is to rigorously justify
the use of the safeguarded Newton method by extending the analysis of Conn et al. (2000) and Cartis
et al. (2011) from the minimization setting to the min-max setting. Moreover, it remains unclear if the
existing inexactness conditions from Xu et al. (2020) can be directly combined with our overall scheme
while sacrificing neither theoretical iteration complexity nor practical efficiency. For example, the proof of
Lemma D.1 requires separate treatment of |∆zk−1| ≥ 1 and |∆zk−1| < 1, which was unnecessary in previous
works either due to stronger assumptions as in Lin & Jordan (2025) or the simpler analysis appropriate for
a minimization setting as in Xu et al. (2020).

In summary, our work aims to develop practically effective second-order methods for min-max optimization
that maintain the same worst-case iteration complexity bounds. More precisely, we contribute a new class
of algorithms that relax some assumptions of prior work by (aiming at practical feasibility) requiring only
inexact second-order information and inexact subproblem solutions, while still achieving same theoretical
performance. This improves on existing works (Lin & Jordan, 2025; Adil et al., 2022), which either require
an exact solution of an inner subproblem or lack a complexity characterization of solving each subproblem.
In terms of complexity guarantees, our method outperforms the best line-search-based method (Jiang &
Mokhtari, 2025) that achieves the bound of O((m + n)ωε−2/3 log log(1/ε)). Subsequent to our work, new
strategies were designed for improving second-order min-max optimization methods (Alves et al., 2024; Jiang
et al., 2024; Chen et al., 2025b), thereby matching and even surpassing our results. While we believe these
strategies could be used in our method to yield an improved guarantee, we consider it beyond the scope of
this work and leave it for future research.

Notations. We use bold lower-case letters to denote vectors. For f(·) : Rn → R, we let ∇f(z) denote the
gradient of f at z. For f(·, ·) : Rm × Rn → R, we let ∇xf(x,y) or ∇yf(x,y) denote the partial gradient of
f at (x,y). We use ∇f(x,y) to denote the gradient at (x,y) where ∇f(x,y) = (∇xf(x,y),∇yf(x,y)) and
∇2f(x,y) to denote the Hessian at (x,y). Finally, we use O(·),Ω(·) to hide absolute constants which do not
depend on problem parameters, and Õ(·), Ω̃(·) to hide absolute constants and additional log factors.
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2 Preliminaries

We present the setup of min-max optimization under study, and we provide the definitions for functions
as well as optimality criteria considered. In this regard, the regularity conditions that we impose for the
function f : Rm+n 7→ R are as follows:

Definition 2.1 A function f is ρ-Hessian Lipschitz if ‖∇2f(z)−∇2f(z′)‖ ≤ ρ‖z− z′‖ for ∀z, z′.

Definition 2.2 A differentiable function f is convex-concave if

f(x′,y) ≥ f(x,y) + (x′ − x)>∇xf(x,y), for x′,x ∈ Rm and any fixed y ∈ Rn,
f(x,y′) ≤ f(x,y) + (y′ − y)>∇yf(x,y), for y′,y ∈ Rn and any fixed x ∈ Rm.

We define the notion of global saddle points for the problem in Eq. (1.1).

Definition 2.3 A point z? = (x?,y?) ∈ Rm × Rn is a global saddle point of a function f(·, ·) if f(x?,y) ≤
f(x?,y?) ≤ f(x,y?) for all x ∈ Rm and y ∈ Rn.

Throughout this paper, we assume that the following conditions are satisfied.

Assumption 2.4 The function f(x,y) is continuously differentiable and convex-concave, and at least one
global saddle point of f(x,y) exists.

Assumption 2.5 The function f(x,y) is ρ-Hessian Lipschitz.

The existence of a global saddle point z? = (x?,y?) under Assumption 2.4 guarantees that f(x?,y) ≤
f(x?,y?) ≤ f(x,y?) for all x ∈ Rm and y ∈ Rn. Thus, we can adopt a restricted gap function (Nesterov,
2007) to provide a measure for the optimality of ẑ = (x̂, ŷ) in the unconstrained convex-concave setting2.

Definition 2.6 The restricted gap function is defined by

gap(ẑ, β) = max
y:‖y−y?‖≤β

f(x̂,y)− min
x:‖x−x?‖≤β

f(x, ŷ)

where β satisfies that ‖ẑ− z?‖ ≤ β. Clearly, we have gap(ẑ, β) ≥ 0 since f(x?, ŷ) ≤ f(x̂,y?).

Definition 2.7 A point ẑ = (x̂, ŷ) is an ε-global saddle point of a convex-concave function f(·, ·) if
gap(ẑ, β) ≤ ε. If ε = 0, it is a global saddle point.

In our method, we denote the kth iterate by (xk,yk) and we define the averaged (ergodic) iterates by (x̄k, ȳk).
In particular, given a sequence of weights {λk}Tk=1, we let

x̄k = 1∑k

i=1
λi

(
k∑
i=1

λixi

)
, ȳk = 1∑k

i=1
λi

(
k∑
i=1

λiyi

)
. (2.1)

In our convergence analysis, we define z = (x,y) ∈ Rm+n and the operator F : Rm+n 7→ Rm+n:

F (z) =
[
∇xf(x,y)
−∇yf(x,y)

]
. (2.2)

Accordingly, the Jacobian of F is defined as follows (note that DF is asymmetric in general),

DF (z) =
[
∇2

xxf(x,y) ∇2
xyf(x,y)

−∇2
xyf(x,y) −∇2

yyf(x,y)

]
∈ R(m+n)×(m+n). (2.3)

In the following lemma, we provide the properties of F and its Jacobian DF under Assumptions 2.4 and 2.5.
2The restricted gap is also related to the classical Nikaidô-Isoda function Nikaidô & Isoda (1955) defined for a class of

noncooperative convex games in a more general setting.
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Algorithm 1 Newton-MinMax(z0, ρ, T )
Input: initial point z0, Lipschitz parameter ρ and iteration number T ≥ 1.
Initialization: set ẑ0 = z0.
for k = 0, 1, 2, . . . , T − 1 do

STEP 1: If zk is a global saddle point of the problem in Eq. (1.1), then stop.
STEP 2: Compute an exact solution ∆zk of the subproblem F (ẑk) +DF (ẑk)∆zk + 6ρ‖∆zk‖∆zk = 0.
STEP 3: Compute λk+1 > 0 such that 1

33 ≤ λk+1ρ‖∆zk‖ ≤ 1
13 .

STEP 4: Compute zk+1 = ẑk + ∆zk.
STEP 5: Compute ẑk+1 = ẑk − λk+1F (zk+1).

end for
Output: z̄T = 1∑T

k=1
λk

(∑T

k=1 λkzk
)
.

Lemma 2.8 Suppose that Assumptions 2.4 and 2.5 hold. Then, we have that (a) F is monotone, i.e.,
(z− z′)>(F (z)−F (z′)) ≥ 0, (b) DF is ρ-Lipschitz continuous, i.e., ‖DF (z)−DF (z′)‖ ≤ ρ‖z− z′‖, and (c)
F (z?) = 0 for any global saddle point z? ∈ Rm+n of the function f(·, ·).

Before proceeding to our algorithmic framework and convergence analysis, we present the following well-
known result which will be used in the subsequent analysis. Given its importance, we provide the proof for
completeness in the appendix.

Proposition 2.9 Let (x̄k, ȳk) and F (·) be defined in Eq. (2.1) and (2.2). Then, under Assumption 2.4, the
following statement holds true,

f(x̄k,y)− f(x, ȳk) ≤ 1∑k

i=1
λi

(
k∑
i=1

λi(zi − z)>F (zi)
)
.

3 Conceptual Algorithm and Convergence Analysis

As a warm-up, we describe the scheme of Newton-MinMax which is a second-order version of the method in
Lin & Jordan (2025) for min-max optimization and yields an iteration complexity of Θ(ε−2/3). We emphasize
that Newton-MinMax is a conceptual algorithmic framework since it requires exact second-order information
and requires the cubic regularized subproblem to be solved exactly. See additional proofs in Appendix C.

3.1 Algorithmic scheme

We summarize our second-order method, which we call Newton-MinMax(z0, ρ, T ), in Algorithm 1 where
z0 = (x0,y0) ∈ Rm × Rn is an initial point, ρ > 0 is a Lipschitz constant for the Hessian of the function f
and T ≥ 1 is an iteration number. Our method is a generalization of the first-order extragradient method.
Indeed, the kth iteration consists of two important algorithmic components: (1) we compute zk+1 = ẑk+∆zk
where ∆zk ∈ Rm×Rn is an exact solution of the nonlinear equation problem given by F (ẑk)+DF (ẑk)∆zk+
6ρ‖∆zk‖∆zk = 0, and (2) we compute ẑk+1 = ẑk − λk+1F (zk+1).

As suggested by Lin & Jordan (2025), we choose to update λk in an adaptive manner and prove that our
method can achieve an iteration complexity of O(ε−2/3) under Assumptions 2.4 and 2.5. Such a strategy
makes sense; indeed, λk is the step size and would be better to increase as the iterate zk approaches the
set of global saddle points where the value of ‖∆zk‖ measures the closeness. From a practical viewpoint,
Algorithm 1 serves as an alternative to the current pipeline of line-search-based methods – which it simplifies
by removing the need for an implicit binary search.

Theorem 3.1 Suppose that Assumptions 2.4 and 2.5 hold. Then, the sequence of iterates generated by
Algorithm 1 is bounded and, in addition

gap(z̄T , β) ≤ 2112
√

3ρ‖z0−z?‖3

T 3/2 ,
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Algorithm 2 Inexact-Newton-MinMax(z0, ρ, T )
Input: initial point z0, Lipschitz parameter ρ and iteration number T ≥ 1.
Initialization: set ẑ0 = z0 as well as κJ > 0, 0 < κm < min{1, ρ4} and 0 ≤ τ0 <

ρ
4 .

for k = 0, 1, 2, . . . , T − 1 do
STEP 1: If zk is a global saddle point of the problem in Eq. (1.1), then stop.
STEP 2: Compute an inexact solution ∆zk of the subproblem

F (ẑk) + J(ẑk)∆zk + 6ρ‖∆zk‖∆zk = 0. (4.1)

such that Condition 4.1 and 4.2 hold true with a proper choice of τk ≥ 0.
STEP 3: Compute λk+1 > 0 such that 1

30 ≤ λk+1ρ‖∆zk‖ ≤ 1
14 .

STEP 4: Compute zk+1 = ẑk + ∆zk.
STEP 5: Compute ẑk+1 = ẑk − λk+1F (zk+1).

end for
Output: z̄T = 1∑T

k=1
λk

(∑T

k=1 λkzk
)
.

where z? = (x?,y?) is a global saddle point, ρ > 0 is defined as in Assumption 2.5, and β = 7‖z0 − z?‖. As
such, Algorithm 1 achieves an ε-global saddle point solution within O(ε−2/3) iterations.

Remark 3.2 Although Algorithm 1 is conceptual, it forms the basis for the material in the next section,
where we relax the strong requirements of Algorithm 1 and propose a class of second-order min-max opti-
mization methods that require only inexact second-order information and inexact subproblem solutions.

4 Inexact Algorithm and Complexity Analysis

Building on the conceptual algorithm of the previous section, we present the Inexact-Newton-MinMax scheme,
and we provide a global convergence guarantee in terms of the number of iterations required until conver-
gence. Our inexact Jacobian regularity condition is inspired by Xu et al. (2020) and it allows for the use of
randomized sampling for solving finite-sum min-max optimization problems. Our subroutine, which is in-
spired by Adil et al. (2022), can solve each subproblem using a single Schur decomposition and O(log log(1/ε))
calls to a linear system solver in a quasi-upper-triangular system. See additional proofs in Appendix D.

4.1 Algorithmic scheme

We summarize our inexact second-order method, which we call Inexact-Newton-MinMax(z0, ρ, T ), in Algo-
rithm 2 where z0 is an initial point, ρ > 0 is a Lipschitz constant for the Hessian of the function f and T ≥ 1
is an iteration number.

Our method combines Algorithm 1 with an inexact second-order framework (Xu et al., 2020) in the context
of min-max optimization. Indeed, the key difference is that Eq. (4.1) used the inexact Jacobian J(ẑk), which
can be formed and evaluated efficiently in practice. Throughout this section, we impose the following two
conditions on the inexact Jacobian construction and the inexact subproblem solving.

Condition 4.1 (Inexact Jacobian regularity) For some κJ > 0 and τk ≥ 0, the inexact Jacobian J(ẑk)
satisfies the following regularity conditions: ‖(J(ẑk) −DF (ẑk))∆zk‖ ≤ τk‖∆zk‖ and ‖J(ẑk)‖ ≤ κJ , where
{ẑk}k≥0 and {∆zk}k≥0 are generated by Algorithm 2.

Condition 4.2 (Sufficient inexact solving) Fixing κm ∈ (0, 1), we solve the nonlinear equation problem
in Eq. (4.1) inexactly to find ∆zk such that ‖F (ẑk)+J(ẑk)∆zk+6ρ‖∆zk‖∆zk‖ ≤ κm min{‖∆zk‖2, ‖F (ẑk)‖}.
In addition, {ẑk}k≥0 and {∆zk}k≥0 are generated by Algorithm 2.

Under Conditions 4.1 and 4.2, our proposed algorithm (cf. Algorithm 2) achieves the same worst-case iteration
complexity of O(ε−2/3) for computing an ε-global saddle point of the problem in Eq. (1.1) as that of the
exact variant (cf. Algorithm 1).
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Notably, Condition 4.1 allows for the principled use of many practical techniques to constructing the inexact
Jacobian J(ẑk) in the context of min-max optimization. One such scheme can be described for solving the
finite-sum min-max optimization problems in the form of

min
x∈Rm

max
y∈Rn

f(x,y) , 1
N

N∑
i=1

fi(x,y), (4.2)

and its special instantiation

min
x∈Rm

max
y∈Rn

f(x,y) , 1
N

N∑
i=1

fi(a>i x,b>i y), (4.3)

where N � 1, each of fi is a convex-concave function with bounded and ρ-Lipschitz Hessian, and
{(ai,bi)}Ni=1 ⊆ Rm × Rn are a collection of data samples.

This type of problem is common in optimization and machine learning (Shalev-Shwartz & Ben-David, 2014;
Roosta-Khorasani et al., 2014; Roosta-Khorasani & Mahoney, 2019). Thanks to its finite-sum structure,
both uniform and nonuniform subsampling schemes satisfy Condition 4.1 with high probability; indeed, we
have the stronger theoretical guarantee ‖J(ẑk) − DF (ẑk)‖ ≤ τk, which implies one of two inequalities in
Condition 4.1. As a consequence of Theorem 4.1, our subsampled Newton method can achieve the same
iteration complexity of Θ(ε−2/3) for solving the finite-sum convex-concave min-max optimization problems;
see Theorem 4.14 for the details.

We provide the iteration complexity of Algorithm 2 as follows,

Theorem 4.1 Suppose that Assumption 2.4 and 2.5 hold and

0 ≤ τk ≤ min{τ0, ρ(1−κm)
4(κJ +6ρ)‖F (ẑk)‖}, for all k ≥ 0.

Then, the iterates generated by Algorithm 2 are bounded and, in addition,

gap(z̄T , β) ≤ 2112
√

3ρ‖z0−z?‖3

T 3/2 ,

where z? = (x?,y?) is a global saddle point, ρ > 0 is defined in Assumption 2.5, and β = 7‖z0 − z?‖. As
such, Algorithm 2 achieves an ε-global saddle point solution within O(ε−2/3) iterations.

Remark 4.2 Theorem 4.1 demonstrates that Algorithm 2 achieves the same iteration complexity as Algo-
rithm 1 regardless of inexact second-order information and inexact subproblem solving under Conditions 4.1
and 4.2. Unfortunately, we are unable to claim optimality of Algorithm 2 since existing lower bounds (Adil
et al., 2022; Lin & Jordan, 2025) have been established under the assumption of an exact second-order oracle
and exact subproblem solutions. When moving to inexact methods, the oracle needs to be redefined. We want
to emphasize that there may not be a universal way to define the oracle in this context, particularly when
considering matrix operations. For instance, quasi-Newton and subsampled Newton methods are both cate-
gorized as inexact Newton methods, yet they differ in how second-order information is approximated, which
impacts how their oracles should be defined and, consequently, how lower bounds are characterized. Recent
work has begun to address this issue. Specifically, Agafonov et al. (2024a) proposed an accelerated stochastic
second-order method that is robust to both gradient and Hessian inexactness, and established a lower bound
under a δ-inexact Hessian condition: ‖(H(x) − ∇2f(x))(x′ − x)‖ ≤ δ‖x′ − x‖ for all x,x′. Proceeding a
further step, Agafonov et al. (2024b) extended the above results to the VI setting by considering a δ-inexact
Jacobian condition: ‖(J(z)−DF (z))(z′ − z)‖ ≤ δ‖z′ − z‖ for all z, z′. They proved a lower bound and also
provided a thorough comparison with our method (see pages 3-4). Notably, their lower bound is not valid
for our inexact method since we bound the Jacobian inexactness with τk > 0 that decreases as k → +∞ and
bounds the norm of Jacobian from above.

4.2 Inexact subproblem solving and complexity analysis

We clarify how to obtain an inexact solution of the nonlinear equation problem in Eq. (4.1) such that Condi-
tion 4.2 holds. Indeed, we present a new safeguarded Newton-bisection scheme that solves each subproblem
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using a single Schur decomposition and O(log log(1/ε)) calls to a linear system solver in a quasi-upper-
triangular system. This yields a complexity of O((m + n)ωε−2/3 + (m + n)2ε−2/3(log log(1/ε))), which
improves the practical performance over bisection and damped Newton while retaining a global convergence
guarantee. In the case where J(ẑ) is antisymmetric, we show that the Newton method is sufficient and
requires O(log log(1/ε)) calls to a linear system solver.

For simplicity, we rewrite the nonlinear equation problem in Eq. (4.1) as

F (ẑ) + J(ẑ)∆z + 6ρ‖∆z‖∆z = 0.

This is equivalent to finding a pair (∆z, λ) for which

(J(ẑ) + λI)∆z = −F (ẑ), λ = 6ρ‖∆z‖. (4.4)

Although J(ẑ) is not symmetric, it has a Schur decomposition J(ẑ) = QUQ−1 where U is quasi-upper-
triangular (since all entries of J(ẑ) are real) in the sense that it is a block diagonal matrix with size 2 × 2
and Q is a unitary matrix. This implies J(ẑ) + λI = Q(U + λI)Q−1. In the convex-concave setting, J(ẑ) is
monotone such that v>J(ẑ)v ≥ 0 for all v, and J(ẑ) + λI is invertible for all λ > 0.

In this regard, we define

∆z(λ) , −(J(ẑ) + λI)−1F (ẑ) = −Q(U + λI)−1Q−1F (ẑ), (4.5)

and obtain from Eq. (4.4) and the above definition that the solution (∆z, λ) we are looking for depends upon
the nonlinear equality λ = 6ρ‖∆z(λ)‖. For convenience, we define ψ(λ) = ‖∆z(λ)‖2 and examine ψ(λ) in
the following proposition.

Proposition 4.3 The first-order and second-order derivatives of ψ are given by ψ′(λ) = −2∆z(λ)>(J(ẑ) +
λI)−1∆z(λ), and ψ′′(λ) = 2‖(J(ẑ) + λI)−1∆z(λ)‖2 + 4∆z(λ)>(J(ẑ) + λI)−2∆z(λ). If F (ẑ) 6= 0 and
v>J(ẑ)v ≥ 0 for all v, then ψ(λ) is strictly decreasing on (0,∞).

The nonlinear equality λ = 6ρ‖∆z(λ)‖ is equivalent to λ = 6ρ
√
ψ(λ), which can be reformulated as the

following one-dimensional nonlinear equation problem:

φ(λ) ,
√
ψ(λ)− λ

6ρ = 0. (4.6)

In the following proposition, we examine φ(λ) and prove several key properties.

Proposition 4.4 Suppose that F (ẑ) 6= 0 and v>J(ẑ)v ≥ 0 for all v. Then, φ(λ) is strictly decreasing on
(0,∞). Its first-order derivative is

φ′(λ) = −∆z(λ)>(J(ẑ)+λI)−1∆z(λ)
‖∆z(λ)‖ − 1

6ρ < 0, for all λ > 0.

Consequently, Eq. (4.6) admits a unique solution λ? > 0.

The required solution is the unique positive root to Eq. (4.6). Let λ0 > 0 be given with φ(λ0) > 0, we first
perform one Schur decomposition: J(ẑ) = QUQ−1. Then, a typical iteration of the Newton method for
finding such root replaces the current iterate λj > 0 with the candidate λ̃j+1 for which

λ̃j+1 = λj − φ(λj)
φ′(λj) , (4.7)

where φ(λj) can be obtained by solving ∆z(λj) = −Q(U + λjI)−1Q−1F (ẑ), and φ′(λj) can be obtained
using Proposition 4.4 once ∆z(λj) is available. Note that φ(λj) and φ′(λj) can be computed using two calls
to a linear system solver in a quasi-upper-triangular system.

In terms of convergence, the Newton method is not globally convergent for the general asymmetric case. We
can adopt a safeguarded Newton-bisection scheme: given an interval [Lj , U j ] satisfying φ(Lj) ≥ 0 ≥ φ(U j)
and a current iterate λj ∈ [Lj , U j ], we compute λ̃j+1 using (4.7). If λ̃j+1 ∈ (Lj , U j), we accept it and set
λj+1 = λ̃j+1; otherwise we take a bisection step and set λj+1 = (Lj + U j)/2. We then update the bracket
using the sign of φ(λj+1).
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Theorem 4.5 Suppose that F (ẑ) 6= 0 and v>J(ẑ)v ≥ 0 for all v. Let λ? > 0 be the unique solution
to Eq. (4.6). Suppose that the safeguarded Newton-bisection method is initialized with [L0, U0] such that
φ(L0) ≥ 0 ≥ φ(U0). Then, λj → λ? globally. There also exists a constant r > 0 such that: (i) after at
most O(log((U0 − L0)/r)) iterations, the iterates enter the local Newton region |λ − λ?| ≤ r, and (ii) once
inside this region, all Newton steps are accepted and the convergence is Q-quadratic, requiring O(log log(1/ε))
additional iterations to achieve |λj−λ?| ≤ ε. As a consequence, the total number of iterations is O(log(1/r))+
O(log log(1/ε)) where r > 0 is independent of ε.

We consider the special case where J(ẑ)> = −J(ẑ). By exploiting such special structure, we have S ,
J(ẑ)>J(ẑ) � 0 and ψ(λ) = ‖∆z(λ)‖2 = F (ẑ)>(λ2I + S)−1F (ẑ). We let η = λ2 and define

Ψ(η) , F (ẑ)>(ηI + S)−1F (ẑ), Φ(η) , Ψ(η)− η
36ρ2 .

Then, solving φ(λ) = 0 is equivalent to solving Φ(η) = 0 with λ? =
√
η?.

Proposition 4.6 Suppose that F (ẑ) 6= 0 and J(ẑ)> = −J(ẑ). Then, Φ(η) is strictly decreasing and convex
on (0,∞). Thus, Φ(η) = 0 admits a unique solution η? > 0.

Theorem 4.7 Suppose that F (ẑ) 6= 0 and J(ẑ)> = −J(ẑ). Let {ηj}j≥0 be generated by the Newton iteration
in the following form of

ηj+1 = ηj − Φ(ηj)
Φ′(ηj) , Φ(η0) ≥ 0.

Then, ηj increases monotonically and converges to the unique solution η?. Moreover, the rate is globally Q-
linear with a factor at least 1−Φ′(λ?)/Φ′(λ0) and is ultimately Q-quadratic. Equivalently, we have λj =

√
ηj

converges to λ? =
√
η?, and the number of iterations to achieve |λj − λ?| ≤ ε is O(log log(1/ε)).

Remark 4.8 Our reformulation closely follows Adil et al. (2022) who proposed a bisection method as a
solver and proved a complexity bound of O((m+n)ωε−2/3 + (m+n)2ε−2/3 log(1/ε)) where ω ≈ 2.3728 is the
matrix multiplication constant (Demmel et al., 2007). Our new schemes have achieved the better worst-case
dependence on ε thanks to a significantly faster quadratic convergence phase.

Remark 4.9 Our analysis is related to Cartis et al. (2011, Theorem 6.3). The key difference lies in how
asymmetry affects curvature properties of one-dimensional reformulations. In general asymmetric settings,
neither concavity nor convexity of φ(λ) is guaranteed, and thus the Newton method requires safeguarding for
global convergence. In contrast, under the antisymmetry condition, η = λ2 restores convexity of the scalar
equation and yields a globally convergent unmodified Newton scheme.

4.3 Finite-sum min-max optimization

We give concrete examples to clarify the ways to construct the inexact Jacobian such that Condition 4.1
holds true. The key ingredient is random sampling which can significantly reduce the computational cost
in a minimization setting Xu et al. (2020) and we show that such technique can be employed for solving
finite-sum min-max optimization problems in Eq. (4.2) and (4.3).

We let the probability distribution of sampling ξ ∈ {1, 2, . . . , N} be defined as Prob(ξ = i) = pi ≥ 0 for
i = 1, 2, . . . , N and S ⊆ {1, 2, . . . , N} denote a collection of sampled indices (|S| is its cardinality). Then,
we can construct the inexact Jacobian as follows,

J(z) = 1
N |S|

∑
i∈S

1
pi
DFi(z), for DFi(z) =

[
∇2

xxfi(x,y) ∇2
xyfi(x,y)

−∇2
xyfi(x,y) −∇2

yyfi(x,y)

]
. (4.8)

This construction is referred to as the subsampled Jacobian and can offer significant computational savings
if |S| � N in big-data regime when N � 1.

In the general finite-sum setting with Eq. (4.2), we suppose

sup
z∈Rm+n

‖DFi(z)‖ ≤ Bi, for all i ∈ {1, 2, . . . , N}, (4.9)

9
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and let Bmax = max1≤i≤N Bi. The sample complexity results for the uniform sampling (i.e., pi = 1
N ) are a

consequence of Xu et al. (2020, Lemma 16) and we omit the proof for the brevity.

Lemma 4.10 Suppose that Eq. (4.9) holds true and let Bmax and 0 < τ, δ < 1 be defined properly. A
uniform sampling with or without replacement is performed to form the subsampled Jacobian; indeed, J(z)
is constructed using Eq. (4.8) with pi = 1

n and the sample size satisfies

|S| ≥ ΘU (τ, δ) := 16B2
max
τ2 log

(
2(m+n)

δ

)
.

Then, we have Prob(‖J(z)−DF (z)‖ ≤ τ) ≥ 1− δ.

Remark 4.11 Lemma 4.10 shows that the inexact Jacobian satisfies Condition 4.1 with probability 1 − δ
under certain choice of τ and κJ = Bmax if it is constructed using the uniform sampling and the size
|S| = Ω(B

2
max
τ2 log(m+n

δ )). Indeed, the first inequality holds true with probability 1 − δ since Prob(‖J(z) −
DF (z)‖ ≤ τ) ≥ 1− δ, and the second inequality holds true since κH = Bmax (this is deterministic).

In the finite-sum setting with Eq. (4.3), we construct a more “informative" distribution of sampling
ξ ∈ {1, 2, . . . , N} as opposed to simplest uniform sampling. It is advantageous to bias the probability
distribution towards carefully picking indices corresponding to those relevant fi’s in forming the Jacobian.
However, constructing inexact Hessian and corresponding sample complexity guarantee from Xu et al. (2020,
Section 3.1) in a minimization setting requires ∇2fi to be rank-one, which is not valid here. To address this,
we avail ourselves of the operator-Bernstein inequality (Gross & Nesme, 2010).

We write DF (z) = 1
N

∑N
i=1 ΛiDFi(a>i x,b>i y)Λ>i where Λi =

[
ai

bi

]
∈ R(m+n)×2 and DFi(x, y) ∈ R2×2.

Then, the resulting compact form is DF (z) = Λ>ΣΛ where

Λ> =

 | · · · |
Λ1 · · · ΛN
| · · · |

 and Σ = 1
N

DF1(a>i x,b>i y) · · · · · ·
...

. . .
...

· · · · · · DFN (a>i x,b>i y)

 . (4.10)

We assume that Bavg = 1
N

∑N
i=1Bi and

sup
(x,y)
‖DFi(a>i x,b>i y)‖(‖ai‖2 + ‖bi‖2) ≤ Bi, for all i ∈ {1, 2, . . . , N}. (4.11)

For the uniform sampling with the particular nonuniform distribution given by

pi = ‖DFi(a>i x,b>i y)‖(‖ai‖2+‖bi‖2)∑N

i=1
‖DFi(a>

i
x,b>

i
y)‖(‖ai‖2+‖bi‖2)

, (4.12)

the following lemma summarizes the results on the sample complexity.

Lemma 4.12 Suppose that Eq. (4.11) holds and let Bavg and 0 < τ, δ < 1 be defined properly. Then,
the nonuniform sampling is performed to form the subsampled Jacobian; indeed, J(z) is constructed using
Eq. (4.8) with pi > 0 in Eq. (4.12) and the sample size satisfies

|S| ≥ ΘN (τ, δ) := 4B2
avg
τ2 log

(
2(m+n)

δ

)
.

Then, we have Prob(‖J(z)−DF (z)‖ ≤ τ) ≥ 1− δ.

Remark 4.13 Compared to Lemma 4.10, the computation of sampling probability in Lemma 4.12 requires
going through the whole dataset and the cost is O((m + n)N). Nonetheless, the computational savings
with smaller sample size dominates such extra cost of computing the sampling probability in a minimization
setting (Xu et al., 2016). In particular, the sample size from Lemma 4.12 is smaller as Bavg � Bmax which
occurs if one Bi is much larger than the others. In addition, the sample size is proportional to the log of
the failure probability in Lemma 4.10 and 4.12, allowing the use of a very small failure probability without
increasing the sample size significantly.
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Algorithm 3 Subsampled-Newton-MinMax(z0, ρ, T , δ)
Input: initial point z0, Lipschitz parameter ρ, iteration number T ≥ 1 and failure probability δ ∈ (0, 1).
Initialization: set ẑ0 = z0 as well as 0 < κm < min{1, ρ4} and 0 < τ0 <

ρ
4 .

for k = 0, 1, 2, . . . , T − 1 do
STEP 1: If zk is a global saddle point of the problem in Eq. (4.2) or (4.3), then stop.
STEP 2: Construct the inexact Jacobian J(ẑk) using Eq. (4.8) with the sample set of |S| ≥ ΘU (τk, 1− T

√
1− δ)

(uniform) or |S| ≥ ΘN (τk, 1− T
√

1− δ) (non-uniform) given 0 < τk ≤ min{τ0,
ρ(1−κm)

4(Bmax+6ρ)‖F (ẑk)‖}.
STEP 2: Compute an inexact solution ∆zk of the following subproblem F (ẑk)+J(ẑk)∆zk+6ρ‖∆zk‖∆zk = 0

such that Condition 4.2 hold true.
STEP 3: Compute λk+1 > 0 such that 1

30 ≤ λk+1ρ‖∆zk‖ ≤ 1
14 .

STEP 4: Compute zk+1 = ẑk + ∆zk.
STEP 5: Compute ẑk+1 = ẑk − λk+1F (zk+1).

end for
Output: z̄T = 1∑T

k=1
λk

(∑T

k=1 λkzk
)
.

Combining Algorithm 2 and these random sampling strategies gives the first class of subsampled Newton
methods for solving finite-sum min-max optimization problems. We summarize the scheme in Algorithm 3
and present the iteration complexity and total complexity with high-probability in the following theorem.

Theorem 4.14 Suppose that Assumptions 2.4 and 2.5 hold. Then, the iterates generated by Algorithm 3
are bounded and Algorithm 3 achieves an ε-global saddle point solution within O(ε−2/3) iterations with the
probability at least 1− δ. As a consequence, the high-probability complexity bound is O((m+n)ωε−2/3 + (m+
n)2ε−2/3 log log(1/ε)) where ω ≈ 2.3728 is the multiplication constant.

Remark 4.15 In finite-sum optimization, Arjevani & Shamir (2017) investigated lower bounds for second-
order methods, where the complexity depends on the number of samples, the condition number, and the desired
tolerance. They identified a gap between upper and lower bounds for subsampled Newton methods, indicating
that simple sampling strategies are insufficient and that variance reduction or averaging could be essential
for further improvement. Recent advances in stochastic second-order optimization methods with variance
reduction further indicate the importance of combining structure and noise control (Zhou et al., 2019; Na
et al., 2023). However, the lower bound on the oracle complexity of second-order methods for finite-sum
minimax optimization remains an open question. This is beyond the scope of our current work but represents
an important direction for future research.

5 Numerical Experiments

We evaluate the performance of our methods for min-max optimization problems with synthetic and real
data. The baseline methods include EG and OGDA (we refer to them as EG1 and OGDA1), their stochastic
variants with or without variance reduction, and second-order variants of EG and OGDA (which we refer to
as EG2 and OGDA2). We exclude the methods in Huang et al. (2022) since their convergence guarantees
are proved under an error bound conditions. See additional results in Appendix E.

Cubic regularized bilinear min-max problem. Following the setup of Jiang & Mokhtari (2025), we
consider the problem in the following form:

min
x∈Rn

max
y∈Rn

f(x,y) = ρ
6‖x‖

3 + y>(Ax− b), (5.1)

where ρ > 0, the entries of b ∈ Rn are generated independently from [−1, 1] and

A =


1 −1

1 −1
. . . . . .

1 −1
1

 ∈ Rn×n. (5.2)
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Figure 1: Performance of all algorithms for n ∈ {50, 100, 200} when ρ = 1
20n . The numerical results are

presented in terms of iteration count (Top) and computational time (Bottom).

This min-max optimization problem is convex-concave and the function f is ρ-Hessian Lipschitz. It has a
unique global saddle point x? = A−1b and y? = −ρ2‖x

?‖(A>)−1x?. We use the restricted gap function
defined in Section 2 as the evaluation metric. In our experiment, the parameters are chosen as ρ = 1

20n and
n ∈ {50, 100, 200}. Since exact second-order information is available here, we use Algorithm 2 with τ0 = 0
(the exact Hessian) and compute each subproblem with κm = 10−6 using our subroutine. The baseline
methods include EG1, OGDA1, EG2 and OGDA2 where all of these methods require exact second-order
information. We implement EG2 using the pseudocode of Bullins & Lai (2022, Algorithm 5.2 and 5.3) with
the fine-tuning parameters. The implementation of OGDA2 is based on the code provided by the author
of Jiang & Mokhtari (2025) with the line-search parameter (α, β) = (0.5, 0.8).

Figure 1 highlights that the second-order methods can be far superior to the first-order methods in terms
of solution accuracy: the first-order methods barely make any progress when the second-order methods
converge successfully. Moreover, our method outperforms other second-order methods (Bullins & Lai, 2022;
Jiang & Mokhtari, 2025) in terms of both iteration numbers and computational time thanks to its simple
scheme without line search. Nonetheless, we remark that this does not eliminate the advantages of using line
search in min-max optimization. Indeed, we find that the line-search scheme from Jiang & Mokhtari (2025)
is very powerful in practice and their methods with aggressive choices of (α, β) outperforms our method in
many cases. However, such choices make their method unstable. Thus, we choose (α, β) = (0.5, 0.8) which
is conservative yet more robust. We remark it is promising to study the line-search scheme from Jiang &
Mokhtari (2025) and see if simple modifications can achieve the acceleration in a universal manner.

6 Conclusion

We propose several inexact regularized Newton-type methods for finding a global saddle point of uncon-
strained convex-concave min-max optimization problems. Our inexact methods are guaranteed to achieve
an iteration complexity of O(ε−2/3) and an improved complexity bound of O((m + n)ωε−2/3 + (m +
n)2ε−2/3 log log(1/ε)) where ω ≈ 2.3728 is the matrix multiplication constant. In addition, we show that our
general framework and analysis yields the first class of subsampled Newton method for solving finite-sum
min-max optimization problems with the same iteration complexity of O(ε−2/3). Future research directions
include the extension of our methods to structured nonconvex-nonconcave min-max optimization problems
and the customized implementation of our methods in real application problems.
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A Related Work

Our work comes amid a surge of interest in optimization algorithms for a large class of emerging min-max
optimization problems. For brevity, we focus on convex-concave settings and will leave other settings aside;
see Section 2 in Lin et al. (2020) for a more thorough presentation of algorithms and complexity results.

Historically, a concrete instantiation of the convex-concave min-max optimization problem is the solution
of minx∈∆m maxy∈∆n x>Ay for A ∈ Rm×n over the simplices ∆m and ∆n. Spurred by von Neumann’s
theorem (Neumann, 1928), this problem provided the initial impetus for min-max optimization. Sion (1958)
generalized von Neumann’s result from bilinear cases to convex-concave cases and triggered a line of research
on algorithms for convex-concave min-max optimization (Korpelevich, 1976; Nemirovski, 2004; Nesterov,
2007; Nedić & Ozdaglar, 2009; Mokhtari et al., 2020b). A notable result is that gradient descent ascent
(GDA) with diminishing stepsizes can find an ε-global saddle point within O(ε−2) iterations if the gradients
are bounded over the feasible sets (Nedić & Ozdaglar, 2009).

Recent years have witnessed much progress on the design and analysis of first-order min-max optimization
algorithms in bilinear cases and convex-concave cases. In the bilinear case, Daskalakis et al. (2018) proved
the convergence of OGDA to a neighborhood of a global saddle point. Liang & Stokes (2019) used a dy-
namical system approach to establish the linear convergence of OGDA for the special case when the matrix
A is square and full rank. Mokhtari et al. (2020a) revisited a proximal point algorithmic framework and
proposed an unified analysis for achieving the sharpest convergence rates of both EG and OGDA. In the
convex-concave case, Nemirovski (2004) demonstrated that EG finds an ε-global saddle point within O(ε−1)
iterations when the feasible sets are convex and bounded. The same convergence guarantee was extended
to unbounded sets (Monteiro & Svaiter, 2010; 2011) using the HPE method with different criteria. In a
similar vein, Nesterov (2007) and Tseng (2008) proposed new algorithms and refined convergence analysis
with the same convergence guarantee. Abernethy et al. (2021) presented a Hamiltonian gradient descent
method with last-iterate convergence under a “sufficiently bilinear" condition. Focusing on a special class
of min-max optimization problems with separable structure: f(x,y) = g(x) + x>Ay − h(y), Chambolle &
Pock (2011) introduced a primal-dual hybrid gradient method that converges to a global saddle point at the
rate of O(ε−1) when the functions g and h are simple and convex. Nesterov (2005) introduced a smoothing
technique and proved that the resulting algorithm achieved better dependence on some problem parameters
for convex and bounded feasible sets. He & Monteiro (2016) and Kolossoski & Monteiro (2017) proved that
such a result holds for unbounded sets and non-Euclidean metrics. In addition, Chen et al. (2014) proposed
a new class of stochastic algorithms for solving separable min-max optimization problems when only noisy
gradients are available and proved the optimal convergence guarantee.

There are also several papers on finite-sum min-max optimization and variance reduction (Balamurugan &
Bach, 2016; Chavdarova et al., 2019; Carmon et al., 2019; Yang et al., 2020; Luo et al., 2021; Alacaoglu & Mal-
itsky, 2022). In the strongly-convex-strongly-concave cases, Balamurugan & Bach (2016) studied stochastic
variance-reduced variants of forward-backward methods and proved linear convergence. Chavdarova et al.
(2019) combined EG with variance reduction and proved new convergence guarantee which was however
less favorable than Balamurugan & Bach (2016). Recently, Luo et al. (2021) have considered unbalanced
strongly-convex-strongly-concave cases and proposed variance-reduced first-order methods with an improved
complexity bound. In the bilinear case, Carmon et al. (2019) proposed a randomized mirror-prox method
with an improved complexity guarantee. However, extending their results to general convex-concave cases
requires additional restrictive assumptions. Alacaoglu & Malitsky (2022) addressed this issue by leveraging a
new variance reduction technique and their methods either match or improve the best-known complexities for
solving convex-concave finite-sum min-max problems. Beyond the convex-concave cases, Yang et al. (2020)
provided various variance-reduced first-order methods for solving structured nonconvex-concave min-max
optimization problems.

Compared to first-order methods, there has been less research on second-order methods for min-max opti-
mization problems with global convergence rate guarantee. In this context, we are aware of two research
thrusts (Monteiro & Svaiter, 2012; Bullins & Lai, 2022; Huang et al., 2022; Adil et al., 2022; Lin & Jor-
dan, 2023; 2025; Jiang & Mokhtari, 2025; Chen et al., 2025a). Our results contribute to this landscape
by proposing the first explicit method that achieves the iteration complexity of O(ε−2/3) as well as a new
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complexity bound of O((m + n)ωε−2/3 + (m + n)2ε−2/3 log log(1/ε)). As far as we know, the above com-
plexity bound guarantees cannot be realized by other existing second-order min-max optimization methods
with exact second-order information requirements. Subsequent to our work, new strategies were designed for
improving second-order min-max optimization methods (Alves et al., 2024; Jiang et al., 2024; Chen et al.,
2025b), thereby matching and even surpassing our results.

B Additional Proofs from Section 2

Proof of Lemma 2.8. Note that (a) and (c) were proven in Nemirovski (2004), and it suffices to prove
(b). By using the definition of DF (·) in Eq. (2.3), we have

(DF (z)−DF (z′))h =
[
Im

−In

]
(∇2f(z)−∇2f(z′))h. (B.1)

This implies that ‖(DF (z)−DF (z′))h‖ = ‖(∇2f(z)−∇2f(z′))h‖. Thus, we have

‖DF (z)−DF (z′)‖ = sup
h6=0

{
‖(DF (z)−DF (z′))h‖

‖h‖

}
= sup

h6=0

{
‖(∇2f(z)−∇2f(z′))h‖

‖h‖

}
.

This equality together with Assumption 2.5 implies the desired result in (b). �

Proof of Proposition 2.9. Using the definition of the operator F (·) in Eq. (2.2), we have

k∑
i=1

λi(zi − z)>F (zi) =
k∑
i=1

λi((xi − x)>∇xf(xi,yi)− (yi − y)>∇yf(xi,yi)).

Note that Assumption 2.4 implies that the function f(x,y) is a convex function of x for any y ∈ Rn and a
concave function of y for any x ∈ Rm. Then, we have

(xi − x)>∇xf(xi,yi) ≥ f(xi,yi)− f(x,yi),
(yi − y)>∇yf(xi,yi) ≤ f(xi,yi)− f(xi,y).

Putting these pieces together with λi > 0 for all 1 ≤ i ≤ k yields that

1∑k

i=1
λi

(
k∑
i=1

λi(zi − z)>F (zi)
)
≥ 1∑k

i=1
λi

(
k∑
i=1

λi(f(xi,y)− f(x,yi))
)
. (B.2)

Using the definition of (x̄k, ȳk) in Eq. (2.1) and that f is convex-concave, we have

1∑k

i=1
λi

(
k∑
i=1

λif(xi,y)
)
≥ f(x̄k,y), 1∑k

i=1
λi

(
k∑
i=1

λif(x,yi)
)
≤ f(x, ȳk).

Plugging these two inequalities in Eq. (B.2) yields the desired inequality. �

C Additional Proofs from Section 3

The key step is to define a Lyapunov function for Algorithm 1: Et = 1
2‖ẑt − z0‖2, which can be used to

prove technical results that pertain to the convergence property of Algorithm 1. The first lemma gives us a
descent inequality.

Lemma C.1 Suppose that Assumptions 2.4 and 2.5 hold. Then

t∑
k=1

λk(zk − z)>F (zk) ≤ E0 − Et + (z0 − ẑt)>(z0 − z)− 1
24

(
t∑

k=1
‖zk − ẑk−1‖2

)
.
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Proof. Using the definition of the Lyapunov function, we have

Ek − Ek−1 = 1
2‖ẑk − z0‖2 − 1

2‖ẑk−1 − z0‖2 = (ẑk − ẑk−1)>(ẑk − z0)− 1
2‖ẑk − ẑk−1‖2. (C.1)

Plugging ẑk = ẑk−1 − λkF (zk) into Eq. (C.1) yields

Ek − Ek−1 ≤ λk(z0 − ẑk)>F (zk)− 1
2‖ẑk − ẑk−1‖2

= λk(z0 − z)>F (zk) + λk(z− zk)>F (zk) + λk(zk − ẑk)>F (zk)− 1
2‖ẑk − ẑk−1‖2.

Summing up the above inequality over k = 1, 2, . . . , t yields
t∑

k=1
λk(zk − z)>F (zk) ≤ E0 − Et +

t∑
k=1

λk(z0 − z)>F (zk)︸ ︷︷ ︸
I

+
t∑

k=1
λk(zk − ẑk)>F (zk)− 1

2‖ẑk − ẑk−1‖2︸ ︷︷ ︸
II

. (C.2)

By using the relationship ẑk = ẑk−1 − λkF (zk) again, we have

I =
t∑

k=1
λk(z0 − z)>F (zk) =

t∑
k=1

(ẑk−1 − ẑk)>(z0 − z) = (ẑ0 − ẑt)>(z0 − z). (C.3)

In Algorithm 1, we compute ∆zk as an exact solution of the nonlinear equation problem given by

F (ẑk) +DF (ẑk)∆zk + 6ρ‖∆zk‖∆zk = 0. (C.4)

Using zk = ẑk−1 + ∆zk−1 and Lemma 2.8, we have

‖F (zk)− F (ẑk−1)−DF (ẑk−1)∆zk−1‖ ≤ ρ
2‖∆zk−1‖2 (C.5)

so it suffices to decompose (zk − ẑk)>F (zk) and bound this term using Eq. (C.4) and (C.5). Indeed, to that
end, we have

(zk − ẑk)>F (zk) ≤ ρ
2‖∆zk−1‖2‖zk − ẑk‖ − 6ρ‖∆zk−1‖(zk − ẑk)>∆zk−1

≤ ρ
2 (‖∆zk−1‖3 + ‖∆zk−1‖2‖‖ẑk−1 − ẑk‖)− 6ρ‖∆zk−1‖(zk − ẑk)>∆zk−1.

Note that we have (zk − ẑk)>∆zk−1 ≥ ‖∆zk−1‖2 − ‖∆zk−1‖‖ẑk−1 − ẑk‖. This implies

‖∆zk−1‖(zk − ẑk)>∆zk−1 ≥ ‖∆zk−1‖3 − ‖∆zk−1‖2‖ẑk−1 − ẑk‖.

Putting these pieces together yields

(zk − ẑk)>F (zk) ≤ 13ρ
2 ‖∆zk−1‖2‖‖ẑk−1 − ẑk‖ − 11ρ

2 ‖∆zk−1‖3.

Since 1
33 ≤ λkρ‖∆zk−1‖ ≤ 1

13 for all k ≥ 1, we have

II ≤
t∑

k=1

(
13λkρ

2 ‖∆zk−1‖2‖ẑk−1 − ẑk‖ − 1
2‖ẑk−1 − ẑk‖2 − 11λkρ

2 ‖∆zk−1‖3
)

≤
t∑

k=1

( 1
2‖∆zk−1‖‖ẑk−1 − ẑk‖ − 1

2‖ẑk−1 − ẑk‖2 − 1
6‖∆zk−1‖2

)
(C.6)

≤
t∑

k=1

(
max
η≥0

{ 1
2‖∆zk−1‖η − 1

2η
2}− 1

6‖∆zk−1‖2
)

= − 1
24

(
t∑

k=1
‖∆zk−1‖2

)
.

Plugging Eq. (C.3) and (C.6) into Eq. (C.2) and using ẑ0 = z0 and ∆zk−1 = zk − ẑk−1 yields
t∑

k=1
λk(zk − z)>F (zk) ≤ E0 − Et + (z0 − ẑt)>(z0 − z)− 1

24

(
t∑

k=1
‖zk − ẑk−1‖2

)
.

This completes the proof. �
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Lemma C.2 Suppose that Assumptions 2.4 and 2.5 hold. Then, we have ‖ẑt − z0‖ ≤ 2‖z0 − z?‖ and

t∑
k=1

λk(zk − z)>F (zk) ≤ 1
2‖z0 − z‖2,

t∑
k=1
‖zk − ẑk−1‖2 ≤ 12‖z0 − z?‖2,

where z ∈ Rm+n is any point and z? is a global saddle point.

Proof. Since ẑ0 = z0, we have

E0 − Et + (z0 − ẑt)>(z0 − z) ≤ − 1
2‖ẑt − z0‖2 + 1

2‖ẑt − z0‖2 + 1
2‖z0 − z‖2 = 1

2‖z0 − z‖2.

This together with Lemma C.1 yields

t∑
k=1

λk(zk − z)>F (zk) ≤ 1
2‖z0 − z‖2 − 1

24

(
t∑

k=1
‖zk − ẑk−1‖2

)
≤ 1

2‖z0 − z‖2.

Since z? is a global saddle point, we have (zk − z?)>F (zk) ≥ 0 for all k ≥ 1. Then, we have

t∑
k=1
‖zk − ẑk−1‖2 ≤ 12‖z0 − z?‖2.

Further, Lemma C.1 with z = z? implies

E0 − Et + (z0 − ẑt)>(z0 − z?) ≥
t∑

k=1
λk(zk − z?)>F (zk) + 1

24

(
t∑

k=1
‖zk − ẑk−1‖2

)
≥ 0.

Using Young’s inequality, we have

0 ≤ − 1
2‖ẑt − z0‖2 + 1

4‖ẑt − z0‖2 + ‖z0 − z?‖2 = − 1
4‖ẑt − z0‖2 + ‖z0 − z?‖2.

This completes the proof. �

Lemma C.3 Suppose that Assumptions 2.4 and 2.5 hold. Then, for every integer T ≥ 1, we have

T∑
k=1

λk ≥ T
3
2

66
√

3ρ‖z0−z?‖ ,

where z? is a global saddle point.

Proof. Without loss of generality, we assume that z0 6= z?. Then, Lemma C.2 implies

t∑
k=1

(λk)−2( 1
33ρ )2 ≤

t∑
k=1

(λk)−2(λk‖zk − ẑk−1‖)2 =
t∑

k=1
‖zk − ẑk−1‖2 ≤ 12‖z0 − z?‖2.

By the Hölder inequality, we have

t∑
k=1

1 =
t∑

k=1

(
(λk)−2) 1

3 (λk) 2
3 ≤

(
t∑

k=1
(λk)−2

) 1
3
(

t∑
k=1

λk

) 2
3

.

Putting these pieces together yields

t ≤
(

66
√

3ρ‖z0 − z?‖
) 2

3

(
t∑

k=1
λk

) 2
3

.

Letting t = T and rearranging yields the desired result. �
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Proof of Theorem 3.1 By Lemma C.2, we have

‖zk+1 − ẑk‖2 ≤ 12‖z0 − z?‖2, ‖ẑk − z0‖ ≤ 2‖z0 − z?‖, for all k ≥ 0.

This implies that ‖zk−z0‖ ≤ 6‖z0−z?‖ for all k ≥ 0. Putting these pieces together yields that both {zk}k≥0
and {ẑk}k≥0 are bounded by a constant; indeed, we have ‖ẑk − z?‖ ≤ 3‖z0 − z?‖ ≤ β and ‖zk − z?‖ ≤
7‖z0 − z?‖ = β. For every integer T ≥ 1, Lemma C.2 also implies

T∑
k=1

λk(zk − z)>F (zk) ≤ 1
2‖z0 − z‖2.

By Proposition 2.9, we have

f(x̄T ,y)− f(x, ȳT ) ≤ 1∑T

k=1
λk

(
T∑
k=1

λk(zk − z)>F (zk)
)
.

Putting these pieces together yields

f(x̄T ,y)− f(x, ȳT ) ≤ 1
2(
∑T

k=1
λk)
‖z0 − z‖2.

This together with Lemma C.3 yields

f(x̄T ,y)− f(x, ȳT ) ≤ 33
√

3ρ‖z0−z?‖‖z0−z‖2

T 3/2 .

Since ‖zk − z?‖ ≤ β for all k ≥ 0, we have ‖z̄T − z?‖ ≤ β. By the definition of the restricted gap function,
we have

gap(z̄T , β) ≤ 33
√

3ρ‖z0−z?‖(‖z0−z?‖+β)2

T 3/2 = 2112
√

3ρ‖z0−z?‖3

T 3/2 .

Therefore, we conclude from the above inequality that there exists some T > 0 such that the output
ẑ = Newton-MinMax(z0, ρ, T ) satisfies that gap(ẑ, β) ≤ ε and the total number of iterations is bounded by
O(ρ2/3‖z0 − z?‖2ε−2/3). �

D Additional Proofs from Section 4

In the subsequent analysis, we use the Lyapunov function: Et = 1
2‖ẑt−z0‖2. The first lemma gives a descent

inequality which is analogous to that in Lemma C.1.

Lemma D.1 Suppose that Assumption 2.4 and 2.5 hold and

0 < τk ≤ min{τ0, ρ(1−κm)
4(κJ +6ρ)‖F (ẑk)‖}, for all k ≥ 0.

Then, we have
t∑

k=1
λk(zk − z)>F (zk) ≤ E0 − Et + (z0 − ẑt)>(z0 − z)− 1

24

(
t∑

k=1
‖zk − ẑk−1‖2

)
.

Proof. By using the same argument as used in Lemma C.1, we have
t∑

k=1
λk(zk − z)>F (zk) ≤ E0 − Et + (ẑ0 − ẑt)>(z0 − z) +

t∑
k=1

λk(zk − ẑk)>F (zk)− 1
2‖ẑk − ẑk−1‖2. (D.1)

In what follows, we bound
∑t
k=1 λk(zk − ẑk)>F (zk) − 1

2‖ẑk − ẑk−1‖2. In Algorithm 2, we compute ∆zk
such that it is an inexact solution of the nonlinear equation problem given by Eq. (4.1) under Conditions 4.1
and 4.2. Note that we have

‖F (ẑk) + J(ẑk)∆zk + 6ρ‖∆zk‖∆zk‖ ≤ κm ·min{‖∆zk‖2, ‖F (ẑk)‖}. (D.2)
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Using zk = ẑk−1 + ∆zk−1 and Lemma 2.8, we have
‖F (zk)− F (ẑk−1)−DF (ẑk−1)∆zk−1‖ ≤ ρ

2‖∆zk−1‖2. (D.3)
It suffices to decompose (zk − ẑk)>F (zk) and bound this term using Condition 4.1, Eq. (D.2) and (D.3).
Indeed, we have

(zk − ẑk)>F (zk) ≤ ‖zk − ẑk‖‖F (zk)− F (ẑk−1)−DF (ẑk−1)∆zk−1‖
+‖zk − ẑk‖‖F (ẑk−1) + J(ẑk−1)∆zk−1 + 6ρ‖∆zk−1‖∆zk−1‖
+‖zk − ẑk‖‖(DF (ẑk−1)− J(ẑk−1))∆zk−1‖ − 6ρ‖∆zk−1‖(zk − ẑk)>∆zk−1.

The first and second terms are bounded using Eq. (D.2) and (D.3). For the third term, we derive from
Condition 4.1 that ‖(DF (ẑk−1) − J(ẑk−1))∆zk−1‖ ≤ τk−1‖∆zk−1‖. The fourth term is bounded using the
same argument from the proof of Lemma C.1. Putting these pieces together yields that
(zk− ẑk)>F (zk) ≤ ‖zk− ẑk‖

(
(ρ2 + κm)‖∆zk−1‖2 + τk−1‖∆zk−1‖

)
−6ρ‖∆zk−1‖3 +6ρ‖∆zk−1‖2‖ẑk−1− ẑk‖.

(D.4)
We claim that (

ρ
2 + κm

)
‖∆zk−1‖2 + τk−1‖∆zk−1‖ ≤ ρ‖∆zk−1‖2. (D.5)

Indeed, for the case of ‖∆zk−1‖ ≥ 1, we have(
ρ
2 + κm

)
‖∆zk−1‖2 + τk−1‖∆zk−1‖ ≤

(
ρ
2 + κm + τk−1

)
‖∆zk−1‖2.

which together with the fact that 0 < κm < min{1, ρ4} and τk−1 ≤ τ0 <
ρ
4 can yield Eq. (D.5). Otherwise,

we have ‖∆zk−1‖ < 1 and obtain from Conditions 4.1 and 4.2 that
κm‖F (ẑk−1)‖ ≥ ‖F (ẑk−1) + J(ẑk−1)∆zk−1 + 6ρ‖∆zk−1‖∆zk−1‖

≥ ‖F (ẑk−1)‖ − κJ‖∆zk−1‖ − 6ρ‖∆zk−1‖2

≥ ‖F (ẑk−1)‖ − (κJ + 6ρ)‖∆zk−1‖.

Rearranging the above inequality and using 0 ≤ τk−1 ≤ ρ(1−κm)
4(κJ +6ρ)‖F (ẑk−1)‖ yields

‖∆zk−1‖ ≥ 1−κm

κJ +6ρ‖F (ẑk−1)‖ ≥ 4τk−1
ρ .

Since 0 < κm < min{1, ρ4} again, we get Eq. (D.5) as follows,(
ρ
2 + κm

)
‖∆zk−1‖2 + τk−1‖∆zk−1‖ ≤

(
ρ
2 + κm + τk−1

‖∆zk−1‖

)
‖∆zk−1‖2 ≤ ρ‖∆zk−1‖2.

Plugging Eq. (D.5) into Eq. (D.4) and using ‖zk − ẑk‖ ≤ ‖∆zk−1‖+ ‖ẑk−1 − ẑk‖ yields
(zk − ẑk)>F (zk) ≤ 7ρ‖∆zk−1‖2‖‖ẑk−1 − ẑk‖ − 5ρ‖∆zk−1‖3.

Since 1
30 ≤ λkρ‖∆zk−1‖ ≤ 1

14 for all k ≥ 1, we have
t∑

k=1
λk(zk − ẑk)>F (zk)− 1

2‖ẑk − ẑk−1‖2

≤
t∑

k=1

(
7λkρ‖∆zk−1‖2‖‖ẑk−1 − ẑk‖ − 1

2‖ẑk−1 − ẑk‖2 − 5λkρ‖∆zk−1‖3
)

≤
t∑

k=1

( 1
2‖∆zk−1‖‖ẑk−1 − ẑk‖ − 1

2‖ẑk−1 − ẑk‖2 − 1
6‖∆zk−1‖2

)
≤

t∑
k=1

(
max
η≥0

{ 1
2‖∆zk−1‖η − 1

2η
2}− 1

6‖∆zk−1‖2
)

= − 1
24

(
t∑

k=1
‖∆zk−1‖2

)
.

Therefore, we conclude from Eq. (D.1), ẑ0 = z0 and ∆zk−1 = zk − ẑk−1 that
t∑

k=1
λk(zk − z)>F (zk) ≤ E0 − Et + (z0 − ẑt)>(z0 − z)− 1

24

(
t∑

k=1
‖zk − ẑk−1‖2

)
.

This completes the proof. �
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Proof of Theorem 4.1. Since the descent inequalities in Lemmas C.1 and D.1 are the same, Lemma C.2
and C.3 also hold true for Algorithm 2. As such, we can apply the same argument used for proving Theo-
rem 3.1 and have

‖ẑk − z?‖ ≤ 3‖z0 − z?‖ ≤ β, ‖zk − z?‖ ≤ 7‖z0 − z?‖ = β,

and
gap(z̄T , β) ≤ 2112

√
3ρ‖z0−z?‖3

T 3/2 .

Therefore, we conclude from the above inequality that there exists some T > 0 such that the output ẑ =
Inexact-Newton-MinMax(z0, ρ, T ) satisfies that gap(ẑ, β) ≤ ε and the total number of iterations is bounded
by O(ρ2/3‖z0 − z?‖2ε−2/3). �

Proof of Proposition 4.3. Since ψ(λ) = ‖∆z(λ)‖2, we have

ψ′(λ) = 2∆z(λ)>∇λ∆z(λ), ψ′′(λ) = 2‖∇λ∆z(λ)‖2 + 2∆z(λ)>∇2
λλ∆z(λ).

By differentiating the equation (J(ẑ) + λI)∆z(λ) = −F (ẑ), we have

(J(ẑ) + λI)∇λ∆z(λ) + ∆z(λ) = 0, (J(ẑ) + λI)∇2
λλ∆z(λ) + 2∇λ∆z(λ) = 0.

Rearranging the first equation implies that

∇λ∆z(λ) = −(J(ẑ) + λI)−1∆z(λ).

Combining the second equation with the expression of ∇λ∆z(λ) yields

∇2
λλ∆z(λ) = −2(J(ẑ) + λI)−2∆z(λ).

Putting these pieces together yields the desired expressions of ψ′(λ) and ψ′′(λ).

It remains to show that ψ(λ) is strictly decreasing on (0,∞). For 0 < λ1 < λ2, we have

(J(ẑ) + λ1I)∆z(λ1) = (J(ẑ) + λ2I)∆z(λ2) = −F (ẑ).

This implies
J(ẑ)(∆z(λ1)−∆z(λ2)) + λ1∆z(λ1)− λ2∆z(λ2) = 0.

Taking the inner product with ∆z(λ1)−∆z(λ2) yields

(∆z(λ1)−∆z(λ2))>J(ẑ)(∆z(λ1)−∆z(λ2)) + λ1‖∆z(λ1)‖2 − (λ1 + λ2)∆z(λ1)>∆z(λ2) + λ2‖∆z(λ2)‖2 = 0.

Since v>J(ẑ)v ≥ 0 for all v, we have

λ1‖∆z(λ1)‖2 − (λ1 + λ2)∆z(λ1)>∆z(λ2) + λ2‖∆z(λ2)‖2 ≤ 0.

This together with ∆z(λ1)>∆z(λ2) ≤ ‖∆z(λ1)‖‖∆z(λ2)‖ and λ2 > λ1 yields that ‖∆z(λ1)‖ > ‖∆z(λ2)‖
whenever F (ẑ) 6= 0. This yields the desired result. �

Proof of Proposition 4.4. Using Eq. (4.6), we have

φ′(λ) = 1
2
ψ′(λ)√
ψ(λ)
− 1

6ρ .

By Proposition 4.3, ψ′(λ) < 0 for all λ > 0. This implies φ′(λ) < 0. Since φ is continuous and strictly
decreasing, the root is unique. The existence of such root follows from φ(λ)→ −∞ as λ→ +∞ and the fact
that φ(λ) > 0 if λ is sufficiently close to 0. �
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Proof of Theorem 4.5. By Proposition 4.4, φ is continuous and strictly decreasing. Thus, the bracketing
interval remains valid throughout the iterations and contains λ?. Whenever the iterate λ̃j+1 leaves the
bracket, the method takes a bisection step, which halves the bracket length. After at mostO(log((U0−L0)/r))
safeguarding steps, the bracket width is at most r, and the iterate satisfies |λj − λ?| ≤ r.

By Proposition 4.4, we have φ(λ?) > 0 and φ′ is Lipschitz around the unique root λ?. Standard one-
dimensional Newton analysis implies that there exists r > 0 such that if |λj−λ?| ≤ r, the Newton step stays
within the neighborhood, is accepted, and the iterates converge Q-quadratically. The number of Newton
iterations required to reach the tolerance ε is thus O(log log(1/ε)). Combining the safeguarding phase and
the local Newton phase yields the desired result. �

Proof Proposition 4.6. Since S � 0, the map η 7→ (ηI + S)−1 is operator monotone decreasing and
operator convex on (0,∞), which implies that Ψ(η) is strictly decreasing and convex. Subtracting the linear
term η/(36ρ2) preserves convexity and strict monotonicity. This yields the desired result. �

Proof of Theorem 4.7. By Proposition 4.6, we have Φ′(η0) < 0, and it follows from the update formula
that η1 > η0 > 0. Proposition 4.6 also guarantees the convexity and differentiability of φ which together
with the update formula implies that

Φ(η1) ≥ φ(η0) + (η1 − η0)Φ′(η0) = 0.

Repeating this argument yields that ηj > 0 and Φ(ηj) ≥ 0. In addition, Φ is strictly decreasing. Thus, the
iterates converge monotonically towards the unique solution. Suppose that η? is the unique solution. Then,
the mean value theorem implies

Φ(ηj) = Φ(η?) + (ηj − η?)Φ′(η̃) = (ηj − η?)Φ′(η̃), for some η̃ ∈ (ηj , η?).

Combining this with the update formula yields

|η? − ηj+1| =
∣∣∣(η? − ηj)(1− Φ′(η̃)

Φ′(ηj)

)∣∣∣ ≤ |η? − ηj | · ∣∣∣1− Φ′(η̃)
Φ′(ηj)

∣∣∣ .
Since Φ is convex, we have Φ′(λ0) ≤ Φ′(λj) ≤ Φ′(λ̃) ≤ Φ′(λ?) < 0 which implies that

0 ≤ 1− Φ′(η̃)
Φ′(ηj) ≤ 1− Φ′(η?)

Φ′(η0) < 1.

Putting everything together then implies that the convergence rate is globally Q-linear with a factor at least
1− Φ′(η?)/Φ′(η0). The asymptotic Q-quadratic convergence of the Newton iteration follows. This together
with λ = √η yields the desired result. �

Proof of Lemma 4.12. Fixing z ∈ Rm+n, we obtain from Eq. (4.8) and (4.10) that J(z) = 1
|S|
∑|S|
j=1 Jj

where each random matrix Jj is random and satisfies that Prob(Jj = 1
pi

ΛiΣiiΛ>i ) = pi with pi > 0 in
Eq. (4.12). For simplicity, we define

Xj = Jj −DF (z) = Jj − Λ>ΣΛ, X =
|S|∑
j=1

Xj = |S|(J(z)− Λ>ΣΛ).

It is easy to verify that E[Xj ] = 0 and

‖E[X2
j ]‖ ≤

(
1
N

N∑
i=1
‖DFi(a>i x,b>i y)‖(‖ai‖2 + ‖bi‖2)

)2
Eq. (4.11)
≤ B2

avg.

Applying the operator-Bernstein inequality yields

Prob(‖J(z)−DF (z)‖ ≥ τ) = Prob(‖X‖ ≥ τ |S|) ≤ 2(m+ n) exp
(
τ2|S|
4B2

avg

)
≤ δ.

This completes the proof. �
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Figure 2: Performance of all algorithms with 3 LIBSVM datasets when ρ = 1
N . The numerical results are

presented in terms of iteration count (Top) and computational time (Bottom).

Proof of Theorem 4.14. Since Algorithm 3 is a combination of Algorithm 2 and the random sampling
strategy in Eq. (4.8) with 0 < τk ≤ min{τ0, ρ(1−κm)

4(Bmax+6ρ)‖F (ẑk)‖} and κH = Bmax, we can obtain the desired
results from Theorems 4.1 and 4.5 if the following statement holds true:

Prob(‖J(ẑk)−DF (ẑk)‖ ≤ τk for all 0 ≤ k ≤ T − 1) ≥ 1− δ. (D.6)

To guarantee an overall accumulative success probability of 1 − δ across all T iterations, it suffices to set
the per-iteration failure probability as 1 − T

√
1− δ as we have done in Algorithm 3. Moreover, we have

1 − T
√

1− δ = O( δT ) = O(δε2/3). Since this failure probability has only been proven to appear in the
logarithmic factor for the sample size in both Lemma 4.10 and 4.12, the extra cost will not be dominating.
As such, when Algorithm 3 terminates, all of the Jacobian approximations have satisfied Eq. (D.6). This
completes the proof. �

E Additional Experimental Results

All the methods were implemented using MATLAB R2024b on a MacBook Pro with an Intel Core i9 2.4GHz
and 16GB memory.

AUC maximization problem. The problem of maximizing an area under the receiver operating charac-
teristic curve is a paradigm that learns a classifier for imbalanced data (Yang & Ying, 2022). The goal is to
find a classifier θ ∈ Rn that maximizes the AUC score on a set of samples {(ai, bi)}Ni=1, where ai ∈ Rn and
bi ∈ {−1,+1}. The min-max formulation for AUC maximization (Ying et al., 2016; Shen et al., 2018) is:

min
x=(θ,u,v)

max
y

1−p̂
N

{
N∑
i=1

(θ>ai − u)2I[bi=1]

}
+ p̂

N

{
N∑
i=1

(θ>ai − v)2I[bi=−1]

}
(E.1)

+ 2(1+y)
N

{
N∑
i=1

θ>ai(p̂I[bi=−1] − (1− p̂)I[bi=1])
}

+ ρ
6‖x‖

3 − p̂(1− p̂)y2,

where λ > 0 is a scalar, I[·] is an indicator function and p̂ = #{i:bi=1}
N be the proportion of samples with

positive label. It is clear that the min-max optimization problem in Eq. (E.1) is convex-concave and has the
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finite-sum structure in the form of Eq. (4.2) with the function fi(x, y) given by

fi(x, y) = (1− p̂)(θ>ai − u)2I[bi=1] + p̂(θ>ai − v)2I[bi=−1]

+2(1 + y)θ>ai(p̂I[bi=−1] − (1− p̂)I[bi=1]) + ρ
6‖x‖

3 − p̂(1− p̂)y2.

The above function is in the cubic form and the min-max optimization problem has a global saddle point.
We use the restricted gap function as the evaluation metric. In our experiment, the parameter is chosen
empirically as ρ = 1

N and we use three LIBSVM datasets3 for AUC maximization. Since this min-max
problem has a finite-sum structure, we can apply Algorithm 3 with uniform sampling. The baseline methods
include stochastic first-order methods (Juditsky et al., 2011; Hsieh et al., 2019; Mertikopoulos et al., 2019)
and stochastic variance-reduced first-order methods (Alacaoglu & Malitsky, 2022).4 Among the variance-
reduced methods proposed in Alacaoglu & Malitsky (2022), we include only one representative (which we
refer to as SVREG) due to their comparable performance. We choose the stepsizes for stochastic first-order
methods in the form of c√

k+1 where c > 0 is tuned using grid search and k ≥ 0 is an iteration count.
We choose the default parameters for variance-reduced first-order methods as in Alacaoglu & Malitsky
(2022). For Algorithm 3, we choose κm = 10−6, δ = 0.01 and |Sk| = 20 log(d+3)

min{‖∇f(ẑk)‖2,‖∇f(zk)‖2} . We use
min{‖∇f(ẑk)‖2, ‖∇f(zk)‖2} instead of ‖∇f(ẑk)‖2 for practical purpose and such choice does not violate our
theoretical results. For the subproblem solving, we apply the Newton method.

Figure 2 shows that Algorithm 3 outperforms stochastic first-order methods in terms of solution quality:
stochastic first-order methods barely move when Algorithm 3 makes significant progress. Notably, Algo-
rithm 3 exhibits (super)-linear convergence as the iterates approach the optimal set regardless of subsam-
pling and inexact subproblem solving. This intriguing property has been rigorously justified for subsampled
Newton methods for convex optimization (Roosta-Khorasani & Mahoney, 2019), and extending such results
to convex-concave min-max optimization is an interesting future direction.

3https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
4The stochastic variants of EG and OGDA exhibit similar performance in iteration count and computational time so we

include only one of them (which we refer to as SEG).
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