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Abstract. The detection of nuclei is one of the most fundamental com-
ponents of computational pathology. Current state-of-the-art methods
are based on deep learning, with the prerequisite that extensive labeled
datasets are available. The increasing number of patient cohorts to be
analyzed, the diversity of tissue stains and indications, as well as the cost
of dataset labeling motivates the development of novel methods to reduce
labeling effort across domains. We introduce in this work a weakly su-
pervised ’inter-domain’ approach that (i) performs stain normalization
and unpaired image-to-image translation to transform labeled images
on a source domain to synthetic labeled images on an unlabeled target
domain and (ii) uses the resulting synthetic labeled images to train a de-
tection network on the target domain. Extensive experiments show the
superiority of the proposed approach against the state-of-the-art ’intra-
domain’ detection based on fully-supervised learning.
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1 Introduction

The analysis of histopathology slides is fundamental to enable a precise and re-
peatable quantification of cancerous tissue. Some specific applications include
the automation of otherwise manual diagnostic scoring methods of e.g. HER2
[15] and PD-L1 [7] stained tissue samples as well as the discovery of novel tissue-
based biomarkers [2]. While some analysis solely rely on region segmentation[7],
a key prerequisite of most solutions is an accurate nuclei detection. Recent deep
learning approaches for nuclei detection and segmentation [5, 14, 10, 9] achieve
state-of-the-art performance but demand extensive datasets of manually anno-
tated nuclei centers and manually delineated nuclei boundaries respectively. Be-
cause generating manually labeled datasets for nuclei segmentation demands
significantly more effort than for nuclei detection and that most applications of
quantitative pathology rely more on nuclei detection than on nuclei segmenta-
tion, we focus in this work on the sole problem of nuclei detection.

The high number of different cancer indications (e.g. in lung, head and neck,
bladder, breast), the vast availability of tissue stains (e.g. HE, HER2, PD-L1) as
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Fig. 1. Proposed method for the weakly supervised detection of nuclei on a target
domain (e.g. HE) based on labeled images from a different source domain (e.g. IF).

well as the high variability between samples motivates the development of image
analysis methods working and reusing information across different domains. This
is particularly true for the detection of objects (e.g. nuclei) and regions (e.g. ep-
ithelium) which keep a relative morphological consistency across domains. The
variability across domains is typically reduced using (i) stain normalization and
(ii) domain transformation. Stain normalization methods enforce the visual sim-
ilarity of images originating from different tissue samples and different patient
cohorts but stained with the same tissue stain (e.g. HE) or biomarker (e.g.
PD-L1). Recent examples are built on deep convolutional Gaussian mixture
model (DCGMM) [16] and unpaired image-to-image translation (CycleGAN)
[13]. Domain transformation methods transform images stained with a source
stain (e.g. HE) into realistic images synthetically stained with a different target
tissue stain (e.g. CD8), using for instance conditional generative adversarial net-
works (cGANs) [12] or cycle-consistent adversarial networks (CycleGAN) [17].

These recent advances make it possible to leverage labeled images in a first
domain to detect objects in an unlabeled second domain. The proposed approach
builds on a two-step training methodology [3]: 1) labeled images from a source
domain are transformed using unpaired domain adaptation into synthetic ver-
sions in a target domain; 2) a convolutional neural network (CNN) is trained on
the target domain using the resulting labeled synthetic images. In this standard
two-step approach, the images synthesized in the first step are locked in the sec-
ond step, which hampers an optimal use of the source labeled images. To solve
this limitation, we recently introduced the so-called dasGAN network [8] which,
by jointly solving the domain adaptation and region segmentation problems,
yields a significant improvement of the segmentation accuracy. We present here
an alternative approach which more directly builds on the two-step methodology.
More precisely, we unlock the full potential of synthetic images by generating
for each source image not a single but a series of synthetic images. The detec-
tion network is then trained on the resulting augmented ensemble of diverse
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Fig. 2. Proposed normalization of HE images. (a) Visually consistent reference images;
(b) Input images with high color variability; (c) Results of DC-GMM normalization, re-
sulting in unrealistic patterns in saturated regions; (d) Normalized and realistic looking
images obtained with one-to-one domain adaptation between (a) and (c).

but realistic synthetic images. The proposed methodology is weakly supervised:
nuclei centers are annotated on the source domain but, because the transforma-
tion between the source and the target domain is fully unsupervised, no further
annotation is needed on the target domain. In a related approach [6], Hou et
al. proposed to generate synthetic nuclear objects as random polygons and to
train a generative adversarial network (GAN) for the synthesis of realistic HE
images from the resulting masks. Similarly to our approach, this method enables
the detection of nuclei in a target stained images without the need for labeled
data on this domain. The key benefit of our method is, however, to bypass the
complex definition of heuristic rules for the generation of nuclei-like polygons by
instead leveraging annotations from another stain domain. Our contribution is
twofold: (i) We present the first application of unpaired inter-domain transfor-
mation for the weakly supervised detection of nuclei in histopathology images;
(ii) We introduce a simple yet accurate approach that improves the standard
two-step methodology for domain adaptation and semantic segmentation.

2 Methods

As displayed in Fig. 1, our method consists of two main steps: (1) The unsuper-
vised and unpaired transformation of point-labeled source images into synthetic
point-labeled target images using CycleGAN; (2) The training of a nuclei detec-
tion network based on the synthetic point-labeled images. Because CycleGAN
only learns one-to-one domain mapping, the first step further comprises the re-
spective intra-domain normalizations of the source and target stain domains.

2.1 Intra-domain Normalization, Inter-domain Translation

While the proposed approach is generic, we present here its application to the
transformation between immunofluorescence (IF) and Haemotoxylin and Eosin
(HE) stain domains. To fulfill the one-to-one mapping prerequisite, we limit the
amount of variability in the respective source and target domains using color-
stain normalization. Good normalization is achieved on IF stained images using
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Fig. 3. Results of unpaired one-to-one ’inter-domain’ transformation and augmenta-
tion between IF and HE normalized images. (a) HE2IF: HE to IF transformation and
augmentation. (b) IF2HE: IF to HE transformation and augmentation.

linear transformation based on minimum and maximum values. For the more
complex normalization of HE images, we sequentially combine DCGMM [16] and
CycleGAN [13]. The input color variability (b) is decreased using DCGMM, but
unrealistic patterns (c) are introduced in over-saturated regions (cf. Fig. 2). This
is solved (d) using a one-to-one ’intra-domain’ CycleGAN mapping between the
DCGMM images and the template HE images. Because visual consistency in the
HE and IF domains is enforced, we perform one-to-one ’inter-domain’ CycleGAN
mapping. Saving the last N training epochs yields an ensemble of translation
models with no additional cost nor training complexity. For each labeled image
in the source domain, application of these models results in N synthetic images
in target domain. These synthetic images are realistic and slightly different in
appearance from each other (cf. Fig. 3).

2.2 Nuclei Detection

Voronoi labeling - The images in the source domain are labeled with point
annotations of nuclei centers. Similar to recent work [11], nuclei detection is for-
mulated as a four-class segmentation problem based on the Voronoi diagram of
the annotated centers. Pixels other than the annotated centers are sub-divided
into three classes: 1) Voronoi objects, 2) Voronoi edges and 3) background re-
gions. The latter regions are defined as follows. First, for each Voronoi cell V i,
we estimate the maximum distance di = maxj [d(cj , ci)] between the center ci

and the centers cj of the neighboring cells V j . We then assign the pixels x ∈ V i

with d(x, ci) > di to the background class. This restricts the Voronoi edge sam-
ples to pixels truly located in-between of nuclei. Applying class-based weighting,
training is focused on these and the nuclei center pixels. Given the synthetic
images and the corresponding Voronoi masks, we train a UNet network with a
ResNet18 backbone. Best performing model is selected based on segmentation
accuracy on the similarly labeled and domain-transformed validation set.

Local Maxima Detection - Nuclei centers are detected as follows: (i) Estimate the
Voronoi cells V̂ i by thresholding (< κe) the summed background and edge class-
posteriors; (ii) Select center candidates ĉi as the respective maxima of the center
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class-posterior pc in each cell V̂ i; (iii) Reject candidates with pc(ĉ
i) < κc. The

values of κe and κc are optimized by grid search on the validation set to maximize
the pairwise matching between the detected and the annotated centers. As in
[1], our Voronoi-based approach implicitly accounts for variability in nuclei sizes
and does not rely on a fixed kernel size for local maxima detection. For whole
slide analysis, we perform detection sequentially on overlapping tiles. Detection
results are saved into a single whole slide output file. Given an individual tile,
already detected objects are read from this file prior to the analysis and further
detection in the proximity of these already detected objects disabled.

3 Results

The impact of stain normalization on region segmentation and nuclei detection
is well documented [1, 4]. We report here the first quantitative study on the use
of inter-domain transformation for nuclei detection on histopathology images.

3.1 Datasets

The IF dataset consists of 75 fields of views (FOV) (750× 750px) from bladder
cancer (MIBC) tissue samples1 stained with a nuclear IF marker (Hoechst) as
well as of 29 FOVs (400×400px) from non small cell lung cancer (NSCLC) tissue
samples stained with another nuclear IF marker (DAPI). A total of 57K and 15K
nuclei centers were manually annotated on the MIBC and NSCLC IF-datasets
respectively. The MIBC samples are used for model training and validation, i.e.
best model selection and hyper-parameter optimization. The NSCLC samples
are used as unseen test set to report detection accuracies on the IF domain, if IF
is taken as target domain. The HE dataset consists of 142 FOVs (740× 740px)
selected on NSCLC tissue samples from the TCGA Research Network database
and of 30 FOVs (1000× 1000px) from breast cancer samples from a proprietary
dataset. A total of 65K nuclei were annotated on these two datasets, which are
further merged and used for training and validation. We use the training set of
the TNBC[10] and MoNuSeg[9] datasets, as unseen test sets to report detection
accuracies on the HE domain, if HE is taken as target domain.

3.2 Experiments and Results

We study two setups for the availability of labeled data on the target domain.
First, we assume the target domain to be unlabeled and train the detection net-
work solely on the synthetic images that were generated from the complete set
of labeled images in the source domain. Second, an increasing amount of labeled
images from the target domain is additionally employed for training. In the first

1 We thank Ms Frances Rae and the NHS Lothian Tissue Governance Unit for pro-
viding the patient samples, Ethical status/approval ref: 10/S1402/33, conforming to
protocols approved by East of Scotland Research Ethics Service (REC)
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Fig. 4. Detection accuracy with inter-domain (HE&IF2HE - NHE = 0), intra-domain
(HE only), and cross-domain (HE&IF2HE - NHE > 0) supervisions for increasing
availability of labeled nuclei NHE in the target domain (HE), if (a) an ensemble or (b)
solely the best of the IF2HE inter-domain transformation models are considered for
generation of the synthetic IF2HE images.

setup, both cases of (i) IF as unlabeled target domain and HE as labeled source
domain (HE2IF) and of (ii) HE as unlabeled target domain and IF as labeled
source domain (IF2HE) are investigated. In the second setup, experiments are
focused on the latter and most challenging IF2HE case. Reported detection f1
scores are based on Hungarian matching between annotated and detected cen-
ters, with a maximum allowed distance between matched centers of 5µm .

Inter-domain supervision - Out of the last N = 25 iterations of the inter-domain
CycleGAN training, we select N = 22 models based on visual inspection on the
transformed IF2HE and HE2IF images. We systematically report the 5-run-
average accuracies achieved with the proposed weakly ’inter-domain’ supervised
approach on the respective unseen test datasets. In the HE2IF case, a f1 score of
f1 = 0.85 is achieved on the test NSCLC IF dataset, which is as high as with full
supervision based on the complete sets of labeled IF images (f1 = 0.85). In the
IF2HE case, f1 scores of (f1 = 0.85/0.81) are obtained on the test TNBC and
MoNuSeg HE datasets respectively. While lower, these values are in the same
range as with full supervision based on the complete set of labeled HE images
(f1 = 0.86/0.84). This shows the ability of the proposed method to detect nuclei
using weak inter-domain supervision only.

Cross-domain supervision - Fig. 4(a) reports detection accuracies on the target
HE domain in case of inter-domain, intra-domain, and cross-domain supervi-
sion. For inter-domain supervision, only the labeled images synthetized from the
source stain (IF) are employed for training, model selection and hyper-parameter
optimization. For intra-domain supervision, only the labeled images in the target
domain (HE) are used. For cross-domain supervision, both the labeled images
in the target domain (HE) and the labeled images synthetized from the source
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Fig. 5. Comparison analysis between different methodologies for domain adaptation
and detection: (a) Inter-domain vs. Intra-domain; (b) Cross-domain vs. Intra-domain;
(c) Cross-domain vs. Inter-domain; (d) Ensemble vs. Best single CycleGAN models.
More precisely, relative improvement of detection accuracy yielded by the first method
vs. the second method, and significance testing as measured by paired Student t-Test.

domain (IF) are used in conjunction. All accuracy values are computed on the
two unseen MoNuSeg and TNBC datasets. We make the following observations
based on Fig. 5: (a) More accurate detection results are obtained with weak
inter-domain supervision than with full intra-domain supervision in case of an-
notation scarcity in the target domain, i.e. if NHE ≤ 18K; (b) Cross-domain
supervision outperforms intra-domain supervision for NHE ≤ 18K and reaches
similar accuracy level as intra-domain supervision if more HE-stained nuclei are
used for training; (c) While being comparable for NHE < 18K, cross-domain
supervision outperforms inter-domain supervision if more HE-stained nuclei are
used; (d) We select the transformation model yielding the highest detection ac-
curacy under inter-domain supervision. Using only this model for generating
the synthetic images as in the standard two-step approach, results in a signifi-
cant drop in detection accuracy. In this case, cross-supervision only results in a
marginal improvement compared to intra-domain supervision (cf. Fig. 4(b)).

4 Discussion and Conclusion

In this paper, we have presented a novel approach for ’inter-domain’ cell de-
tection on a target domain for which no annotation is available, given only cell
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center annotations on another source domain. This method builds on recent
advances on many-to-one stain normalization and unpaired one-to-one domain
transfer for generating series of real but synthetic labeled target images from
labeled source images. We have also introduced a ’cross-domain’ cell detection
method that leverages both synthetic and real labeled target images. Extensive
experiments have shown the superiority of the two proposed approaches against
the state-of-the-art fully supervised and ’intra-domain’ method, based solely on
labeled target images. For the near future, we aim to extend this study to images
stained with chromogenic immunohistochemistry .
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