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Abstract

Convolutional Neural Networks (CNNs) have been a powerful feature extracting
method for various machine learning problems, but it is limited to a regular grid
shape spatial locations, e.g., pixels of images or GPS grids. However, due to
physical or privacy preserving problems, spatio-temporal data in the real world
often consist of irregular spatial locations. To overcome this limitation, we propose
Angle-based Convolutional Networks (ACNs) that leverages the local feature
extraction function of CNNs and the graph formulation of Graph Convolutional
Neural Networks (GCNs). Our method considers angles among spatial locations
and introduces coefficient weight for angle partitions that enables us to extract local
features appears in spatio-temporal data without regular grids.

1 Introduction

Spatio-temporal data analysis has attracted considerable interest from a wide range of applications in
which researchers tries to understand human activities in cities [8, 21], climate conditions [2, 23, 13],
public health [16, 14] and animal behavior in natural environments [10]. In these analyses, we assume
that spatio-temporal data is a multivariate time series that provides where and when each data was
obtained. Although spatio-temporal data inherit plenty of information about space and temporal
domains, its spatial location often has an irregular grid shape. For example, when we attempt to
deploy a sensor network system in a field, it is almost unfeasible to put sensors regularly due to
physical and governmental problems. The granularity of spatial locations is often limited to a certain
range, such as an administrative area, for protecting the anonymity of individuals [1]. This property
makes spatio-temporal data analysis more complicated than other applications assuming a regular
grid shape such as pixels in images [4].

Convolutional Neural Networks (CNNs) [7] is a workhorse in machine learning and has intensively
contributed to current improvements in spatio-temporal data analysis with regular spatial locations,
such as GPS grids [17, 20, 13]. Traditionally, they have utilized 2-dimensional convolution layers
of CNNs to extract local spatial features. Intuitively, it consists of weight corresponding to specific
locations of input data and learns local features by taking an inner product between its weight and
data patches. However, CNNs are limited to a regular grid location [19] and cannot apply to irregular
spatial locations that almost always appears in spatio-temporal data analysis.

Hi,j =

K∑
i′=1

K∑
j′=1

Ai′,j′Xi+i′,j+j′ + c, f(Hi,j) = σ(Hi,j) (1)

Graph Convolutional Networks (GCNs) [6] is a recently proposed method to consider a graph
structure among data features. GCNs can extract features from input data by taking an inner product
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Figure 1: (a) Convolutional layer. (b) Angle-based Convolutional layer. (c) An example of angle-
based convolutional layers with five nearest neighbors. This operation corresponds to take an inner
product of i-th row of W and t-th column vector of X .
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Figure 2: Spatio-temporal data analysis for block missing observation imputations.

among an adjacent graph matrix and a linear transformation matrix. Although GCNs have been
successfully applied to various kinds of spatio-temporal data analysis [9, 18], it has no function to
extract local features from the graph structure as CNNs does on grids. Because it does not consider
an angle between a spatial location and another location.

In this paper, we propose an Angle-based Convolutional Networks (ACNs) that leverages both the
virtue of CNNs and GCNs to extract local features from spatio-temporal data with irregular spacial
locations. By extending the convolutional layer of CNNs to consider both angles and distances among
spatial locations, we introduce an angle-based convolutional layer that divides 2π radian into discrete
partitions and assigns coefficient weight w for specific partitions. Then, from GPS information of
spatial locations, we obtain nearest neighbors of a spatial location and extract local features by taking
an inner product between input data, weights, and similarities among locations. We illustrate our
convolutional layer in Figures 1. We conduct experiments for imputing block missing observations of
real-world spatio-temporal data illustrated in 2 and show that denoising autoencoder [15] with our
method improves the performances from that with GCNs and other baselines.

2 Angle-based Convolution Networks (ACNs)

In this section, we introduce an angle-based convolutional networks for analyzing spatio-temporal
data with irregular spatial locations. Let us consider a case where we have spatio-temporal data
observed from P locations with T timestamps. We represent this multivariate time series as a matrix
X ∈ RP×T .

Here, we introduce notations for representing spatial information of sensor locations. We denote a
similarity matrix W ∈ RP×P between spatial locations whose elements wi,j ≥ 0 set to a positive
value if a pair of locations (i, j) has a relationship, or set to 0 otherwise. We split 2π radian into N
partitions and put coefficient weight a ∈ RN whose n-th element an is a weight for the n-th angle
partition of [2π(n− 1)/N, 2πn/N ], see Figure 1 (c). We additionally put a weight for a self-loop as
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aN+1. A bearing matrix B ∈ RP×P indicates angles from the i-th location to the j-th location that
means bi,j = bearing(latitudei, longtitudei, latitudej , longtitudej) [3]. We use B(a) to denote
a matrix whose (i, j)-th element was set to B(a)i,j = an if bi,j ∈ [2π(n − 1)/N, 2πn/N ]. Its
diagonal elements were set to aN+1. We define our angle-based convolutional layer as:

f(Xi,t) =
∑
j∈Ei

B(a)i,jWi,jXj,t + B(a)i,iWi,iXi,t (2)

where Ej is a set of neighbors of the i-th location. We illustrate an example of an our convolutional
layer in Figure 1 (c). With a matrix representation, our convolutional layer can be represented as :

H = (W ◦B(a))X, f(X;a) = σ(H)

where ◦ is the Hadamard product of tensors and σ is a rectification function, such as the sigmoid
function or the ReLU functions. For simplicity, the above definition only considers spatio-temporal
data with a single mode. It is straightforward to extend to any number of modalities.

3 Related works

With the above formulation, a convolutional layer of GCNs [6] can be defined as:

H = (D̃−
1
2 W̃ D̃−

1
2 )XV , f(X) = σ(H) (3)

where V ∈ RT×T ′
is a linear transformation matrix for the temporal domain, W̃ = W + IP is a

modified adjacent matrix with diagonal elements, IP is the identity matrix, and Di,j =
∑

i,j Wi,j .
Different from Eq. (3), it does not put any learnable weights for the adjacent graph matrix. Therefore,
this network is not able to extract local spatial features but just obtain a weighted mean of neighbors.
Li et al. [9] proposed the diffusion convolution layer to consider spatial dependencies by using
bidirectional random walks. However, they have not consider an angle based coefficients and thus
their goal is different from ours. In CV, a convolution-like operation on graph signals was proposed
for point cloud classifications [12]. Their application did not include spatio-temporal data analysis.
Thus the focus is different from ours.

4 Experiments

We conduct experiments for imputing block missing observations of spatio-temporal data as illustrated
in Figure 2. We employ trip record data sets provided by a bike sharing system 1 and NYC Taxi
Limousine commission 2 in New York City. From the bike sharing data set, we selected P = 91 bike
stations in Manhattan and counted the number of bikes returned at bike stations every hour from Jan.
2017 to Dec. 2017 (T = 8760) that means X ∈ R91×8569. We measured the road distance among
all bike stations and constructed an adjacent matrix W by k-nearest-neighbors with k = 5 where
weights were set to wi,j = 1 for simplicity. From the taxi data set, we obtained the number of yellow
and green cabs dropped their passenger at a taxi zone every hour from Jan. 2017 to Dec. 2017 and
selected P = 66 zones in Manhattan. Thus, we constructed a matrix X ∈ R66×8760. We checked a
road map of NYC and set wi,j = 1 if the i-th and j-th zones are connected by a road or wi,j = 0
otherwise. We randomly picked p% (p = 0.3, 0.5) of bike stations or taxi zones and used them as
new locations meaning missing blocks. We treated the rest as existing locations.

Although there are various kinds of NNs for missing value imputation problems [11], we simply
employed the Denoising Auto Encoder (DAE) [15] in this paper. We made a corrupted input data
X̃ for DAE by setting the values of missing blocks of X to 0. In training phase, we randomly
set p% elements in exiting locations to 0. We constructed DAE models with our layer, GCN layer
and Fully Connected layer (FC). As a proposed method, we employ a simple network architecture
that consists of angle convolutional layers with 16 filters, 1 × 1 convolutional layers, and a skip
connection illustrated in Figure 3. Since the weight of our proposed layer depends on only angle
partitions, we trained our method with observed data from existing locations. Then used the learned
weight for imputing missing blocks where. For DAE with other layers, we trained each model

1http://www.citibikenyc.com/
2http://www.nyc.gov
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Figure 3: Network architecture for our proposed method.

Table 1: Result of the bike sharing and the taxi data set. We showed averages and standard deviations
of RMSE from five runs with randomly generated missing locations. Bold face corresponds the
minimum averages.

Bike sharing data set Taxi data set

Method p = 0.3 p = 0.5 p = 0.3 p = 0.5

Proposed 0.764 (0.011) 0.781 (0.008) 1.607 (0.178) 1.588 (0.132)
GCNs 0.786 (0.014) 0.833 (0.009) 1.634 (0.151) 1.748 (0.189)
FC 1.027 (0.024) 1.036 (0.019) 2.269 (0.161) 2.149 (0.146)
Means kNNs 1.089 (0.019) 1.091 (0.022) 2.150 (0.173) 1.937 (0.094)
Means 1.096 (0.019) 1.104 (0.019) 2.228 (0.179) 1.937 (0.094)

to minimize the mean squared error between observations of existing locations and its estimation
minΘ

∑
p∈EP

∑T
t=1(Xp,t − g(X̃p,t))

2), where EP is a set of exiting spatial locations, Θ is a
parameter, and g is a function of DAE.

We used the ReLU function as the rectification function in experiments. We optimized all models
with Adam [5] where the learning rate is set to 0.01 and the size of mini batch was set to 168 = 24∗7.
The number of epoch was set to 100. For our method, the number of partitions was set to N = 4.
For DAE with GCNs (GCNs), we used a network architecture consists of two GCN layers where
T ′ = 4 and T ′ = 168. For FC, we used two fully connected layer that project P from (P → P/2)
and (P/2→ P/4). We also employed means of all observed values (Means) and means of observed
values of kNNs (Means kNNs) as baselines. We run experiments five times and measured Root Mean
Squared Error (RMSE) for new locations. We show the results in Table 1.

From the result, we confirmed that our proposed method showed the best performances on p = 0.3
and p = 0.5 of both data sets. GCNs placed second in all settings. This result indicates the benefits
of utilizing a graph structure for spatio-temporal data analysis as reported in existing papers and
suggests a benefit of our proposed layer. It worked better than just getting a weighted means of
neighbor locations by considering angles among spatial locations.

5 Discussion

We introduced angle-based convolutional networks that enable us to extract local features from
spatio-temporal data with irregular spatial locations. We defined an angle-based convolutional layer
as an extension of CNNs and GCNs that leverages angles and similarities of spatial locations. We
demonstrated preliminary experiments for block missing value imputation problems with two spatio-
temporal data sets. We fixed various hyperparameters in experiments. Further evaluations with
carefully tuned hyperparameters should be done to confirm the difference between ours and exiting
methods firmly. Other graph-based missing value imputation, such as Kernelized Probabilistic Matrix
Factorization methods [22] should be employed as additional baselines.
Acknowledgements: This work was supported by JST CREST Grant Number JPMJPR18UG, Japan.
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