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ABSTRACT

We consider the problem of unconstrained minimization of a smooth objective
function in Rd in setting where only function evaluations are possible. We propose
and analyze stochastic zeroth-order method with heavy ball momentum. In particu-
lar, we propose, SMTP, a momentum version of the stochastic three-point method
(STP) Bergou et al. (2019). We show new complexity results for non-convex,
convex and strongly convex functions. We test our method on a collection of
learning to continuous control tasks on several MuJoCo Todorov et al. (2012) envi-
ronments with varying difficulty and compare against STP, other state-of-the-art
derivative-free optimization algorithms and against policy gradient methods. SMTP
significantly outperforms STP and all other methods that we considered in our
numerical experiments. Our second contribution is SMTP with importance sam-
pling which we call SMTP_IS. We provide convergence analysis of this method
for non-convex, convex and strongly convex objectives.

1 INTRODUCTION

In this paper, we consider the following minimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is "smooth" but not necessarily a convex function in a Derivative-Free Opti-
mization (DFO) setting where only function evaluations are possible. The function f is bounded
from below by f(x∗) where x∗ is a minimizer. Lastly and throughout the paper, we assume that f is
L-smooth.

DFO. In DFO setting Conn et al. (2009); Kolda et al. (2003), the derivatives of the objective function
f are not accessible. That is they are either impractical to evaluate, noisy (function f is noisy) (Chen,
2015) or they are simply not available at all. In standard applications of DFO, evaluations of f are
only accessible through simulations of black-box engine or software as in reinforcement learning and
continuous control environments Todorov et al. (2012). This setting of optimization problems appears
also in applications from computational medicine Marsden et al. (2008) and fluid dynamics Allaire
(2001); Haslinger & Mäckinen (2003); Mohammadi & Pironneau (2001) to localization Marsden
et al. (2004; 2007) and continuous control Mania et al. (2018); Salimans et al. (2017) to name a few.

The literature on DFO for solving (1) is long and rich. The first approaches were based on deterministic
direct search (DDS) and they span half a century of work Hooke & Jeeves (1961); Su (1979); Torczon
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(1997). However, for DDS methods complexity bounds have only been established recently by the
work of Vicente and coauthors Vicente (2013); Dodangeh & Vicente (2016). In particular, the work
of Vicente Vicente (2013) showed the first complexity results on non-convex f and the results were
extended to better complexities when f is convex Dodangeh & Vicente (2016). However, there
have been several variants of DDS, including randomized approaches Matyas (1965); Karmanov
(1974a;b); Baba (1981); Dorea (1983); Sarma (1990). Only very recently, complexity bounds have
also been derived for randomized methods Diniz-Ehrhardt et al. (2008); Stich et al. (2011); Ghadimi
& Lan (2013); Ghadimi et al. (2016); Gratton et al. (2015). For instance, the work of Diniz-Ehrhardt
et al. (2008); Gratton et al. (2015) imposes a decrease condition on whether to accept or reject a
step of a set of random directions. Moreover, Nesterov & Spokoiny (2017) derived new complexity
bounds when the random directions are normally distributed vectors for both smooth and non-smooth
f . They proposed both accelerated and non-accelerated zero-order (ZO) methods. Accelerated
derivative-free methods in the case of inexact oracle information was proposed in Dvurechensky et al.
(2017). An extension of Nesterov & Spokoiny (2017) for non-Euclidean proximal setup was proposed
by Gorbunov et al. (2018) for the smooth stochastic convex optimization with inexact oracle. In Stich
(2014a;b) authors also consider acceleration of ZO methods and, in particular, develop the method
called SARP, proved that its convergence rate is not worse than for non-accelerated ZO methods and
showed that in some cases it works even better.

More recently and closely related to our work, Bergou et al. (2019) proposed a new randomized direct
search method called Stochastic Three Points (STP). At each iteration k STP generates a random
search direction sk according to a certain probability law and compares the objective function at three
points: current iterate xk, a point in the direction of sk and a point in the direction of −sk with a
certain step size αk. The method then chooses the best of these three points as the new iterate:

xk+1 = argmin{f(xk), f(xk + αksk), f(xk − αksk)}.

The key properties of STP are its simplicity, generality and practicality. Indeed, the update rule for
STP makes it extremely simple to implement, the proofs of convergence results for STP are short
and clear and assumptions on random search directions cover a lot of strategies of choosing decent
direction and even some of first-order methods fit the STP scheme which makes it a very flexible in
comparison with other zeroth-order methods (e.g. two-point evaluations methods like in Nesterov &
Spokoiny (2017), Ghadimi & Lan (2013), Ghadimi et al. (2016), Gorbunov et al. (2018) that try to
approximate directional derivatives along random direction at each iteration). Motivated by these
properties of STP we focus on further developing of this method.

Momentum. Heavy ball momentum1 is a special technique introduced by Polyak in 1964 Polyak
(1964) to get faster convergence to the optimum for the first-order methods. In the original paper,
Polyak proved that his method converges locally with O

(√
L/µ log 1/ε

)
rate for twice continuously

differentiable µ-strongly convex and L-smooth functions. Despite the long history of this approach,
there is still an open question whether heavy ball method converges to the optimum globally with
accelerated rate when the objective function is twice continuous differentiable, L-smooth and µ-
strongly convex. For this class of functions, only non-accelerated global convergence was proved
Ghadimi et al. (2015) and for the special case of quadratic strongly convex and L-smooth functions
Lessard et. al. Lessard et al. (2016) recently proved asymptotic accelerated global convergence.
However, heavy ball method performs well in practice and, therefore, is widely used. One can find
more detailed survey of the literature about heavy ball momentum in Loizou & Richtárik (2017).

Importance Sampling. Importance sampling has been celebrated and extensively studied in stochas-
tic gradient based methods Zhao & Zhang (2015) or in coordinate based methods Richtárik & Takáč
(2016). Only very recently, Bibi et al. (2019) proposed, STP_IS, the first DFO algorithm with
importance sampling. In particular, under coordinate-wise smooth function, they show that sampling
coordinate directions, can be generalized to arbitrary directions, with probabilities proportional to the
function coordinate smoothness constants, improves the leading constant by the same factor typically
gained in gradient based methods.

Contributions. Our contributions can be summarized into three folds.

• First ZO method with heavy ball momentum. Motivated by practical effectiveness of
first-order momentum heavy ball method, we introduce momentum into STP method and

1We will refer to this as momentum.
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Algorithm 1 SMTP: Stochastic Momentum Three Points
Require: learning rates {γk}k≥0, starting point x0 ∈ Rd, D— distribution on Rd, 0 ≤ β < 1 —

momentum parameter
1: Set v−1 = 0 and z0 = x0

2: for k = 0, 1, . . . do
3: Sample sk ∼ D
4: Let vk+ = βvk−1 + sk and vk− = βvk−1 − sk
5: Let xk+1

+ = xk − γkvk+ and xk+1
− = xk − γkvk−

6: Let zk+1
+ = xk+1

+ − γkβ
1−β v

k
+ and zk+1

− = xk+1
− − γkβ

1−β v
k
−

7: Set zk+1 = argmin
{
f(zk), f(zk+1

+ ), f(zk+1
− )

}
8: Set xk+1 =


xk+1
+ , if zk+1 = zk+1

+

xk+1
− , if zk+1 = zk+1

−
xk, if zk+1 = zk

and vk+1 =


vk+1
+ , if zk+1 = zk+1

+

vk+1
− , if zk+1 = zk+1

−
vk, if zk+1 = zk

9: end for

propose new DFO algorithm with heavy ball momentum (SMTP). We summarized the
method in Algorithm 1, with theoretical guarantees for non-convex, convex and strongly
convex functions under generic sampling directions D. We emphasize that the SMTP with
momentum is not a straightforward generalization of STP and Polyak’s method and requires
insights from virtual iterates analysis from Yang et al. (2016).
To the best of our knowledge it is the first analysis of derivative-free method with heavy
ball momentum, i.e. we show that the same momentum trick that works for the first order
method could be applied for zeroth-order methods as well.
• First ZO method with both heavy ball momentum and importance sampling. In order

to get more gain from momentum in the case when the sampling directions are coordinate
directions and the objective function is coordinate-wise L-smooth (see Assumption 4.1), we
consider importance sampling to the above method. In fact, we propose the first zeroth-order
momentum method with importance sampling (SMTP_IS) summarized in Algorithm 2 with
theoretical guarantees for non-convex, convex and strongly convex functions. The details
and proofs are left for Section 4 and Appendix E.
• Practicality. We conduct extensive experiments on continuous control tasks from the

MuJoCo suite Todorov et al. (2012) following recent success of DFO compared to model-
free reinforcement learning Mania et al. (2018); Salimans et al. (2017). We achieve with
SMTP_IS the state-of-the-art results on across all tested environments on the continuous
control outperforming DFO Mania et al. (2018) and policy gradient methods Schulman et al.
(2015); Rajeswaran et al. (2017).

We provide more detailed comparison of SMTP and SMTP_IS in Section E.4 of the Appendix.

2 NOTATION AND DEFINITIONS

We use ‖ · ‖p to define `p-norm of the vector x ∈ Rd: ‖x‖p
def
=
(∑d

i=1 |xi|p
)1/p

for p ≥ 1 and

‖x‖∞
def
= maxi∈[d] |xi| where xi is the i-th component of vector x, [d] = {1, 2, . . . , d}. Operator E[·]

denotes mathematical expectation with respect to all randomness and Es∼D[·] denotes conditional
expectation w.r.t. randomness coming from random vector s which is sampled from probability
distribution D on Rd. To denote standard inner product of two vectors x, y ∈ Rd we use 〈x, y〉 def

=∑d
i=1 xiyi, ei denotes i-th coordinate vector from standard basis in Rd, i.e. x =

∑d
i=1 xiei. We use

‖ · ‖∗ to define the conjugate norm for the norm ‖ · ‖: ‖x‖∗ def
= max

{
〈a, x〉 | a ∈ Rd, ‖a‖ ≤ 1

}
.

As we mention in the introduction we assume throughout the paper2 that the objective function f is
L-smooth.

2We will use thinner assumption in Section 4.
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Assumptions on f
SMTP

Complexity
Theorem

Importance
Sampling

SMTP_IS

Complexity
Theorem

None 2r0LγD
µ2
Dε

2 3.1 pi =
Li∑d

i=1 Li

2r0d
∑d

i=1 Li

ε2
E.1

Convex, R0 <∞ 1
ε

LγDR
2
0

µ2
D

ln
(
2r0
ε

)
3.2 pi =

Li∑d
i=1 Li

R2
0d

∑d
i=1 Li

ε
ln

(
2r0
ε

)
E.2

µ-strongly convex L
µµ2
D
ln

(
2r0
ε

)
3.5 pi =

Li∑d
i=1 Li

∑d
i=1 Li

µ
ln

(
2r0
ε

)
E.5

Table 1: Summary of the new derived complexity results of SMTP and SMTP_IS. The complexities
for SMTP are under a generic sampling distribution D satisfying Assumption 3.1 while for SMTP_IS
are under an arbitrary discrete sampling from a set of coordinate directions following Bibi et al.
(2019) where we propose an importance sampling that improves the leading constant marked in red.
Note that r0 = f(x0) − f(x∗) and that all assumptions listed are in addition to Assumption 2.1.
Complexity means number of iterations in order to guarantee E‖∇f(zK)‖D ≤ ε for the non-convex
case, E

[
f(zK)− f(x∗)

]
≤ ε for convex and strongly convex cases. R0 < ∞ is the radius in

‖ · ‖∗D-norm of a bounded level set where the exact definition is given in Assumption 3.2. We
notice that for SMTP_IS ‖ · ‖D = ‖ · ‖1 and ‖ · ‖∗D = ‖ · ‖∞ in non-convex and convex cases and
‖ · ‖D = ‖ · ‖2 in the strongly convex case.

Assumption 2.1. (L-smoothness) We say that f is L-smooth if

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ∀x, y ∈ Rd. (2)

From this definition one can obtain

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖22, ∀x, y ∈ Rd, (3)

and if additionally f is convex, i.e. f(y) ≥ f(x) + 〈∇f(x), y − x〉, we have

‖∇f(x)‖22 ≤ 2L(f(x)− f(x∗)), ∀x ∈ Rd. (4)

3 STOCHASTIC MOMENTUM THREE POINTS (SMTP)

Our analysis of SMTP is based on the following key assumption.
Assumption 3.1. The probability distribution D on Rd satisfies the following properties:

1. The quantity γD
def
= Es∼D‖s‖22 is finite.

2. There is a constant µD > 0 for a norm ‖ · ‖D in Rd such that for all g ∈ Rd

Es∼D|〈g, s〉| ≥ µD‖g‖D. (5)

Some examples of distributions that meet above assumption are described in Lemma 3.4 from
Bergou et al. (2019). For convenience we provide the statement of the lemma in the Appendix (see
Lemma F.1).

Recall that one possible view on STP Bergou et al. (2019) is as following. If we substitute gradient
∇f(xk) in the update rule for the gradient descent xk+1 = xk − γk∇f(xk) by ±sk where sk is
sampled from distribution D satisfied Assumption 3.1 and then select xk+1 as the best point in terms
of functional value among xk, xk − γksk, xk + γksk we will get exactly STP method. However,
gradient descent is not the best algorithm to solve unconstrained smooth minimization problems and
the natural idea is to try to perform the same substitution-trick with more efficient first-order methods
than gradient descent.

We put our attention on Polyak’s heavy ball method where the update rule could be written in the
following form:

vk = βvk−1 +∇f(xk), xk+1 = xk − γkvk. (6)
As in STP, we substitute ∇f(xk) by ±sk and consider new sequences {vk+}k≥0 and {vk−}k≥0
defined in the Algorithm 1. However, it is not straightforward how to choose next xk+1 and vk and

4



Published as a conference paper at ICLR 2020

the virtual iterates analysis Yang et al. (2016) hints the update rule. We consider new iterates zk+1
+ =

xk+1
+ − γkβ

1−β v
k
+ and zk+1

− = xk+1
− − γkβ

1−β v
k
− and define zk+1 as argmin

{
f(zk), f(zk+1

+ ), f(zk+1
− )

}
.

Next we update xk+1 and vk in order to have the same relationship between zk+1, xk+1 and vk as
between zk+1

+ , xk+1
+ and vk+ and zk+1

− , xk+1
− and vk−. Such scheme allows easily apply virtual iterates

analysis and and generalize Key Lemma from Bergou et al. (2019) which is the main tool in the
analysis of STP.

By definition of zk+1, we get that the sequence {f(zk)}k≥0 is monotone:

f(zk+1) ≤ f(zk) ∀k ≥ 0. (7)

Now, we establish the key result which will be used to prove the main complexity results and
remaining theorems in this section.
Lemma 3.1. Assume that f is L-smooth and D satisfies Assumption 3.1. Then for the iterates of
SMTP the following inequalities hold:

f(zk+1) ≤ f(zk)− γk

1− β
|〈∇f(zk), sk〉|+ L(γk)2

2(1− β)2
‖sk‖22 (8)

and

Esk∼D
[
f(zk+1)

]
≤ f(zk)− γkµD

1− β
‖∇f(zk)‖D +

L(γk)2γD
2(1− β)2

. (9)

3.1 NON-CONVEX CASE

In this section, we show our complexity results for Algorithm 1 in the case when f is allowed to be
non-convex. In particular, we show that SMTP in Algorithm 1 guarantees complexity bounds with
the same order as classical bounds, i.e. 1/

√
K where K is the number of iterations, in the literature.

We notice that query complexity (i.e. number of oracle calls) of SMTP coincides with its iteration
complexity up to numerical constant factor. For clarity and completeness, proofs are left for the
appendix.
Theorem 3.1. Let Assumptions 2.1 and 3.1 be satisfied. Let SMTP with γk ≡ γ > 0 produce points
{z0, z1, . . . , zK−1} and zK is chosen uniformly at random among them. Then

E
[
‖∇f(zK)‖D

]
≤ (1− β)(f(x0)− f(x∗))

KγµD
+

LγγD
2µD(1− β)

. (10)

Moreover, if we choose γ = γ0√
K

the complexity (10) reduces to

E
[
‖∇f(zK)‖D

]
≤ 1√

K

(
(1− β)(f(z0)− f(x∗))

γ0µD
+

Lγ0γD
2µD(1− β)

)
. (11)

Then γ0 =
√

2(1−β)2(f(x0)−f(x∗))
LγD

minimizes the right-hand side of (11) and for this choice we have

E
[
‖∇f(zK)‖D

]
≤
√

2 (f(x0)− f(x∗))LγD
µD
√
K

. (12)

In other words, the above theorem states that SMTP converges no worse than STP for non-convex
problems to the stationary point. In the next sections we also show that theoretical convergence
guarantees for SMTP are not worse than for STP for convex and strongly convex problems. However,
in practice SMTP significantly outperforms STP. So, the relationship between SMTP and STP
correlates with the known in the literature relationship between Polyak’s heavy ball method and
gradient descent.

3.2 CONVEX CASE

In this section, we present our complexity results for Algorithm 1 when f is convex. In particular, we
show that this method guarantees complexity bounds with the same order as classical bounds, i.e.
1/K, in the literature. We will need the following additional assumption in the sequel.
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Assumption 3.2. We assume that f is convex, has a minimizer x∗ and has bounded level set at x0:

R0
def
= max

{
‖x− x∗‖∗D | f(x) ≤ f(x0)

}
< +∞, (13)

where ‖ξ‖∗D
def
= max {〈ξ, x〉 | ‖x‖D ≤ 1} defines the dual norm to ‖ · ‖D.

From the above assumption and Cauchy-Schwartz inequality we get the following implication:

f(x) ≤ f(x0) =⇒ f(x)− f(x∗) ≤ 〈∇f(x), x− x∗〉 ≤ ‖∇f(x)‖D‖x− x∗‖∗D ≤ R0‖∇f(x)‖D,

which implies

‖∇f(x)‖D ≥
f(x)− f(x∗)

R0
∀x : f(x) ≤ f(x0). (14)

Theorem 3.2 (Constant stepsize). Let Assumptions 2.1, 3.1 and 3.2 be satisfied. If we set γk ≡ γ <
(1−β)R0

µD
, then for the iterates of SMTP method the following inequality holds:

E
[
f(zk)− f(x∗)

]
≤
(
1− γµD

(1− β)R0

)k (
f(x0)− f(x∗)

)
+

LγγDR0

2(1− β)µD
. (15)

If we choose γ = ε(1−β)µD
LγDR0

for some 0 < ε ≤ LγDR
2
0

µ2
D

and run SMTP for k = K iterations where

K =
1

ε

LγDR
2
0

µ2
D

ln

(
2(f(x0)− f(x∗))

ε

)
, (16)

then we will get E
[
f(zK)

]
− f(x∗) ≤ ε.

In order to get rid of factor ln 2(f(x0)−f(x∗))
ε in the complexity we consider decreasing stepsizes.

Theorem 3.3 (Decreasing stepsizes). Let Assumptions 2.1, 3.1 and 3.2 be satisfied. If we set
γk = 2

αk+θ , where α = µD
(1−β)R0

and θ ≥ 2
α , then for the iterates of SMTP method the following

inequality holds:

E
[
f(zk)

]
− f(x∗) ≤ 1

ηk + 1
max

{
f(x0)− f(x∗), 2LγD

αθ(1− β)2

}
, (17)

where η
def
= α

θ . Then, if we choose γk = 2α
α2k+2 where α = µD

(1−β)R0
and run SMTP for k = K

iterations where

K =
1

ε
· 2R

2
0

µ2
D

max
{
(1− β)2(f(x0)− f(x∗)), LγD

}
− 2(1− β)2R2

0

µ2
D

, ε > 0, (18)

we get E
[
f(zK)

]
− f(x∗) ≤ ε.

We notice that if we choose β sufficiently close to 1, we will obtain from the formula (18) that
K ≈ 2R2

0LγD
εµ2
D

.

3.3 STRONGLY CONVEX CASE

In this section we present our complexity results for Algorithm 1 when f is µ-strongly convex.

Assumption 3.3. We assume that f is µ-strongly convex with respect to the norm ‖ · ‖∗D:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
(‖y − x‖∗D)

2
, ∀x, y ∈ Rd. (19)

It is well known that strong convexity implies

‖∇f(x)‖2D ≥ 2µ (f(x)− f(x∗)) . (20)
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Theorem 3.4 (Solution-dependent stepsizes). Let Assumptions 2.1, 3.1 and 3.3 be satisfied. If we
set γk = (1−β)θkµD

L

√
2µ(f(zk)− f(x∗)) for some θk ∈ (0, 2) such that θ = inf

k≥0
{2θk − γDθ2k} ∈

(0, L/(µ2
Dµ)), then for the iterates of SMTP, the following inequality holds:

E
[
f(zk)

]
− f(x∗) ≤

(
1− θµ2

Dµ

L

)k (
f(x0)− f(x∗)

)
. (21)

Then, If we run SMTP for k = K iterations where

K =
κ

θµ2
D
ln

(
f(x0)− f(x∗)

ε

)
, ε > 0, (22)

where κ
def
= L

µ is the condition number of the objective, we will get E
[
f(zK)

]
− f(x∗) ≤ ε.

Note that the previous result uses stepsizes that depends on the optimal solution f(x∗) which is often
not known in practice. The next theorem removes this drawback without spoiling the convergence rate.
However, we need an additional assumption on the distribution D and one extra function evaluation.

Assumption 3.4. We assume that for all s ∼ D we have ‖s‖2 = 1.

Theorem 3.5 (Solution-free stepsizes). Let Assumptions 2.1, 3.1, 3.3 and 3.4 be satisfied. If addi-
tionally we compute f(zk + tsk), set γk = (1−β)|f(zk+tsk)−f(zk)|/(Lt) for t > 0 and assume that D
is such that µ2

D ≤ L/µ, then for the iterates of SMTP the following inequality holds:

E
[
f(zk)

]
− f(x∗) ≤

(
1− µ2

Dµ

L

)k (
f(x0)− f(x∗)

)
+

L2t2

8µ2
Dµ

. (23)

Moreover, for any ε > 0 if we set t such that

0 < t ≤
√

4εµ2
Dµ

L2
, (24)

and run SMTP for k = K iterations where

K =
κ

µ2
D
ln

(
2(f(x0)− f(x∗))

ε

)
, (25)

where κ
def
= L

µ is the condition number of f , we will have E
[
f(zK)

]
− f(x∗) ≤ ε.

4 STOCHASTIC MOMENTUM THREE POINTS WITH IMPORTANCE SAMPLING
(SMTP_IS)

In this section we consider another assumption, in a similar spirit to Bibi et al. (2019), on the objective.

Assumption 4.1 (Coordinate-wise L-smoothness). We assume that the objective f has coordinate-
wise Lipschitz gradient, with Lipschitz constants L1, . . . , Ld > 0, i.e.

f(x+ hei) ≤ f(x) +∇if(x)h+
Li
2
h2, ∀x ∈ Rd, h ∈ R, (26)

where∇if(x) is i-th partial derivative of f at the point x.

For this kind of problems we modify SMTP and present STMP_IS method in Algorithm 2. In general,
the idea behind methods with importance sampling and, in particular, behind SMTP_IS is to adjust
probabilities of sampling in such a way that gives better convergence guarantees. In the case when f
satisfies coordinate-wise L-smoothness and Lipschitz constants Li are known it is natural to sample
direction sk = ei with probability depending on Li (e.g. proportional to Li). One can find more
detailed discussion of the importance sampling in Zhao & Zhang (2015) and Richtárik & Takáč
(2016).

Now, we establish the key result which will be used to prove the main complexity results of STMP_IS.
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Algorithm 2 SMTP_IS: Stochastic Momentum Three Points with Importance Sampling
Require: stepsize parameters w1, . . . , wn > 0, probabilities p1, . . . , pn > 0 summing to 1, starting

point x0 ∈ Rd, 0 ≤ β < 1 — momentum parameter
1: Set v−1 = 0 and z0 = x0

2: for k = 0, 1, . . . do
3: Select ik = i with probability pi > 0
4: Choose stepsize γki proportional to 1

wik

5: Let vk+ = βvk−1 + eik and vk− = βvk−1 − eik
6: Let xk+1

+ = xk − γki vk+ and xk+1
− = xk − γki vk−

7: Let zk+1
+ = xk+1

+ − γk
i β

1−β v
k
+ and zk+1

− = xk+1
− − γk

i β
1−β v

k
−

8: Set zk+1 = argmin
{
f(zk), f(zk+1

+ ), f(zk+1
− )

}
9: Set xk+1 =


xk+1
+ , if zk+1 = zk+1

+

xk+1
− , if zk+1 = zk+1

−
xk, if zk+1 = zk

and vk+1 =


vk+1
+ , if zk+1 = zk+1

+

vk+1
− , if zk+1 = zk+1

−
vk, if zk+1 = zk

10: end for

Lemma 4.1. Assume that f satisfies Assumption 4.1. Then for the iterates of SMTP_IS the following
inequalities hold:

f(zk+1) ≤ f(zk)− γki
1− β

|∇ikf(zk)|+
Lik(γ

k
i )

2

2(1− β)2
(27)

and

Esk∼D
[
f(zk+1)

]
≤ f(zk)− 1

1− β
E
[
γki |∇ikf(zk)| | zk

]
+

1

2(1− β)2
E
[
Lik(γ

k
i )

2 | zk
]
. (28)

Due to the page limitation, we provide the complexity results of SMTP_IS in the Appendix.

5 EXPERIMENTS

Experimental Setup. We conduct extensive experiments3 on challenging non-convex problems on
the continuous control task from the MuJoCO suit Todorov et al. (2012). In particular, we address
the problem of model-free control of a dynamical system. Policy gradient methods for model-free
reinforcement learning algorithms provide an off-the-shelf model-free approach to learn how to
control a dynamical system and are often benchmarked in a simulator. We compare our proposed
momentum stochastic three points method SMTP and the momentum with importance sampling
version SMTP_IS against state-of-art DFO based methods as STP_IS Bibi et al. (2019) and ARS
Mania et al. (2018). Moreover, we also compare against classical policy gradient methods as TRPO
Schulman et al. (2015) and NG Rajeswaran et al. (2017). We conduct experiments on several
environments with varying difficulty Swimmer-v1, Hopper-v1, HalfCheetah-v1, Ant-v1,
and Humanoid-v1.

Note that due to the stochastic nature of problem where f is stochastic, we use the mean of the
function values of f(xk), f(xk+) and f(xk−), see Algorithm 1, over K observations. Similar to the
work in Bibi et al. (2019), we use K = 2 for Swimmer-v1, K = 4 for both Hopper-v1 and
HalfCheetah-v1, K = 40 for Ant-v1 and Humanoid-v1. Similar to Bibi et al. (2019), these
values were chosen based on the validation performance over the grid that is K ∈ {1, 2, 4, 8, 16}
for the smaller dimensional problems Swimmer-v1, Hopper-v1, HalfCheetah-v1 and
K ∈ {20, 40, 80, 120} for larger dimensional problems Ant-v1, and Humanoid-v1. As for
the momentum term, for SMTP we set β = 0.5. For SMTP_IS, as the smoothness constants
are not available for continuous control, we use the coordinate smoothness constants of a θ pa-
rameterized smooth function f̂θ (multi-layer perceptron) that estimates f . In particular, consider
running any DFO for n steps; with the queried sampled {xi, f(xi)}ni=1, we estimate f by solving
θn+1 = argminθ

∑
i(f(xi)− f̂(xi; θ))2. See Bibi et al. (2019) for further implementation details

3The code will be made available online upon acceptance of this work.
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Figure 1: SMTP is far superior to STP on all 5 different MuJoCo tasks particularly on the high
dimensional Humanoid-v1 problem. The horizontal dashed lines are the thresholds used in Table
2 to demonstrate complexity of each method.

Table 2: For each MuJoCo task, we report the average number of episodes required to achieve a
predefined reward threshold. Results for our method is averaged over five random seeds, the rest is
copied from (Mania et al., 2018) (N/A means the method failed to reach the threshold. UNK means
the results is unknown since they are not reported in the literature.)

Threshold STP STPIS SMTP SMTPIS ARS(V1-t) ARS(V2-t) NG-lin TRPO-nn

Swimmer-v1 325 320 110 80 100 100 427 1450 N/A
Hopper-v1 3120 3970 2400 1264 1408 51840 1973 13920 10000

HalfCheetah-v1 3430 13760 4420 1872 1624 8106 1707 11250 4250
Ant-v1 3580 107220 43860 19890 14420 58133 20800 39240 73500

Humanoid-v1 6000 N/A 530200 161230 207160 N/A 142600 130000 UNK

as we follow the same experimental procedure. In contrast to STP_IS, our method (SMTP) does not
required sampling from directions in the canonical basis; hence, we use directions from standard
Normal distribution in each iteration. For SMTP_IS, we follow a similar procedure as Bibi et al.
(2019) and sample from columns of a random matrix B.

Similar to the standard practice, we perform all experiments with 5 different initialization and measure
the average reward, in continuous control we are maximizing the reward function f , and best and
worst run per iteration. We compare algorithms in terms of reward vs. sample complexity.

Comparison Against STP. Our method improves sample complexity of STP and STP_IS sig-
nificantly. Especially for high dimensional problems like Ant-v1 and Humanoid-v1, sample
efficiency of SMTP is at least as twice as the STP. Moreover, SMTP_IS helps in some experiments by
improving over SMTP. However, this is not consistent in all environments. We believe this is largely
due to the fact that SMTP_IS can only handle sampling from canonical basis similar to STP_IS.

Comparison Against State-of-The-Art. We compare our method with state-of-the-art
DFO and policy gradient algorithms. For the environments, Swimmer-v1, Hopper-v1,
HalfCheetah-v1 and Ant-v1, our method outperforms the state-of-the-art results. Whereas for
Humanoid-v1, our methods results in a comparable sample complexity.

6 CONCLUSION

We have proposed, SMTP, the first heavy ball momentum DFO based algorithm with convergence
rates for non-convex, convex and strongly convex functions under generic sampling direction. We
specialize the sampling to the set of coordinate bases and further improve rates by proposing a
momentum and importance sampling version SMPT_IS with new convergence rates for non-convex,
convex and strongly convex functions too. We conduct large number of experiments on the task of
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controlling dynamical systems. We outperform two different policy gradient methods and achieve
comparable or better performance to the best DFO algorithm (ARS) on the respective environments.
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A Stochastic Derivative Free Optimization Method with
Momentum

(Supplementary Material)

A PRELIMINARIES

We first list the main assumptions.

Assumption A.1. (L-smoothness) We say that f is L-smooth if:

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ∀x, y ∈ Rd. (29)

Assumption A.2. The probability distribution D on Rd satisfies the following properties:

1. The quantity γD
def
= Es∼D‖s‖22 is positive and finite.

2. There is a constant µD > 0 and norm ‖ · ‖D on Rd such that for all g ∈ Rd

Es∼D|〈g, s〉| ≥ µD‖g‖D. (30)

We establish the key lemma which will be used to prove the theorems stated in the paper.

Lemma A.1. Assume that f is L-smooth and D satisfies Assumption A.2. Then for the iterates of
SMTP the following inequalities hold:

f(zk+1) ≤ f(zk)− γk

1− β
|〈∇f(zk), sk〉|+ L(γk)2

2(1− β)2
‖sk‖22 (31)

and

Esk∼D
[
f(zk+1)

]
≤ f(zk)− γkµD

1− β
‖∇f(zk)‖D +

L(γk)2γD
2(1− β)2

. (32)

Proof. By induction one can show that

zk = xk − γkβ

1− β
vk−1. (33)

That is, for k = 0 this recurrence holds and update rules for zk, xk and vk−1 do not brake it. From
this we get

zk+1
+ = xk+1

+ − γkβ

1− β
vk+ = xk − γkvk+ −

γkβ

1− β
vk+

= xk − γk

1− β
vk+ = xk − γkβ

1− β
vk−1 − γk

1− β
sk

(33)
= zk − γk

1− β
sk.

Similarly,

zk+1
− = xk+1

− − γkβ

1− β
vk− = xk − γkvk− −

γkβ

1− β
vk−

= xk − γk

1− β
vk− = xk − γkβ

1− β
vk−1 +

γk

1− β
sk

(33)
= zk +

γk

1− β
sk.
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It implies that

f(zk+1
+ )

(3)
≤ f(zk) + 〈∇f(zk), zk+1

+ − zk〉+
L

2
‖zk+1

+ − zk‖22

= f(zk)− γk

1− β
〈∇f(zk), sk〉+ L(γk)2

2(1− β)2
‖sk‖22

and

f(zk+1
− ) ≤ f(zk) +

γk

1− β
〈∇f(zk), sk〉+ L(γk)2

2(1− β)2
‖sk‖22.

Unifying these two inequalities we get

f(zk+1) ≤ min{f(zk+1
+ ), f(zk+1

− )} = f(zk)− γk

1− β
|〈∇f(zk), sk〉|+ L(γk)2

2(1− β)2
‖sk‖22,

which proves (31). Finally, taking the expectation Esk∼D of both sides of the previous inequality and
invoking Assumption A.2, we obtain

Esk∼D
[
f(zk+1)

]
≤ f(zk)− γkµD

1− β
‖∇f(zk)‖D +

L(γk)2γD
2(1− β)2

.

B NON-CONVEX CASE

Theorem B.1. Let Assumptions A.1 and A.2 be satisfied. Let SMTP with γk ≡ γ > 0 produce points
{z0, z1, . . . , zK−1} and zK is chosen uniformly at random among them. Then

E
[
‖∇f(zK)‖D

]
≤ (1− β)(f(x0)− f(x∗))

KγµD
+

LγγD
2µD(1− β)

. (34)

Moreover, if we choose γ = γ0√
K

the complexity (34) reduces to

E
[
‖∇f(zK)‖D

]
≤ 1√

K

(
(1− β)(f(z0)− f(x∗))

γ0µD
+

Lγ0γD
2µD(1− β)

)
. (35)

Then γ0 =
√

2(1−β)2(f(x0)−f(x∗))
LγD

minimizes the right-hand side of (35) and for this choice we have

E
[
‖∇f(zK)‖D

]
≤
√

2 (f(x0)− f(x∗))LγD
µD
√
K

. (36)

Proof. Taking full expectation from both sides of inequality (32) we get

E
[
‖∇f(zk)‖D

]
≤

(1− β)E
[
f(zk)− f(zk+1)

]
γµD

+
LγγD

2µD(1− β)
.

Further, summing up the results for k = 0, 1, . . . ,K−1, dividing both sides of the obtained inequality
by K and using tower property of the mathematical expectation we get

E
[
‖∇f(zK)‖D

]
=

1

K

K−1∑
k=0

E
[
‖∇f(zk)‖D

]
≤ (1− β)(f(z0)− f(x∗))

KγµD
+

LγγD
2µD(1− β)

.

The last part where γ = γ0√
K

is straightforward.
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C CONVEX CASE

Assumption C.1. We assume that f is convex, has a minimizer x∗ and has bounded level set at x0:

R0
def
= max

{
‖x− x∗‖∗D | f(x) ≤ f(x0)

}
< +∞, (37)

where ‖ξ‖∗D
def
= max {〈ξ, x〉 | ‖x‖D ≤ 1} defines the dual norm to ‖ · ‖D.

Theorem C.1 (Constant stepsize). Let Assumptions A.1, A.2 and C.1 be satisfied. If we set γk ≡
γ < (1−β)R0

µD
, then for the iterates of SMTP method the following inequality holds:

E
[
f(zk)− f(x∗)

]
≤
(
1− γµD

(1− β)R0

)k (
f(x0)− f(x∗)

)
+

LγγDR0

2(1− β)µD
. (38)

If we choose γ = ε(1−β)µD
LγDR0

for some 0 < ε ≤ LγDR
2
0

µ2
D

and run SMTP for k = K iterations where

K =
1

ε

LγDR
2
0

µ2
D

ln

(
2(f(x0)− f(x∗))

ε

)
, (39)

then we will get E
[
f(zK)

]
− f(x∗) ≤ ε.

Proof. From the (32) and monotonicity of {f(zk)}k≥0 we have

Es∼D
[
f(zk+1)

]
≤ f(zk)− γµD

1− β
‖∇f(zk)‖D +

Lγ2γD
2(1− β)2

(14)
≤ f(zk)− γµD

(1− β)R0
(f(zk)− f(x∗)) + Lγ2γD

2(1− β)2
.

Taking full expectation, subtracting f(x∗) from the both sides of the previous inequality and using
the tower property of mathematical expectation we get

E
[
f(zk+1)− f(x∗)

]
≤
(
1− γµD

(1− β)R0

)
E
[
f(zk)− f(x∗)

]
+

Lγ2γD
2(1− β)2

. (40)

Since γ < (1−β)R0

µD
the term 1− γµD

(1−β)R0
is positive and we can unroll the recurrence (40):

E
[
f(zk)− f(x∗)

]
≤

(
1− γµD

(1− β)R0

)k (
f(z0)− f(x∗)

)
+

Lγ2γD
2(1− β)2

k−1∑
l=0

(
1− γµD

(1− β)R0

)l
≤

(
1− γµD

(1− β)R0

)k (
f(x0)− f(x∗)

)
+

Lγ2γD
2(1− β)2

∞∑
l=0

(
1− γµD

(1− β)R0

)l
≤

(
1− γµD

(1− β)R0

)k (
f(x0)− f(x∗)

)
+

Lγ2γD
2(1− β)2

· (1− β)R0

γµD

=

(
1− γµD

(1− β)R0

)k (
f(x0)− f(x∗)

)
+

LγγDR0

2(1− β)µD
.

Lastly, putting γ = ε(1−β)µD
LγDR0

and k = K from (39) in (38) we have

E[f(zK)]− f(x∗) =

(
1− εµ2

D
LγDR2

0

)K (
f(x0)− f(x∗)

)
+
ε

2

≤ exp

{
−K · εµ2

D
LγDR2

0

}(
f(x0)− f(x∗)

)
+
ε

2
(39)
=

ε

2
+
ε

2
= ε.
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Next we use technical lemma from Mishchenko et al. (2019). We provide the original proof for
completeness.

Lemma C.1 (Lemma 6 from Mishchenko et al. (2019)). Let a sequence {ak}k≥0 satisfy inequality
ak+1 ≤ (1−γkα)ak+(γk)2N for any positive γk ≤ γ0 with some constants α > 0, N > 0, γ0 > 0.
Further, let θ ≥ 2

γ0
and take C such that N ≤ αθ

4 C and a0 ≤ C. Then, it holds

ak ≤ C
α
θ k + 1

if we set γk = 2
αk+θ .

Proof. We will show the inequality for ak by induction. Since inequality a0 ≤ C is one of our
assumptions, we have the initial step of the induction. To prove the inductive step, consider

ak+1 ≤ (1− γkα)ak + (γk)2N ≤
(
1− 2α

αk + θ

)
θC

αk + θ
+ θα

C

(αk + θ)2
.

To show that the right-hand side is upper bounded by θC
α(k+1)+θ , one needs to have, after multiplying

both sides by (αk + θ)(αk + α+ θ)(θC)−1,(
1− 2α

αk + θ

)
(αk + α+ θ) + α

αk + α+ θ

αk + θ
≤ αk + θ,

which is equivalent to

α− ααk + α+ θ

αk + θ
≤ 0.

The last inequality is trivially satisfied for all k ≥ 0.

Theorem C.2 (Decreasing stepsizes). Let Assumptions A.1, A.2 and C.1 be satisfied. If we set
γk = 2

αk+θ , where α = µD
(1−β)R0

and θ ≥ 2
α , then for the iterates of SMTP method the following

inequality holds:

E
[
f(zk)

]
− f(x∗) ≤ 1

ηk + 1
max

{
f(x0)− f(x∗), 2LγD

αθ(1− β)2

}
, (41)

where η
def
= α

θ . Then, if we choose γk = 2α
α2k+2 where α = µD

(1−β)R0
and run SMTP for k = K

iterations where

K =
1

ε
· 2R

2
0

µ2
D

max
{
(1− β)2(f(x0)− f(x∗)), LγD

}
− 2(1− β)2R2

0

µ2
D

, ε > 0, (42)

we get E
[
f(zK)

]
− f(x∗) ≤ ε.

Proof. In (40) we proved that

E
[
f(zk+1)− f(x∗)

]
≤
(
1− γµD

(1− β)R0

)
E
[
f(zk)− f(x∗)

]
+

Lγ2γD
2(1− β)2

.

Having that, we can apply Lemma C.1 to the sequence E
[
f(zk)− f(x∗)

]
. The constants for

the lemma are: N = LγD
2(1−β)2 , α = µD

(1−β)R0
and C = max

{
f(x0)− f(x∗), 2LγD

αθ(1−β)2

}
. Lastly,

choosing γk = 2α
α2k+2 is equivalent to the choice θ = 2

α . In this case, we have αθ = 2, C =

max
{
f(x0)− f(x∗), LγD

(1−β)2

}
and η = α

θ = α2

2 =
µ2
D

2(1−β)2R2
0

. Putting these parameters and K
from (42) in the (41) we get the result.
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D STRONGLY CONVEX CASE

Assumption D.1. We assume that f is µ-strongly convex with respect to the norm ‖ · ‖∗D:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
(‖y − x‖∗D)

2
, ∀x, y ∈ Rd. (43)

It is well known that strong convexity implies

‖∇f(x)‖2D ≥ 2µ (f(x)− f(x∗)) . (44)

Theorem D.1 (Solution-dependent stepsizes). Let Assumptions A.1, A.2 and D.1 be satisfied. If we
set γk = (1−β)θkµD

L

√
2µ(f(zk)− f(x∗)) for some θk ∈ (0, 2) such that θ = inf

k≥0
{2θk − γDθ2k} ∈(

0, L
µ2
Dµ

)
, then for the iterates of SMTP the following inequality holds:

E
[
f(zk)

]
− f(x∗) ≤

(
1− θµ2

Dµ

L

)k (
f(x0)− f(x∗)

)
. (45)

If we run SMTP for k = K iterations where

K =
κ

θµ2
D
ln

(
f(x0)− f(x∗)

ε

)
, ε > 0, (46)

where κ
def
= L

µ is the condition number of the objective, we will get E
[
f(zK)

]
− f(x∗) ≤ ε.

Proof. From (32) and γk = θkµD
L

√
2µ(f(xk)− f(x∗)) we have

Esk∼D
[
f(zk+1)

]
− f(x∗) ≤ f(zk)− f(x∗)− γkµD

1− β
‖∇f(zk)‖D +

L(γk)2γD
2(1− β)2

(44)
≤ f(zk)− f(x∗)− γkµD

1− β

√
2µ(f(zk)− f(x∗))

+
γDθ

2
kµ

2
Dµ

L
(f(zk)− f(x∗))

≤ f(zk)− f(x∗)− 2θkµ2
Dµ

L
(f(zk)− f(x∗))

+
γDθ

2
kµ

2
Dµ

L
(f(zk)− f(x∗))

≤
(
1− (2θk − γDθ2k)

µ2
Dµ

L

)
(f(zk)− f(x∗)).

Using θ = inf
k≥0
{2θk−γDθ2k} ∈

(
0, L

µ2
Dµ

)
and taking the full expectation from the previous inequality

we get

E
[
f(zk+1)− f(x∗)

]
≤

(
1− θµ2

Dµ

L

)
E
[
f(zk)− f(x∗)

]
≤

(
1− θµ2

Dµ

L

)k+1 (
f(x0)− f(x∗)

)
.

Lastly, from (45) we have

E
[
f(zK)

]
− f(x∗) ≤

(
1− θµ2

Dµ

L

)K (
f(x0)− f(x∗)

)
≤ exp

{
−Kθµ2

Dµ

L

}(
f(x0)− f(x∗)

)
(46)
≤ ε.
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Assumption D.2. We assume that for all s ∼ D we have ‖s‖2 = 1.
Theorem D.2 (Solution-free stepsizes). Let Assumptions A.1, A.2, D.1 and D.2 be satisfied. If
additionally we compute f(zk + tsk), set γk = (1−β)|f(zk+tsk)−f(zk)|

Lt for t > 0 and assume that D
is such that µ2

D ≤ L
µ , then for the iterates of SMTP the following inequality holds:

E
[
f(zk)

]
− f(x∗) ≤

(
1− µ2

Dµ

L

)k (
f(x0)− f(x∗)

)
+

L2t2

8µ2
Dµ

. (47)

Moreover, for any ε > 0 if we set t such that

0 < t ≤
√

4εµ2
Dµ

L2
, (48)

and run SMTP for k = K iterations where

K =
κ

µ2
D
ln

(
2(f(x0)− f(x∗))

ε

)
, (49)

where κ
def
= L

µ is the condition number of f , we will have E
[
f(zK)

]
− f(x∗) ≤ ε.

Proof. Recall that from (31) we have

f(zk+1) ≤ f(zk)− γk

1− β
|〈∇f(zk), sk〉|+ L(γk)2

2(1− β)2
.

If we minimize the right hand side of the previous inequality as a function of γk, we will get that
the optimal choice in this sense is γkopt =

(1−β)|〈∇f(zk),sk〉|
L . However, this stepsize is impractical for

derivative-free optimization, since it requires to know∇f(zk). The natural way to handle this is to
approximate directional derivative 〈∇f(zk), sk〉 by finite difference f(zk+tsk)−f(zk)

t and that is what

we do. We choose γk = (1−β)|f(zk+tsk)−f(zk)|
Lt = (1−β)|〈∇f(zk),sk〉|

L + (1−β)|f(zk+tsk)−f(zk)|
Lt −

(1−β)|〈∇f(zk),sk〉|
L

def
= γkopt + δk. From this we get

f(zk+1) ≤ f(zk)− |〈∇f(z
k), sk〉|2

2L
+

L

2(1− β)2
(δk)2.

Next we estimate |δk|:

|δk| =
(1− β)
Lt

∣∣|f(zk + tsk)− f(zk)| − |〈∇f(zk), tsk〉|
∣∣

≤ (1− β)
Lt

∣∣f(zk + tsk)− f(zk)− 〈∇f(zk), tsk〉
∣∣

(3)
≤ (1− β)

Lt
· L
2
‖tsk‖22 =

(1− β)t
2

.

It implies that

f(zk+1) ≤ f(zk)− |〈∇f(z
k), sk〉|2

2L
+

L

2(1− β)2
· (1− β)

2t2

4

= f(zk)− |〈∇f(z
k), sk〉|2

2L
+
Lt2

8
and after taking full expectation from the both sides of the obtained inequality we get

E
[
f(zk+1)− f(x∗)

]
≤ E

[
f(zk)− f(x∗)

]
− 1

2L
E
[
|〈∇f(zk), sk〉|2

]
+
Lt2

8
.

Note that from the tower property of mathematical expectation and Jensen’s inequality we have

E
[
|〈∇f(zk), sk〉|2

]
= E

[
Esk∼D

[
|〈∇f(zk), sk〉|2 | zk

]]
≥ E

[(
Esk∼D

[
|〈∇f(zk), sk〉| | zk

])2]
(30)
≥ E

[
µ2
D‖∇f(zk)‖2D

] (44)
≥ 2µ2

DµE
[
f(zk)− f(x∗)

]
.
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Putting all together we get

E
[
f(zk+1)− f(x∗)

]
≤
(
1− µ2

Dµ

L

)
E
[
f(zk)− f(x∗)

]
+
Lt2

8
.

Due to µ2
D ≤ L

µ we have

E
[
f(zk)− f(x∗)

]
≤

(
1− µ2

Dµ

L

)k (
f(x0)− f(x∗)

)
+
Lt2

8

k−1∑
l=0

(
1− µ2

Dµ

L

)l

≤
(
1− µ2

Dµ

L

)k (
f(x0)− f(x∗)

)
+
Lt2

8

∞∑
l=0

(
1− µ2

Dµ

L

)l

=

(
1− µ2

Dµ

L

)k (
f(x0)− f(x∗)

)
+

L2t2

8µ2
Dµ

.

Lastly, from (47) we have

E
[
f(zK)

]
− f(x∗) ≤

(
1− µ2

Dµ

L

)K (
f(x0)− f(x∗)

)
+

L2t2

8µ2
Dµ

(48)
≤ exp

{
−Kµ2

Dµ

L

}(
f(x0)− f(x∗)

)
+
ε

2
(49)
≤ ε

2
+
ε

2
= ε.
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E SMTP_IS: STOCHASTIC MOMENTUM THREE POINTS WITH IMPORTANCE
SAMPLING

Again by definition of zk+1 we get that the sequence {f(zk)}k≥0 is monotone:

f(zk+1) ≤ f(zk) ∀k ≥ 0. (50)

Lemma E.1. Assume that f satisfies Assumption 4.1. Then for the iterates of SMTP_IS the following
inequalities hold:

f(zk+1) ≤ f(zk)− γki
1− β

|∇ikf(zk)|+
Lik(γ

k
i )

2

2(1− β)2
(51)

and

Esk∼D
[
f(zk+1)

]
≤ f(zk)− 1

1− β
E
[
γki |∇ikf(zk)| | zk

]
+

1

2(1− β)2
E
[
Lik(γ

k
i )

2 | zk
]
. (52)

Proof. In the similar way as in Lemma A.1 one can show that

zk = xk − γki β

1− β
vk−1 (53)

and

zk+1
+ = zk − γki

1− β
eik ,

zk+1
− = zk +

γki
1− β

eik .

It implies that

f(zk+1
+ )

(26)
≤ f(zk)− γki

1− β
∇if(zk) +

Lik(γ
k
i )

2

2(1− β)2

and

f(zk+1
− ) ≤ f(zk) +

γki
1− β

∇if(zk) +
Lik(γ

k
i )

2

2(1− β)2
.

Unifying these two inequalities we get

f(zk+1) ≤ min{f(zk+1
+ ), f(zk+1

− )} = f(zk)− γki
1− β

|∇if(zk)|+
Lik(γ

k
i )

2

2(1− β)2
,

which proves (51). Finally, taking the expectation E[· | zk] conditioned on zk from the both sides of
the previous inequality we obtain

E
[
f(zk+1) | zk

]
≤ f(zk)− 1

1− β
E
[
γki |∇ikf(zk)| | zk

]
+

1

2(1− β)2
E
[
Lik(γ

k
i )

2 | zk
]
.

E.1 NON-CONVEX CASE

Theorem E.1. Assume that f satisfies Assumption 4.1. Let SMTP_IS with γki = γ
wik

for some

γ > 0 produce points {z0, z1, . . . , zK−1} and zK is chosen uniformly at random among them. Then

E
[
‖∇f(zK)‖1

]
≤ (1− β)(f(x0)− f(x∗))

Kγ min
i=1,...,d

pi
wi

+
γ

2(1− β) min
i=1,...,d

pi
wi

d∑
i=1

Lipi
w2
i

. (54)
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Moreover, if we choose γ = γ0√
K

, then

E
[
‖∇f(zK)‖1

]
≤ 1√

K min
i=1,...,d

pi
wi

(
(1− β)(f(x0)− f(x∗))

γ0
+

γ0
2(1− β)

d∑
i=1

Lipi
w2
i

)
. (55)

Note that if we choose γ0 =
√

2(1−β)2(f(x0)−f(x∗))
d∑

i=1

Lipi
w2

i

in order to minimize right-hand side of (55), we

will get

E
[
‖∇f(zK)‖1

]
≤

√
2 (f(x0)− f(x∗))

d∑
i=1

Lipi
w2

i

√
K min

i=1,...,d

pi
wi

. (56)

Note that for pi = Li/
∑d

i Li with wi = Li we have that the rates improves to

E
[
‖∇f(zK)‖1

]
≤

√
2(f(x0)− f(x∗))d

∑d
i=1 Li√

K
. (57)

Proof. Recall that from (52) we have

E
[
f(zk+1) | zk

]
≤ f(zk)− 1

1− β
E
[
γki |∇ikf(zk)| | zk

]
+

1

2(1− β)2
E
[
Lik(γ

k
i )

2 | zk
]
. (58)

Using our choice γki = γ
wik

we derive

E
[
γki |∇ikf(zk)| | zk

]
= γ

d∑
i=1

pi
wi
|∇if(zk)| ≥ γ‖∇f(zk)‖1 min

i=1,...,d

pi
wi

and

E
[
Lik(γ

k
i )

2 | zk
]
= γ2

d∑
i=1

Lipi
w2
i

.

Putting it in (58) and taking full expectation from the both sides of obtained inequality we get

E
[
f(zk+1)

]
≤ E

[
f(zk)

]
−
γ min
i=1,...,d

pi
wi

1− β
E‖∇f(zk)‖1 +

γ2

2(1− β)2
d∑
i=1

Lipi
w2
i

,

whence

‖∇f(zk)‖1 ≤
(1− β)

(
E
[
f(zk)

]
−E

[
f(zk+1)

])
γ min
i=1,...,d

pi
wi

+
γ

2(1− β) min
i=1,...,d

pi
wi

d∑
i=1

Lipi
w2
i

.

Summing up previous inequality for k = 0, 1, . . . ,K − 1 and dividing both sides of the result by K,
we get

1

K

K−1∑
k=0

E
[
‖∇f(zk)‖1

]
≤ (1− β)(f(z0)− f(x∗))

Kγ min
i=1,...,d

pi
wi

+
γ

2(1− β) min
i=1,...,d

pi
wi

d∑
i=1

Lipi
w2
i

.

It remains to notice that 1
K

K−1∑
k=0

E
[
‖∇f(zk)‖1

]
= E

[
‖∇f(zK)‖1

]
. The last part where γ = γ0√

K
is

straightforward.
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E.2 CONVEX CASE

As for SMTP to tackle convex problems by SMTP_IS we use Assumption 3.2 with ‖ · ‖D = ‖ · ‖1.
Note that in this case R0 = max

{
‖x− x∗‖∞ | f(x) ≤ f(x0)

}
.

Theorem E.2 (Constant stepsize). Let Assumptions 3.2 and 4.1 be satisfied. If we set γki = γ
wik

such

that 0 < γ ≤ (1−β)R0

min
i=1,...,d

pi
wi

, then for the iterates of SMTP_IS method the following inequality holds:

E
[
f(zk)− f(x∗)

]
≤

1−
γ min
i=1,...,d

pi
wi

(1− β)R0

k (
f(z0)− f(x∗)

)
+

γR0

2(1− β) min
i=1,...,d

pi
wi

d∑
i=1

Lipi
w2
i

.

(59)

Moreover, if we choose γ =
ε(1−β) min

i=1,...,d

pi
wi

R0

d∑
i=1

Lipi
w2

i

for some 0 < ε ≤
R2

0

d∑
i=1

Lipi
w2

i

min
i=1,...,d

p2
i

w2
i

and run SMTP_IS for

k = K iterations where

K =
1

ε

R2
0

d∑
i=1

Lipi
w2

i

min
i=1,...,d

p2i
w2

i

ln

(
2(f(x0)− f(x∗))

ε

)
, (60)

we will get E
[
f(zK)

]
− f(x∗) ≤ ε. Moreover, for pi = Li/

∑d
i Li with wi = Li, the rate improves

to

K =
1

ε
R2

0d

d∑
i=1

Li ln

(
2(f(x0)− f(x∗))

ε

)
. (61)

Proof. Recall that from (52) we have

E
[
f(zk+1) | zk

]
≤ f(zk)− 1

1− β
E
[
γki |∇ikf(zk)| | zk

]
+

1

2(1− β)2
E
[
Lik(γ

k
i )

2 | zk
]
. (62)

Using our choice γki = γ
wik

we derive

E
[
γki ∇ikf(zk) | zk

]
= γ

d∑
i=1

pi
wi
|∇if(zk)| ≥ γ‖∇f(zk)‖1 min

i=1,...,d

pi
wi

(14)
≥ γ

R0
min

i=1,...,d

pi
wi

(
f(zk)− f(x∗)

)
and

E
[
Lik(γ

k
i )

2 | zk
]
= γ2

d∑
i=1

Lipi
w2
i

.

Putting it in (62) and taking full expectation from the both sides of obtained inequality we get

E
[
f(zk+1)− f(x∗)

]
≤

1−
γ min
i=1,...,d

pi
wi

(1− β)R0

E
[
f(zk)− f(x∗)

]
+

γ2

2(1− β)2
d∑
i=1

Lipi
w2
i

. (63)
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Due to our choice of γ ≤ (1−β)R0

min
i=1,...,d

pi
wi

we have that the factor
(
1− γ

(1−β)R0
min

i=1,...,d

pi
wi

)
is non-

negative and, therefore,

E
[
f(zk)− f(x∗)

]
≤

(
1− γ

(1− β)R0
min

i=1,...,d

pi
wi

)k (
f(z0)− f(x∗)

)
+

(
γ2

2(1− β)2
d∑
i=1

Lipi
w2
i

)
k−1∑
l=0

(
1− γ

(1− β)R0
min

i=1,...,d

pi
wi

)l
≤

(
1− γ

(1− β)R0
min

i=1,...,d

pi
wi

)k (
f(z0)− f(x∗)

)
+

(
γ2

2(1− β)2
d∑
i=1

Lipi
w2
i

) ∞∑
l=0

(
1− γ

(1− β)R0
min

i=1,...,d

pi
wi

)l

≤

1−
γ min
i=1,...,d

pi
wi

(1− β)R0

k (
f(z0)− f(x∗)

)
+

γR0

2(1− β) min
i=1,...,d

pi
wi

d∑
i=1

Lipi
w2
i

.

Then, putting γ =
ε(1−β) min

i=1,...,d

pi
wi

R0

d∑
i=1

Lipi
w2

i

and k = K from (60) in (59) we have

E[f(zK)]− f(x∗) =

1−
ε min
i=1,...,d

p2i
w2

i

R2
0

d∑
i=1

Lipi
w2

i


K

(
f(z0)− f(x∗)

)
+
ε

2

≤ exp

−K ·
ε min
i=1,...,d

p2i
w2

i

R2
0

d∑
i=1

Lipi
w2

i


(
f(z0)− f(x∗)

)
+
ε

2

(60)
=

ε

2
+
ε

2
= ε.

Theorem E.3 (Decreasing stepsizes). Let Assumptions 3.2 and 4.1 be satisfied. If we set γki = γk

wik

and γk = 2
αk+θ , where α =

min
i=1,...,d

pi
wi

(1−β)R0
and θ ≥ 2

α , then for the iterates of SMTP_IS method the
following inequality holds:

E
[
f(zk)

]
− f(x∗) ≤ 1

ηk + 1
max

{
f(x0)− f(x∗), 2

αθ(1− β)2
d∑
i=1

Lipi
w2
i

}
, (64)

where η
def
= α

θ . Moreover, if we choose γk = 2α
α2k+2 where α =

min
i=1,...,d

pi
wi

(1−β)R0
and run SMTP_IS for

k = K iterations where

K =
1

ε
· 2R2

0

min
i=1,...,d

p2i
w2

i

max

{
(1− β)2(f(x0)− f(x∗)),

d∑
i=1

Lipi
w2
i

}
− 2(1− β)2R2

0

min
i=1,...,d

p2i
w2

i

, ε > 0,

(65)
we will get E

[
f(zK)

]
− f(x∗) ≤ ε.

Proof. In (63) we proved that

E
[
f(zk+1)− f(x∗)

]
≤

1−
γ min
i=1,...,d

pi
wi

(1− β)R0

E
[
f(zk)− f(x∗)

]
+

γ2

2(1− β)2
d∑
l=1

Lipi
w2
i

.
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Having that, we can apply Lemma C.1 to the sequence E
[
f(zk)− f(x∗)

]
. The con-

stants for the lemma are: N = 1
2(1−β)2

d∑
l=1

Lipi
w2

i
, α =

min
i=1,...,d

pi
wi

(1−β)R0
and C =

max

{
f(x0)− f(x∗), 2

αθ(1−β)2
d∑
i=1

Lipi
w2

i

}
. Lastly, note that choosing γk = 2α

α2k+2 is equivalent

to choice θ = 2
α . In this case we have αθ = 2 and C = max

{
f(x0)− f(x∗), 1

(1−β)2
d∑
i=1

Lipi
w2

i

}
and η = α

θ = α2

2 =
min

i=1,...,d

p2i
w2

i

2(1−β)2R2
0

. Putting these parameters and K from (65) in the (64) we get the
result.

E.3 STRONGLY CONVEX CASE

Theorem E.4 (Solution-dependent stepsizes). Let Assumptions 3.3 (with ‖ · ‖D = ‖ · ‖1) and 4.1

be satisfied. If we set γki =
(1−β)θk min

i=1,...,d

pi
wi

wik

d∑
i=1

Lipi
w2

i

√
2µ(f(zk)− f(x∗)) for some θk ∈ (0, 2) such that

θ = inf
k≥0
{2θk − θ2k} ∈

0,

d∑
i=1

Lipi
w2

i

µ min
i=1,...,d

p2
i

w2
i

, then for the iterates of SMTP_IS method the following

inequality holds:

E
[
f(zk)

]
− f(x∗) ≤

1−
θµ min

i=1,...,d

p2i
w2

i

d∑
i=1

Lipi
w2

i


k

(
f(x0)− f(x∗)

)
. (66)

If we run SMTP_IS for k = K iterations where

K =

d∑
i=1

Lipi
w2

i

θµ min
i=1,...,d

p2i
w2

i

ln

(
f(x0)− f(x∗)

ε

)
, ε > 0, (67)

we will get E
[
f(zK)

]
− f(x∗) ≤ ε.

Proof. Recall that from (52) we have

E
[
f(zk+1) | zk

]
≤ f(zk)− 1

1− β
E
[
γki |∇ikf(zk)| | zk

]
+

1

2(1− β)2
E
[
Lik(γ

k
i )

2 | zk
]
. (68)

Using our choice γki =
(1−β)θk min

i=1,...,d

pi
wi

wik

d∑
i=1

Lipi
w2

i

√
2µ(f(zk)− f(x∗)) we derive

E
[
γki ∇ikf(zk) | zk

]
=

(1− β)θk min
i=1,...,d

pi
wi

d∑
i=1

Lipi
w2

i

√
2µ(f(zk)− f(x∗))

d∑
i=1

pi
wi
|∇if(zk)|

≥
(1− β)θk

(
min

i=1,...,d

pi
wi

)2

d∑
i=1

Lipi
w2

i

√
2µ(f(zk)− f(x∗))‖∇f(zk)‖1

(20)
≥

2(1− β)θk min
i=1,...,d

p2i
w2

i

d∑
i=1

Lipi
w2

i

µ(f(zk)− f(x∗))

23



Published as a conference paper at ICLR 2020

and

E
[
Lik(γ

k
i )

2 | zk
]

=

2(1− β)2θ2k min
i=1,...,d

p2i
w2

i(
d∑
i=1

Lipi
w2

i

)2 µ(f(zk)− f(x∗))
d∑
i=1

Lipi
w2
i

=

2(1− β)2θ2k min
i=1,...,d

p2i
w2

i

d∑
i=1

Lipi
w2

i

µ(f(zk)− f(x∗)).

Putting it in (68) and taking full expectation from the both sides of obtained inequality we get

E
[
f(zk+1)− f(x∗)

]
≤

1− (2θ − θ2)
µ min
i=1,...,d

p2i
w2

i

d∑
i=1

Lipi
w2

i

E
[
f(zk)− f(x∗)

]
.

Using θ = inf
k≥0
{2θk − θ2k} ∈

0,

d∑
i=1

Lipi
w2

i

µ min
i=1,...,d

p2
i

w2
i

 we obtain

E
[
f(zk+1)− f(x∗)

]
≤

1−
θµ min

i=1,...,d

p2i
w2

i

d∑
i=1

Lipi
w2

i

E
[
f(zk)− f(x∗)

]

≤

1−
θµ min

i=1,...,d

p2i
w2

i

d∑
i=1

Lipi
w2

i


k+1

(
f(x0)− f(x∗)

)
.

Lasrtly, from (66) we have

E
[
f(zK)

]
− f(x∗) ≤

1−
θµ min

i=1,...,d

p2i
w2

i

d∑
i=1

Lipi
w2

i


K

(
f(x0)− f(x∗)

)

≤ exp

−K
θµ min

i=1,...,d

p2i
w2

i

d∑
i=1

Lipi
w2

i


(
f(x0)− f(x∗)

)
(67)
≤ ε.

The previous result based on the choice of γk which depends on the f(zk)− f(x∗) which is often
unknown in practice. The next theorem does not have this drawback and makes it possible to obtain
the same rate of convergence as in the previous theorem using one extra function evaluation.
Theorem E.5 (Solution-free stepsizes). Let Assumptions 3.3 (with ‖·‖D = ‖·‖2) and 4.1 be satisfied.

If additionally we compute f(zk + teik), set γki =
(1−β)|f(zk+teik )−f(z

k)|
Lik

t for t > 0, then for the
iterates of SMTP_IS method the following inequality holds:

E
[
f(zk)

]
− f(x∗) ≤

(
1− µ min

i=1,...,d

pi
Li

)k (
f(x0)− f(x∗)

)
+

t2

8µ min
i=1,...,d

pi
Li

d∑
i=1

piLi. (69)
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Moreover, for any ε > 0 if we set t such that

0 < t ≤

√√√√√√
4εµ min

l=1,...,d

pi
Li

d∑
i=1

piLi

, (70)

and run SMTP_IS for k = K iterations where

K =
1

µ min
i=1,...,d

pi
Li

ln

(
2(f(x0)− f(x∗))

ε

)
, (71)

we will get E
[
f(zK)

]
− f(x∗) ≤ ε. Moreover, note that for pi = Li/

∑d
i Li with wi = Li, the rate

improves to

K =

∑d
i=1 Li
µ

ln

(
2(f(x0)− f(x∗))

ε

)
. (72)

Proof. Recall that from (51) we have

f(zk+1) ≤ f(zk)− γki
1− β

|∇ikf(zk)|+
Lik(γ

k
i )

2

2(1− β)2
.

If we minimize the right hand side of the previous inequality as a function of γki , we will get that

the optimal choice in this sense is γkopt =
(1−β)|∇ik

f(zk)|
Lik

. However, this stepsize is impractical for

derivative-free optimization, since it requires to know ∇ikf(zk). The natural way to handle this is to

approximate directional derivative ∇ikf(zk) by finite difference f(zk+teik )−f(z
k)

t and that is what

we do. We choose γki =
(1−β)|f(zk+teik )−f(z

k)|
Lik

t =
(1−β)|∇ik

f(zk)|
Lik

+
(1−β)|f(zk+teik )−f(z

k)|
Lik

t −
(1−β)|∇ik

f(zk)|
Lik

def
= γkopt + δki . From this we get

f(zk+1) ≤ f(zk)− |∇ikf(z
k)|2

2Lik
+

Lik
2(1− β)2

(δki )
2.

Next we estimate |δki |:

|δki | =
(1− β)
Likt

∣∣|f(zk + teik)− f(zk)| − |∇ikf(zk)|t
∣∣

≤ (1− β)
Likt

∣∣f(zk + teik)− f(zk)−∇ikf(zk)t
∣∣

(26)
≤ (1− β)

Likt
· Likt

2

2
=

(1− β)t
2

.

It implies that

f(zk+1) ≤ f(zk)− |∇ikf(z
k)|2

2Lik
+

Lik
2(1− β)2

· (1− β)
2t2

4

= f(zk)− |∇ikf(z
k)|2

2Lik
+
Likt

2

8

and after taking expectation E
[
· | zk

]
conditioned on zk from the both sides of the obtained inequality

we get

E
[
f(zk+1) | zk

]
≤ f(zk)− 1

2
E

[
|∇ikf(zk)|2

Lik
| zk
]
+
t2

8
E
[
Lik | zk

]
.

Note that

E

[
|∇ikf(zk)|2

Lik
| zk
]

=

d∑
i=1

pi
Li
|∇if(zk)|2

≥ ‖∇f(zk)‖22 min
i=1,...,d

pi
Li

(44)
≥ 2µ

(
f(zk)− f(x∗)

)
min

i=1,...,d

pi
Li
,
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since ‖ · ‖D = ‖ · ‖2, and

E
[
Lik | zk

]
=

d∑
i=1

piLi.

Putting all together we get

E
[
f(zk+1) | zk

]
≤ f(zk)− µ min

i=1,...,d

pi
Li

(
f(zk)− f(x∗)

)
+
t2

8

d∑
i=1

piLi.

Taking full expectation from the previous inequality we get

E
[
f(zk+1)− f(x∗)

]
≤
(
1− µ min

i=1,...,d

pi
Li

)
E
[
f(zk)− f(x∗)

]
+
t2

8

d∑
i=1

piLi.

Since µ ≤ Li for all i = 1, . . . , d we have

E
[
f(zk)− f(x∗)

]
≤

(
1− µ min

i=1,...,d

pi
Li

)k (
f(x0)− f(x∗)

)
+

(
t2

8

d∑
i=1

piLi

)
k−1∑
l=0

(
1− µ min

i=1,...,d

pi
Li

)l
≤

(
1− µ min

i=1,...,d

pi
Li

)k (
f(x0)− f(x∗)

)
+

(
t2

8

d∑
i=1

piLi

) ∞∑
l=0

(
1− µ min

i=1,...,d

pi
Li

)l

=

(
1− µ min

i=1,...,d

pi
Li

)k (
f(x0)− f(x∗)

)
+

t2

8µ min
i=1,...,d

pi
Li

d∑
i=1

piLi.

Lastly, from (69) we have

E
[
f(zK)

]
− f(x∗) ≤

(
1− µ min

i=1,...,d

pi
Li

)K (
f(x0)− f(x∗)

)
+

t2

8µ min
i=1,...,d

pi
Li

d∑
i=1

piLi

(70)
≤ exp

{
−Kµ min

i=1,...,d

pi
Li

}(
f(x0)− f(x∗)

)
+
ε

2
(71)
≤ ε

2
+
ε

2
= ε.

E.4 COMPARISON OF SMTP AND SMTP_IS

Here we compare SMTP when D is normal distribution with zero mean and I
d covariance matrix

with SMTP_IS with probabilities pi = Li/
∑d

i=1 Li. We choose such a distribution for SMTP since
it shows the best dimension dependence among other distributions considered in Lemma F.1. Note
that if f satisfies Assumption 4.1, it is L-smooth with L = max

i=1,...,d
Li. So, we always have that∑d

i=1 Li ≤ dL. Table 3 summarizes complexities in this case.

We notice that for SMTP we have ‖ · ‖D = ‖ · ‖2. That is why one needs to compare SMTP with
SMTP_IS accurately. At the first glance, Table 3 says that for non-convex and convex cases we
get an extra d factor in the complexity of SMTP_IS when L1 = . . . = Ld = L. However, it is
natural since we use different norms for SMTP and SMTP_IS. In the non-convex case for SMTP
we give number of iterations in order to guarantee E

[
‖∇f(zK)‖2

]
≤ ε while for SMTP_IS we

provide number of iterations in order to guarantee E
[
‖∇f(zK)‖1

]
≤ ε. From Holder’s inequality
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Assumptions on f
SMTP

Compleixty
Theorem

Importance
Sampling

SMTP_IS

Complexity
Theorem

None πr0dL
ε2

3.1 pi =
Li∑d

i=1 Li

2r0d
∑d

i=1 Li

ε2
E.1

Convex, R0 <∞
πR2

0,`2
dL

2ε
ln

(
2r0
ε

)
3.2 pi =

Li∑d
i=1 Li

R2
0,`∞d

∑d
i=1 Li

ε
ln

(
2r0
ε

)
E.2

µ-strongly convex πdL
2µ

ln
(
2r0
ε

)
3.5 pi =

Li∑d
i=1 Li

∑d
i=1 Li

µ
ln

(
2r0
ε

)
E.5

Table 3: Comparison of SMTP with D = N
(
0, Id

)
and SMTP_IS with pi = Li/

∑d
i=1 Li. Here

r0 = f(x0) − f(x∗), R0,`2 corresponds to the R0 from Assumption C.1 with ‖ · ‖D = ‖ · ‖2 and
R0,`∞ corresponds to the R0 from Assumption C.1 with ‖ · ‖D = ‖ · ‖1.

‖ · ‖1 ≤
√
d‖ · ‖2 and, therefore, in order to have E

[
‖∇f(zK)‖1

]
≤ ε for SMTP we need to ensure

that E
[
‖∇f(zK)‖2

]
≤ ε√

d
. That is, to guarantee E

[
‖∇f(zK)‖1

]
≤ ε SMTP for aforementioned

distribution needs to perform πr0d
2L

ε2 iterations.

Analogously, in the convex case using Cauchy-Schwartz inequality ‖ · ‖2 ≤
√
d‖ · ‖∞ we have that

R0,`2 ≤
√
dR0,`∞ . Typically this inequality is tight and if we assume that R0,`∞ ≥ C

R0,`2√
d

, we will

get that SMTP_IS complexity is
R2

0,`2

∑d
i=1 Li

ε ln
(
2r0
ε

)
up to constant factor.

That is, in all cases SMTP_IS shows better complexity than SMTP up to some constant factor.

F AUXILIARY RESULTS

Lemma F.1 (Lemma 3.4 from Bergou et al. (2019)). Let g ∈ Rd.

1. If D is the uniform distribution on the unit sphere in Rd, then

γD = 1 and Es∼D | 〈g, s〉 | ∼
1√
2πd
‖g‖2. (73)

Hence, D satisfies Assumption 3.1 with γD = 1, ‖ · ‖D = ‖ · ‖2 and µD ∼ 1√
2πd

.

2. If D is the normal distribution with zero mean and identity over d as covariance matrix (i.e.
s ∼ N(0, Id )) then

γD = 1 and Es∼D | 〈g, s〉 | =
√
2√
dπ
‖g‖2. (74)

Hence, D satisfies Assumption 3.1 with γD = 1, ‖ · ‖D = ‖ · ‖2 and µD =
√
2√
dπ

.

3. If D is the uniform distribution on {e1, . . . , ed}, then

γD = 1 and Es∼D | 〈g, s〉 | =
1

d
‖g‖1. (75)

Hence, D satisfies Assumption 3.1 with γD = 1, ‖ · ‖D = ‖ · ‖1 and µD = 1
d .

4. If D is an arbitrary distribution on {e1, . . . , ed} given by P {s = ei} = pi > 0, then

γD = 1 and Es∼D | 〈g, s〉 | = ‖g‖D
def
=

d∑
i=1

pi|gi|. (76)

Hence, D satisfies Assumption 3.1 with γD = 1 and µD = 1.

5. If D is a distribution on D = {u1, . . . , ud} where u1, . . . , ud form an orthonormal basis of
Rd and P {s = di} = pi, then

γD = 1 and Es∼D | 〈g, s〉 | = ‖g‖D
def
=

d∑
i=1

pi|gi|. (77)
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Hence, D satisfies Assumption 3.1 with γD = 1 and µD = 1.
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