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Abstract

Generalization capability to unseen domains is crucial for machine learning models
when deploying to real-world conditions. We investigate the challenging problem
of domain generalization, i.e., training a model on multi-domain source data such
that it can directly generalize to target domains with unknown statistics. We adopt
a model-agnostic learning paradigm with gradient-based meta-train and meta-test
procedures to expose the optimization to domain shift. Further, we introduce
two complementary losses which explicitly regularize the semantic structure of
the feature space. Globally, we align a derived soft confusion matrix to preserve
general knowledge about inter-class relationships. Locally, we promote domain-
independent class-specific cohesion and separation of sample features with a
metric-learning component. The effectiveness of our method is demonstrated with
new state-of-the-art results on two common object recognition benchmarks. Our
method also shows consistent improvement on a medical image segmentation task.

1 Introduction

Machine learning methods have achieved remarkable success, under the assumption that training and
test data are sampled from the same distribution. In real-world applications, this assumption is often
violated as conditions for data acquisition may change, and a trained system may fail to produce
accurate predictions for unseen data with domain shift. To tackle this issue, domain adaptation
algorithms normally learn to align source and target data in a domain-invariant discriminative feature
space [6, 11, 19, 32, 33, 42, 43, 50, 51]. These methods rely on access to a few labelled [6, 42, 50] or
unlabelled [11, 19, 32, 33, 43, 51] data samples from the target distribution during training.

An arguably harder problem is domain generalization, which aims to train a model using multi-domain
source data, such that it can directly generalize to new domains without need of retraining. This
setting is very different to domain adaptation as no information about the new domains is available,
a scenario that is encountered in real-world applications. In the field of healthcare, for example,
medical images acquired at different sites can differ significantly in their data distribution, due to
varying scanners, imaging protocols or patient cohorts. At deployment, each new hospital can be
regarded as a new domain but it is impractical to collect data each time to adapt a trained system.
Learning a model which directly generalizes to new clinical sites would be of great practical value.

Domain generalization is an active research area with a number of approaches being proposed. As no
a priori knowledge of the target distribution is available, the key question is how to guide the model
learning to capture information which is discriminative for the specific task but insensitive to changes
of domain-specific statistics. For computer vision applications, the aim is to capture general semantic
features for object recognition. Previous work has demonstrated that this can be investigated through
regularization of the feature space, e.g., by minimizing divergence between marginal distributions of
data sources [35], or joint consideration of the class conditional distributions [30]. Li et al. [28] use
adversarial feature alignment via maximum mean discrepancy. Leveraging distance metrics of feature
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vectors is another method [20, 34]. Model-agnostic meta-learning [10] is a recent gradient-based
method for fast adaptation of models to new conditions, e.g., a new task at few-shot learning. Meta-
learning has been introduced to address domain generalization [1, 26, 31], by adopting an episodic
training paradigm, i.e., splitting the available source domains into meta-train and meta-test at each
iteration, to simulate domain shift. Promising performance has been demonstrated by deriving the
loss from a task error [26], a classifier regularizer [1], or a predictive feature-critic module [31].

We introduce two complementary losses which explicitly regularize the semantic structure of the
feature space via a model-agnostic episodic learning procedure. Our optimization objective encour-
ages the model to learn semantically consistent features across training domains that may generalize
better to unseen domains. Globally, we align a derived soft confusion matrix to preserve inter-class
relationships. Locally, we use a metric-learning component to encourage domain-independent while
class-specific cohesion and separation of sample features. The effectiveness of our approach is
demonstrated with new state-of-the-art performance on two common object recognition benchmarks.
Our method also shows consistent improvement on a medical image segmentation task. Code for our
proposed method is available at: https://github.com/biomedia-mira/masf.

2 Related Work

Domain adaptation is based on the central theme of bounding the target error by the source error
plus a discrepancy metric between the target and the source [2]. This is practically performed by
narrowing the domain shift between the target and source either in input space [19], feature space [6,
11, 32, 42, 51], or output space [33, 43, 49], generally using maximum mean discrepancy [15, 46] or
adversarial learning [14]. The success of methods operating on feature representations motivates us
to optimize the semantic feature space for domain generalization in this paper.

Domain generalization aims to generalize models to unseen domains without knowledge about the
target distribution during training. Different methods have been proposed for learning generalizable
and transferable representations. A promising direction is to extract task-specific but domain-invariant
features [12, 28, 30, 34, 35]. Muandet et al. [35] propose a domain-invariant component analysis
method with a kernel-based optimization algorithm to minimize the dissimilarity across domains.
Ghifary et al. [12] learn multi-task auto-encoders to extract invariant features which are robust to
domain variations. Li et al. [30] consider the conditional distribution of label space over input space,
and minimize discrepancy of a joint distribution. Motiian et al. [34] use contrastive loss to guide
samples from the same class being embedded nearby in latent space across data sources. Li et al. [28]
extend adversarial autoencoders by imposing maximum mean discrepancy measure to align multi-
domain distributions. Instead of harmonizing the feature space, others use low-rank parameterized
CNNs [25] or decompose network parameters to domain-specific/-invariant components [22]. Data
augmentation strategies, such as gradient-based domain perturbation [47] or adversarially perturbed
samples [53] demonstrate effectiveness for model generalization. A recent method with state-of-the-
art performance is JiGen [3], which leverages self-supervised signals by solving jigsaw puzzles.

Meta-learning (a.k.a. learning to learn [44, 48]) is a long standing topic exploring the training of
a meta-learner that learns how to train particular models [10, 29, 36, 37]. Recently, gradient-based
meta-learning methods [10, 36] have been successfully applied to few-shot learning, with a procedure
purely leveraging gradient descent. The episodic training paradigm, originated from model-agnostic
meta-learning (MAML) [10], has been introduced to address domain generalization [1, 26, 27, 31].
Epi-FCR [27] alternates domain-specific feature extractors and classifiers across domains via episodic
training, but without using inner gradient descent update. The method of MLDG [26] closely follows
the update rule of MAML, back-propagating the gradients from an ordinary task loss on meta-test
data. A limitation is that using the task objective might be sub-optimal, as it is highly abstracted
from the feature representations (only using class probabilities). Moreover, it may not well fit the
scenario where target data are unavailable (as pointed out by Balaji et al. [1]). A recent method,
MetaReg [1], learns a regularization function (e.g., weighted L1 loss) particularly for the network’s
classification layer, excluding the feature extractor. Instead, Li et al. [31] propose a feature-critic
network which learns an auxiliary meta loss (producing a non-negative scalar) depending on output of
the feature extractor. Both [1] and [31] lack notable guidance from semantics of feature space, which
may contain crucial domain-independent ‘general knowledge’ for model generalization. Our method
is orthogonal to previous work, proposing to enforce semantic features via global class alignment and
local sample clustering, with losses explicitly derived in an episodic learning procedure.
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Figure 1: An overview of the proposed model-agnostic learning of semantic features (MASF):
(a) episodic training under simulated domain shift, with gradient flows indicated; (b) global alignment
of class relationships; (c) local sample clustering, towards cohesion and separation. Fψ and Tθ are
the feature extractor and the task net, Fψ′ and Tθ′ are their updated versions by inner gradient descent
on the task loss Ltask, the Mφ is a metric embedding net, and Dk denotes different source domains.

3 Method

In the following, we denote input and label spaces by X and Y , the domainsD = {D1, D2, . . . , DK}
are different distributions on the joint space X × Y . Since domain generalization involves a common
predictive task, the label space is shared by all domains. In each domain, samples are drawn from a
dataset Dk = {(x(k)

n , y
(k)
n )}Nkn=1 where Nk is the number of labeled data points in the k-th domain.

The domain generalization (DG) setting further assumes the existence of domain-invariant patterns in
the inputs (e.g. semantic features), which can be extracted to learn a label predictor that performs well
across seen and unseen domains. Unlike domain adaptation, DG assumes no access to observations
from or explicit knowledge about the target distribution.

In this work, we consider a classification model composed of a feature extractor, Fψ : X → Z , where
Z is a feature space (typically much lower-dimensional than X ), and a task network, Tθ : Z → RC ,
where C is the number of classes in Y . The final class predictions are given by p(y |x;ψ, θ) = ŷ =
softmax(Tθ(Fψ(x))), where softmax(a) = ea/

∑
r e

ar .1 The parameters (ψ, θ) are optimized with
respect to a task-specific loss Ltask, e.g. cross-entropy: `task(y, ŷ) = −

∑
c 1[y = c] log ŷc.

Although the minimization of Ltask may produce highly discriminative features z = Fψ(x), and
hence an excellent predictor for data from the training domains, nothing in this process prevents the
model from overfitting to the source domains and suffering from degradation on unseen test domains.
We therefore propose to optimize the feature space such that its semantic structure is insensitive to
different training domains, and generalize better to new unseen domains. Figure 1 gives an overview
of our model-agnostic learning of semantic features (MASF), which we will detail in this section.

3.1 Model-Agnostic Learning with Episodic Training

The key of our learning procedure is an episodic training scheme, originated from model-agnostic
meta-learning [10], to expose the model optimization to distribution mismatch. In line with our goal
of domain generalization, the model is trained on a sequence of simulated episodes with domain
shift. Specifically, at each iteration, the available domains D are randomly split into sets of meta-train
Dtr and meta-test Dte domains. The model is trained to semantically perform well on held-out Dte

after being optimized with one or more steps of gradient descent with Dtr domains. In our case, the
feature extractor’s and task network’s parameters, ψ and θ, are first updated from the task-specific
supervised loss Ltask (e.g. cross-entropy for classification), computed on meta-train:

(ψ′, θ′) = (ψ, θ)− α∇ψ,θLtask(Dtr;ψ, θ) , (1)

where α is a learning-rate hyperparameter. This results in a predictive model Tθ′ ◦Fψ′ with improved
task accuracy on the meta-train source domains, Dtr.

Once this optimized set of parameters has been obtained, we can apply a meta-learning step, aiming to
enforce certain properties that we desire the model to exhibit on held-out domain Dte. Crucially, the

1For image segmentation, Fψ extracts feature maps and the task network Tθ is applied pixel-wise.
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Algorithm 1 Model-agnostic learning of semantic features for domain generalization

Input: Source training domains D = {Dk}Kk=1; hyperparameters α, η, γ, β1, β2 > 0
Output: Feature extractor Fψ , task network Tθ, embedding network Mφ

1: repeat
2: Randomly split source domains D into disjoint meta-train Dtr and meta-test Dte

3: (ψ′, θ′)← (ψ, θ)− α∇ψ,θLtask(Dtr;ψ, θ)
4: Compute global class alignment loss:

Lglobal ← 1
|Dtr|

∑
Di∈Dtr

1
|Dte|

∑
Dj∈Dte

`global(Di, Dj ;ψ
′, θ′) // Section 3.2

5: Compute local sample clustering loss:
Llocal(D;ψ′, φ)← ED[`n,mcon ] or ED[`a,p,ntri ] // Section 3.3

6: Lmeta ← β1Lglobal + β2Llocal

7: (ψ, θ)← (ψ, θ)− η∇ψ,θ(Ltask + Lmeta)
8: φ← φ− γ∇φLlocal

9: until convergence

objective function quantifying these properties, Lmeta, is computed based on the updated parameters,
(ψ′, θ′), and the gradients are computed towards the original parameters, (ψ, θ). Intuitively, besides
the task itself, the training procedure is learning how to generalize under domain shift. In other words,
parameters are updated such that future updates with given source domains also improve the model
regarding some generalizable aspects on unseen target domains.

In particular, we desire the feature space to encode semantically relevant properties: features from
different domains should respect inter-class relationships, and they should be compactly clustered
by class labels regardless of domains (cf. Alg. 1). In the remainder of this section we describe the
design of our semantic meta-objective, Lmeta = β1Lglobal + β2Llocal, composed of a global class
alignment term and a local sample clustering term, with weighting coefficients β1, β2 > 0.

3.2 Global Class Alignment Objective

Relationships between class concepts exist in purely semantic space, independent of changes in the
observation domain. In light of this, compared with individual hard label prediction, aligning class
relationships can promote more transferable knowledge towards model generalization. This is also
noted by Tzeng et al. [50] in the context of domain adaptation, by aggregating the output probability
distribution when fine-tuning the model on a few labelled target data. In contrast to their work, our
goal is to structure the feature space itself to preserve learned class relationships on unseen data, by
means of explicit regularization.

Specifically, we formulate this objective in a manner that imposes a global layout of extracted features,
such that the relative locations of features from different classes embody the inherent similarity in
semantic structures. Inspired by knowledge distillation from neural networks [18], we exploit what
the model has learned about class ambiguities—in the form of per-class soft labels—and enforce
them to be consistent between Dtr and Dte domains. For each domain k, we summarize the model’s
current ‘concept’ of each class c by computing the class-specific mean feature vectors z̄(k)c :

z̄(k)c =
1

N
(c)
k

∑
n:y

(k)
n =c

Fψ′(x(k)
n ) ≈ EDk [Fψ′(x) | y = c] , (2)

where N (c)
k is the number of samples in domain Dk labelled as class c. The obtained z̄

(k)
c conveys

how samples from a particular class are generally represented. It is then forwarded to the task network
Tθ′ , for computing soft label distributions s(k)c with a ‘softened’ softmax at temperature τ > 1 [18]:

s(k)c = softmax(Tθ′(z̄
(k)
c )/τ) . (3)

The collection of soft labels [s
(k)
c ]Cc=1 represents a kind of ‘soft confusion matrix’ associated with a

particular domain, encoding the inter-class relationships learned by the model. Such relationships
should be preserved as general semantics on meta-test after updating the classification model on
meta-train (e.g., cartoon dogs are more easily misclassified as horses than as houses, which likely
holds in unseen domains). Standard supervised training with Ltask focuses only on the dominant hard
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label prediction, there is no reason a priori for consistency of such inter-class alignment. We therefore
propose to align the soft class confusion matrix between two domains Di ∈ Dtr and Dj ∈ Dte, by
minimising their symmetrized Kullback–Leibler (KL) divergence, averaged over all C classes:

`global(Di, Dj ;ψ
′, θ′) =

1

C

C∑
c=1

1

2
[DKL(s(i)c ‖ s(j)c ) +DKL(s(j)c ‖ s(i)c )] , (4)

where DKL(p ‖q) =
∑
r pr log pr

qr
. Other symmetric divergences such as Jensen–Shannon (JS)

could also be considered, although our preliminary experiments showed no significant difference with
JS over symm. KL. Finally, the global class alignment loss, Lglobal(Dtr,Dte;ψ

′, θ′), is calculated
as the average of `global(Di, Dj ;ψ

′, θ′) over all pairs of available meta-train and meta-test domains,
(Di, Dj) ∈ Dtr×Dte (cf. Alg. 1). The complexity of this computation is not problematic in practice,
since the number of domains selected in a training mini-batch is limited (as with the form in MAML
[10]), and in our experiments we took |Dtr| = 2 and |Dte| = 1.

3.3 Local Sample Clustering Objective

In addition to promoting the alignment of class relationships across domains with Lglobal as defined
above, we further encourage robust semantic features that locally cluster according to class regardless
of the domain. This is crucial, as neither of the class-prediction-based losses (Ltask or Lglobal) ensure
that features of samples in the same class will lie close to each other and away from those of different
classes, a.k.a. feature compactness [21]. If the model cannot project the inputs to the semantic
feature clusters with domain-independent class-specific cohesion and separation, the predictions may
suffer from ambiguous decision boundaries, and still be sensitive to unseen kinds of domain shift.
We therefore propose a local regularization objective Llocal to boost robustness, by increasing the
compactness of class-specific clusters while reducing their overlap. Note how this is complementary
to the global class alignment of semantically structuring the relative locations among class clusters.

Our preliminary experiments revealed that applying such regularization explicitly onto the features
may constrain the optimization for Ltask and Lglobal too heavily, hurting generalization performance
on unseen domain. We thus take a metric-learning approach, introducing an embedding network Mφ

that operates on the extracted features, z = Fψ′(x). This component represents a learnable distance
function [5] between feature vectors (rather than between raw inputs):

dφ(zn, zm) = ‖en − em‖2 = ‖Mφ(zn)−Mφ(zm)‖2 . (5)

The sample pairs (n,m) are randomly drawn from all source domains D, because we expect the
updated Fψ′ will harmonize the semantic feature space of Dte with that of Dtr, in terms of class-
specific clustering regardless of domains. The computed embeddings, e = Mφ(z), can then be
optimized with any suitable metric-learning loss Llocal(D;ψ′, φ) to regularize the local sample
clustering. Under mild domain shift, the contrastive loss [16] is a sensible choice, as it attempts to
separately collapse each group of same-class exemplars to a distinct single point. It might however be
over-restrictive for more extreme situations, wherein domains are related rather semantically, but with
wildly distinct low-level statistics. For such cases, we propose instead to employ the triplet loss [45].

Contrastive loss is computed for pairs of samples, attracting samples of the same class and repelling
samples of different classes [16]. Instead of pushing clusters apart to infinity, the repulsion range is
bounded by a distance margin ξ. Our contrastive loss for a pair of samples (n,m) is defined as:

`n,mcon =

{
dφ(zn, zm)2 , if yn = ym
(max{0, ξ − dφ(zn, zm)})2 , if yn 6= ym

. (6)

The total loss for a training mini-batch, Llocal, is normally averaged over all pairs of samples. In cases
where full O(N2) enumeration is intractable—e.g. image segmentation, which would involve all
pairs of pixels in all images—we can obtain an unbiased O(N) estimator of the loss by e.g. shuffling
the samples and iterating over (2i− 1, 2i) pairs with i = 1, . . . , bN/2c.

Triplet loss aims to make pairs of samples from the same class closer than pairs from different
classes, by a certain margin ξ [45]. Given one ‘anchor’ sample a, one ‘positive’ sample p (with
ya = yp), and one ‘negative’ sample n (with ya 6= yn), we compute their triplet loss as follows:

`a,p,ntri = max{0, dφ(za, zp)
2 − dφ(za, zn)2 + ξ} . (7)
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Schroff et al. [45] argue that judicious triplet selection is essential for good convergence, as many
triplets may already satisfy this constraint and others may be too hard to contribute meaningfully to
the learning process. Here we adopt their proposed online ‘semi-hard’ triplet mining strategy, and
Llocal is the average over all selected triplet pairs.

4 Experiments

We evaluate and compare our method on three datasets: 1) the classic VLCS domain generalization
benchmark for image classification, 2) the recently introduced PACS benchmark for object recognition
with challenging domain shift, 3) a real-world medical imaging task of tissue segmentation in brain
MRI. Results with an in-depth analysis and ablation study are presented in the following.

4.1 VLCS Dataset

VLCS [8] is a classic benchmark for domain generalization, which includes images from four datasets:
PASCAL VOC2007 (V) [7], LabelMe (L) [41], Caltech (C) [9], and SUN09 (S) [4]. The multi-class
object recognition task includes five classes: bird, car, chair, dog and person. We follow previous
work [3, 27, 34] of using the publicly available pre-extracted DeCAF6 features (4096-dimensional
vector) for leave-one-domain-out validation with randomly dividing each domain into 70% training
and 30% test, inputting to two fully connected layers with output size of 1024 and 128 with ReLU
activation. For our metric embedding Mφ (inputting the 128-dimensional vector), we use two fully
connected layers with output size of 128 and 64. The triplet loss is adopted for computing Llocal, with
coefficient β2 = 0.005, such that it is in a similar scale to Ltask and Lglobal (β1 = 1). We use the
Adam optimizer [23] with η initialized to 10−3 and exponentially decayed by 2% every 1k iterations.
For the inner optimization to obtain (ψ′, θ′), we clip the gradients by norm (threshold by 2.0) to
prevent them from exploding, since this step uses plain, non-adaptive gradient descent (with learning
rate α = 10−5). Note that, although performing gradient descent on Lmeta involves second-order
gradients on (ψ, θ), their computation does not incur a substantial overhead in training time [10].
We also employ an Adam optimizer for the meta-updates of φ with learning rate γ = 10−5 without
decay. The batch size is 128 for each source domain, with an Nvidia TITAN Xp 12 GB GPU. The
metric-learning margin hyperparameter ξ was chosen heuristically based on observing the distances
within and between the clusters of class features. For our results, we report the average and standard
deviation over three independent runs.

Results. Table 1 shows the object recognition accuracies on different target domains. Our DeepAll
baseline—i.e., merging all source domains and training Fψ◦Tθ by standard supervised learning on
Ltask with the same hyperparameters—achieves an average accuracy of 72.19% over four domains.
Using our episodic training paradigm with regularizations on semantic feature space, we improve
the performance to 74.11%, setting the state-of-the-art accuracy on VLCS. We compare with eight
different methods (cf. Section 2) which report previous best results on this benchmark. CCSA [34]
combines contrastive loss together with ordinary cross-entropy without using episodic meta-update
paradigm. Notably, our approach outperforms MLDG [26], indicating that explicitly encouraging
semantic properties in the feature space is superior to using a highly-abstracted task loss on meta-test.

Table 1: Domain generalization results on VLCS dataset with object recognition accuracy (%).

Source Target D-MTAE CIDDG CCSA DBADG MMD-AAE MLDG Epi-FCR JiGen DeepAll MASF
[12] [30] [34] [25] [28] [26] [27] [3] (Baseline) (Ours)

L,C,S V 63.90 64.38 67.10 69.99 67.70 67.7 67.1 70.62 68.67±0.09 69.14±0.19
V,C,S L 60.13 63.06 62.10 63.49 62.60 61.3 64.3 60.90 63.10±0.11 64.90±0.08
V,L,S C 89.05 88.83 92.30 93.63 94.40 94.4 94.1 96.93 92.86±0.13 94.78±0.16
V,L,C S 61.33 62.10 59.10 61.32 64.40 65.9 65.9 64.30 64.11±0.17 67.64±0.12

Average 68.60 69.59 70.15 72.11 72.28 72.3 72.9 73.19 72.19 74.11

4.2 PACS Dataset

The PACS dataset [25] is a recent benchmark with more severe distribution shift between domains,
making it more challenging than VLCS. It consists of four domains: art painting, cartoon, photo,
sketch, with objects from seven classes: dog, elephant, giraffe, guitar, house, horse, person. Following
practice in the literature [1, 3, 26, 27], we also use leave-one-domain-out cross-validation, i.e., training

6



Table 2: Domain generalization results on PACS dataset with recognition accuracy (%) using AlexNet.

Source Target D-MTAE CIDDG DBADG MLDG Epi-FCR MetaReg JiGen DeepAll MASF
[12] [30] [25] [26] [27] [1] [3] (Baseline) (Ours)

C,P,S Art painting 60.27 62.70 62.86 66.23 64.7 69.82 67.63 67.60±0.21 70.35±0.33
A,P,S Cartoon 58.65 69.73 66.97 66.88 72.3 70.35 71.71 68.87±0.22 72.46±0.19
A,C,S Photo 91.12 78.65 89.50 88.00 86.1 91.07 89.00 89.20±0.24 90.68±0.12
A,C,P Sketch 47.68 64.45 57.51 58.96 65.0 59.26 65.18 61.13±0.30 67.33±0.12

Average 64.48 68.88 69.21 70.01 72.0 72.62 73.38 71.70 75.21

dog

elephant

guitar
giraffe

horse

house

person

(a) (b)

target domain
source domains

(c)

(d)

Figure 2: The t-SNE visualization of extracted features from Fψ, using our proposed (a-b) MASF
and the (c-d) DeepAll model on PACS dataset. In (a) and (c), the different colors indicate different
classes; correspondingly in (b) and (d), the different colors indicate different domains.

on three domains and testing on the remaining unseen one, and adopt an AlexNet [24] pre-trained
on ImageNet [40]. The metric embedding Mφ is connected to the last fully connected layer (i.e.,
fc7 layer with a 4096-dimesional vector), by stacking two fully connected layers with output size
of 1024 and 256. For the Llocal, we also use the triplet loss with β2 = 0.005, β1 = 1.0, particularly
considering the severe domain shift. We initialize learning rates α = η = γ = 10−5 and clip inner
gradients by norm. The batch size is 128 for each source domain.

Results. Table 2 summarizes the results of object recognition on PACS dataset with a comparison
to previous work (noting that not all compared methods reported results on both VLCS and PACS).
MLDG [26] and MetaReg [1] employ episodic training with meta-learning, but from different angles
in terms of the meta learner’s objective (Li et al. [26] minimize task error, Balaji et al. [1] learn
a classifier regularizer). The promising results for [1, 26, 27] indicate that exposing the training
procedure to domain shift benefits model generalization to unseen domains. Our method further
explicitly considers the semantic structure, regarding both global class alignment and local sample
clustering, yielding improved accuracy. Across all domains, our method increases average accuracy
by 3.51% over the baseline. Note that current state-of-the-art JiGen [3] improves 1.86% over its own
baseline. In addition, we observe an improvement of 6.20% when the unseen domain is sketch, which
has a distinct style and requires more general knowledge about semantic concepts.

Ablation analysis. We conduct an extensive study using PACS benchmark to investigate two key
points: 1) the contribution of each component to our method’s performance, 2) how the semantic
feature space is influenced by our proposed meta losses. First, we test all possible combinations of
including the key components: episodic meta-learning simulating domain shift, global class alignment
loss and local sample clustering loss. Accuracies averaged over three runs when using different
combinations are given in Table 3. For example, first row corresponds to the DeepAll baseline with
standard training by aggregating all source data. The fifth row is directly adding the Lglobal,Llocal

losses on top of Ltask with standard optimization scheme, i.e., without splitting D to meta-train and
meta-test domains. From the ablation study, we observe that each component plays its own role in a
complementary way. Specifically, the proposed losses that encourage semantic structure in feature
space yield improvement over DeepAll, as well as over pure episodic training (the second row) that
corresponds to our implementation of MLDG thus enabling straightforward comparison. By further
leveraging the gradient-based update paradigm, performance is further improved across all settings.
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Figure 3: Analysis of the learning procedure: (a) margin of feature distance between sample negative
pairs (with different classes) and positive pairs (with the same class), (b) class relationships alignment
loss between unseen target domain and source domain, (c) Silhouette plot of the embeddings from
meta metric-learning. Detailed analysis is in Section 4.2 for (a-b) and Section 4.3 for (c).

Table 3: Ablation study on key components of our method with the PACS dataset (accuracy, %).
Episodic Lglobal Llocal Art Cartoon Photo Sketch Average

- - - 67.60±0.21 68.87±0.22 89.20±0.24 61.13±0.30 71.70

X - - 69.19±0.10 70.66±0.37 90.36±0.18 59.89±0.26 72.52
- X - 69.43±0.29 70.22±0.21 90.64±0.15 60.11±0.17 72.60
- - X 69.50±0.15 70.25±0.13 90.12±0.12 63.02±0.12 73.22
- X X 69.48±0.20 71.15±0.16 90.16±0.15 64.73±0.34 73.88
X X - 69.94±0.15 72.16±0.28 90.10±0.12 63.54±0.13 73.93
X - X 69.50±0.20 71.44±0.34 90.16±0.15 64.97±0.28 74.02

X X X 70.35±0.33 72.46±0.19 90.68±0.12 67.33±0.12 75.21

Table 4: PACS results with deep residual network architectures (accuracy, %).

Source Target ResNet-18 ResNet-50

DeepAll MASF (ours) DeepAll MASF (ours)

C,P,S Art-painting 77.38± 0.15 80.29± 0.18 81.41± 0.16 82.89± 0.16
A,P,S Cartoon 75.65± 0.11 77.17± 0.08 78.61± 0.17 80.49± 0.21
A,C,S Photo 94.25± 0.09 94.99± 0.09 94.83± 0.06 95.01± 0.10
A,C,P Sketch 69.64± 0.25 71.69± 0.22 69.69± 0.11 72.29± 0.15

We utilize t-SNE [52] to analzye the feature space learned with our proposed model and the DeepAll
baseline (cf. Fig. 2). It appears that our MASF model yields a better separation of classes. We also
note that the sketch domain is further apart from art painting and cartoon, although all three are
source domains in this experiment, possibly explained by the unique characteristics of sketches. In
Figure 3 (a), we plot the difference of feature distances between samples of negative pairs and positive
pairs, i.e., E[‖za − zn‖2 − ‖za − zp‖2]. For the two magenta lines, respectively for MASF and
DeepAll, sample pairs are drawn from different training source domains. We see that both distance
margins naturally increase as training progresses. The shaded area highlights that MASF yeilds a
higher distance margin between classes compared to DeepAll, indicating that sample clusters are
better separated with MASF. Similarly, for the two blue lines, sample pairs are from the unseen target
domain and a source domain (randomly selected at each iteration). As expected, the margin is not as
large as between training domains, yet our method still presents a notably bigger margin than the
baseline. In Figure 3 (b), we plot `global quantifying differences of average class posteriors between
unseen target domain and a source domain during training. We observe that the semantic inter-class
relationships, conveying general knowledge about a recognition task, would not naturally converge
and generalize to the unseen domain without explicit guidance.

Deeper architectures. In the interest of providing stronger baseline results, we perform additional
preliminary experiments using more up-to-date deep residual architectures [17] with ResNet-18 and
ResNet-50. Table 4 shows strong and consistent improvements of MASF over the DeepAll baseline in
all PACS splits for both network architectures. This suggests our proposed algorithm is also beneficial
for domain generalization with deeper feature extractors.
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Set-A Set-B Set-C Set-D

Figure 4: Different brain MRI datasets with ex-
ample images and intensity histograms.

Table 5: Evaluation of brain tissue segmenta-
tion (Dice coefficient, %) in different settings:
columns 1–4: train model on single source do-
main, test on all domains; columns 5–6: train on
three source domains, test on remaining domain.

Test
Train Set-A Set-B Set-C Set-D DeepAll MASF

Set-A 90.62 88.91 88.81 85.03 89.09 89.82
Set-B 85.03 94.22 81.38 88.31 90.41 91.71
Set-C 93.14 92.80 95.40 88.68 94.30 94.50
Set-D 76.32 88.39 73.50 94.29 88.62 89.51

4.3 Tissue Segmentation in Multi-site Brain MRI

We evaluate our method on a real-world medical imaging task of brain tissue segmentation in T1-
weighted MRI. Data was acquired from four clinical centers (denoted as Set-A/B/C/D). Domain
shift occurs due to differences in scanners, acquisition protocols and many other factors, posing
severe limitations for translating learning-based methods to clinical practice [13]. Figure 4 shows
example images and intensity histograms. We adapt MASF for the segmentation of four classes:
background, grey matter (GM), white matter (WM), cerebrospinal fluid (CSF). We employ a U-
Net [38], commonly used for this task. For Lglobal, the z̄

(k)
c is computed by averaging over all pixels

of a class. Our metric-embedding has two layers of 1×1 convolutions, with contrastive loss for Llocal.
We randomly split each domain to 80% for training and 20% for testing in experimental settings.

Results. For easier comparison, we average the evaluated Dice scores achieved for the three fore-
ground classes (GM/WM/CSF) and report it in Table 5. Although hard to notice visually from the
gray-scale images, the domain shift from data distribution degrades segmentation significantly by up
to 10%. DeepAll is a strong baseline, yet our model-agnostic learning scheme provides consistent
improvement over naively aggregating data from multiple sources, especially when generalizing to a
new clinical site with relatively poorer imaging quality (i.e., Set-D). Figure 3 (c) is the Silhouette
plot [39] of the embeddings from Mφ, demonstrating that the samples within the same class cluster
are tightly grouped, as well as clearly separated from those of other classes.

5 Conclusions
We have presented promising results for a new approach to domain generalization of predictive
models by incorporating global and local constraints for learning semantic feature spaces. The better
generalization capability is demonstrated by new state-of-the-art results on popular benchmarks
and a dense classification task (i.e., semantic segmentation) for medical images. The proposed loss
functions are generally orthogonal to other algorithms, and evaluating the benefit of their integration
is an appealing future direction. Our learning procedure could also be interesting to explore in the
context of generative models, which may greatly benefit from semantic guidance when learning
low-dimensional data representations from multiple sources.
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