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ABSTRACT

Graph prediction methods that work closely with the structure of the data, e.g.,
graph generation, commonly ignore the content of its nodes. On the other hand,
the solutions that consider the node’s information, e.g., classification, ignore the
structure of the whole. And some methods exist in between, e.g., link prediction,
but predict the structure piece-wise instead of considering the graph as a whole.
We hypothesize that by jointly predicting the structure of the graph and its nodes’
features, we can improve both tasks. We propose the Graph Learning Network
(GLN), a simple yet effective process to learn node embeddings and structure
prediction functions. Our model uses graph convolutions to propose expected
node features, and predict the best structure based on them. We repeat these steps
sequentially to enhance the prediction and the embeddings. In contrast to existing
generation methods that rely only on the structure of the data, we use the feature
on the nodes to predict better relations, similar to what link prediction methods
do. However, we propose an holistic approach to process the whole graph for our
predictions. Our experiments show that our method predicts consistent structures
across a set of problems, while creating meaningful node embeddings.

1 INTRODUCTION

Data is organically structured (and can be represented as a graph) as relations exist between its
elements (nodes on such graph), e.g., networks, images, proteins, etc. Hence, learning to predict this
structure from its components plays an important role in understanding the data and the process that
generated it. We consider the problem of predicting the structure of a given set of points (which we
assume are the nodes of a graph) and an initial structure (connections of the points). Simultaneously,
we aim to learn to predict these structures according to some prior information.

Predicting the structure and nodes’ information of a graph is not a new task. Existing approaches
tend to focus on one of these tasks, and ignore the properties of the other in their solutions. For
instance, generative graph models (Grover et al., 2018; Li et al., 2018; Simonovsky & Komodakis,
2018; You et al., 2018) create graphs (mainly the structure) and ignore the features involved on this
process. Node classification methods (Defferrard et al., 2016; Kipf & Welling, 2017; Lee et al., 2018;
Zhang et al., 2018) work closely with the features of the nodes, but assume that the graph structure
is fixed and given, both of which restrict the problems that can be solved. And link prediction
methods (Grover & Leskovec, 2016; Kipf & Welling, 2016; Perozzi et al., 2014) are a compromise
in between. However, they work looking at pairs of nodes at a time and, commonly, ignore the
whole structure of the graph to make its predictions.

On the contrary, in this paper, we present a simple yet effective method to predict the structure of a
given set of points, that we assume have an underlying graph structure, and create node embeddings
of their original features that are more robust for further processing (e.g., classification). Our pro-
posal comprises a two step repetitive process that obtains expected node embeddings, and then use
them to obtain the best prediction of the structure given the information at that step. These steps are
repeated on a refinement process, and encoded as layers in a neural network.

Our contribution is the definition of two prediction functions (for nodes’ features and adjacency),
that let us extract the most probable structure given a set of points and their feature embeddings,
respectively. We also present a layer-wise architecture that define our iterative process and our
prediction functions, and a learning framework that let us learn, on and end-to-end fashion, how
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Figure 1. Our proposed method comprises two steps. First, a node embedding function, hl, that predicts the
expected features, H(l+1), given our belief of the current structure, A(l), and the existing features, H(l). Then,
a prediction function, gl, of the most likely structure, A(l+1), is applied based on the current features and our
previous approximation of it. We alternate these steps for a given number of steps, and the resulting features
and structure represent the predicted graph. Our objective is to learn the hl and gl functions based on a set of
graphs such that we can predict similar structures.

to predict the structure given a family of graphs. We demonstrate that our proposed method can
effectively extract relevant features and generate graph representations on diverse settings. Addi-
tionally, we introduce a synthetic dataset that contains patterns that can be controlled and mapped
into graphs to evaluate the robustness of existing methods. We present more details regarding the
dataset on Appendix A.

2 GRAPH LEARNING NETWORK

Given a set of vertices V = {vi}, such that every element vi is a feature vector, we intend to predict
its structure as a set of edges between the vertices, E = {(vi,vj) : vi,vj ∈ V}. In other words, we
want to learn the edges of the graph G = (V,E) that maximize the relations between the vertices
given some prior patterns, i.e., a family of graphs.

To achieve this, we perform two alternating tasks for a given number of times (this defines our
architecture), akin to an expectation-maximization process. At each step, we transform the nodes’
features through convolutions on the graph (Kipf & Welling, 2017) to learn better representations to
predict their structure. Then, we use these transformed features to predict the next structure, which
is represented through an adjacency matrix. The learned convolutions on the graph represent a set
of responses on the nodes that will reveal their relations. These responses are combined to create
or delete connections between the nodes, and encoded into the adjacency matrix. The sequential
application of these steps recover effective relations on nodes, even when trained on families of the
graphs. We represent this process, which is illustrated in Fig. 1, through a neural network that is
trained in an end-to-end fashion to learn, both, the convolution kernels and the structure-predicting
functions.

2.1 NODE EMBEDDINGS

At a given step, l, on the alternating process, we have the dl hidden features, H(l) ∈ Rn×dl , of the
n nodes, and the set of edges (structure) encoded into an adjacency matrix A(l) ∈ [0, 1]n×n that
represent our graph. As introduced, our first step is to produce the features of the next step, H(l+1),
through the embedding function, hl,

H(l+1) = hl

(
H(l),A(l)

)
. (1)
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In our proposal, we intend to transform each node’s features locally by using the information of its
neighborhood on the graph. Hence, we use the convolutional graph operation proposed by Kipf &
Welling (2017)

hl

(
H(l),A(l)

)
= σl

(
τ
(
A(l)

)
H(l)W (l)

)
, (2)

where W (l) ∈ Rdl×dl+1 is the learnable weights of the convolution kernel for the lth step, σl is an
activation function, and τ(·) is a symmetric normalization transformation of the adjacency matrix,
defined by

τ
(
A(l)

)
=
(
D̂(l)

)− 1
2
(
A(l) + In

)(
D̂(l)

)− 1
2

, (3)

where D̂(l) is the degree matrix of the graph plus the identity, that is,

D̂(l) = D(l) + In, (4)

where D(l) is the degree matrix of A(l), and In is the identity matrix of size n×n. Unlike previous
work (Kipf & Welling, 2017), we are computing convolutions that will have different neighborhoods
at each step defined by the changing A(l). In summary, this step allow us to learn a response
function, defined by the weights W (l) of the kernel, that embed the node’s features into a suitable
form to predict the structure of the graph.

2.2 ADJACENCY MATRIX PREDICTION

After obtaining the nodes embedding, H(l), we predict the adjacency matrix, A(l), given these
embedding values. In general, that step is defined as

A(l+1) = gl

(
H(l),A(l)

)
. (5)

We explore two definitions for gl: a general function that depends on all the nodes of the graph,
fl, and a convolution-based operation, cl, that depends on the local connections of the graph. The
former, is defined as

gl

(
H(l),A(l)

)
= fl

(
H(l)

)
= σl

(
f̃l

(
H(l)

))
, (6)

where f̃l is approximated with a set of fully connected layers, and a non-linear function σl. In our
experiments, we settled for two consecutive layers that reduce the encoding space before predicting
the adjacency matrix for the next step, i.e., with a transformation from Rn×dl → R1×1024 → Rn×n.
(Note that this definition does not depend on the previous predicted structure, A(l−1), as it relies only
on the encoded information from the features of the nodes, H(l). Nevertheless, for compatibility,
we use the same signature for both forms of the gl function.)

The second form, cl, is based on a convolution operation that processes the information of the graph
locally and transforms it into a predicted adjacency. The transformation function first computes a
scored adjacency, which may be interpreted as the probability of linking the nodes, defined by

αl

(
H(l),A(l)

)
= σl

(
τ
(
A(l)

)
H(l)U (l)

)
, (7)

where σl is a non-linear function, τ(·) is the symmetric normalization transformation (3), and U (l) ∈
Rdl×n is the learnable weight matrix for the linear combinations of the nodes’ features H(l). In other
words, the αl function broadcasts the information of the nodes’ neighborhoods (as determined by
the adjacency on the previous step, A(l)), and, at each edge, creates a score of the possible adjacency
as a linear combination of the nodes’ features restricted to the existing structure. Then, once again,
a linear combination of the combined neighborhood’s information (7) is created by

gl

(
H(l),A(l)

)
= cl

(
H(l),A(l)

)
= σl

[
τ
(
A(l)

)
V (l)αl

(
H(l),A(l)

)]
, (8)

where σl is a non-linear function, αl(·, ·) is the approximated adjacency representation (7), and the
V (l) ∈ Rn×n matrix is the learnable weights that create the prediction of each edge by combining
the previous scores. This operation restricts the combination of features to the local structure through
the multiplication of the normalized adjacency, τ

(
A(l)

)
. For the last output matrix, A(L), the output
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of the cL function passes through a fully connected layer of size n× n, and then through a sigmoid
function.

After extracting the prediction of the last layer, A(L), to convert the predicted value into an edge,
we use a simple threshold operation

Aoi =

{
1 if A(L)

i ≥ ε,
0 otherwise,

(9)

where A(L)
i is the ith edge value of the final prediction, ε is a threshold that defines what will be

considered edge, and i is every index of the edges in the adjacency matrix.

2.3 LEARNING FRAMEWORK

We are assuming that we have a family of undirected graphs, G = {Gi}, that have a particular
structure pattern that we are interested in. We will use each of the graphs, Gi = (Vi,Ai), to learn the
parameters, Θ, of our model that minimize the loss function (16) on each of them. The structure of
each graph is used as ground truth, A∗i = Ai. The graph is predicted by the set of node embedding,
hl (1), and the adjacency prediction, gl (5), functions that depend on a set of parameters Θ, i.e., our
model is defined by

GLN = {hl, gl; Θ}Ll=0 . (10)

Our input comprises the vertices, H(0) = Vi, and some structure for training. In our experiments,
we used the identity, A(0) = I . However, other structures can be used as well. In the following, we
describe our learning framework to obtain the parameters of the functions hl and gl, for every l. To
simplify the notation we will omit the parameters on the losses and in their functions.

Given the combinations of pairs of vertices on a graph, the total number of pairs with an edge
(positive class) is, commonly, fewer than pairs without an edge (negative class). In order to handle
the imbalance between the two binary classes (edge, no edge), we used the HED-loss function (Xie
& Tu, 2015) that is a class-balanced cross-entropy loss function. Then we consider the edge-class
objective function as

Lclass = −β
∑
i∈Y+

logP (Aoi )− (1− β)
∑
j∈Y−

logP
(
Aoj
)
, (11)

where Aoi is the indexed predicted edge for the ith pair of vertices, where the index comes from
an enumeration of the positive (edge) and negative (no edge) class of the pairs of vertices on the
ground-truth graph denoted by Y+ and Y−, respectively; β = |Y+|/|Y | and 1 − β = |Y−|/|Y | are
the proportion of positive and negative pairs of vertices on the A∗ graph, and Y = Y+ ∪ Y−; and
P (·) is the probability of a pair of vertices to be of a given class given by the last layer, such as

P (Aoi ) = A
(L)
i . (12)

Individually penalizing the (class) prediction of each edge is not enough to model the structure of
the graph. Hence, we compare the whole structure of the predicted graph, Ao, with its ground truth,
A∗. By treating the edges on the adjacency matrices as regions on an image, we try to maximize
the intersection over union (Rahman & Wang, 2016) of the structural regions. Then we consider the
objective function,

Lstruct = 1− Ao ∩A∗

Ao ∪A∗
= 1−

∑
i,j A

o
i,jA

∗
i,j∑

i,j A
o
i,j +A∗i,j −Aoi,jA∗i,j

. (13)

On the other hand, the predictions in each layer A(l), where l ∈ {0, . . . , L}, must be symmetric
in an undirected graph. (This restriction can be removed in case of working with directed graphs,
without loss of generalization.) To guarantee that, we penalize the symmetry of our predictions by a
mean square loss function. Hence, we used the symmetry loss function

Lsym =
1

L

L∑
l=0

∥∥∥A(l) −A(l)>
∥∥∥2

, (14)
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Table 1. Comparison of GLNf and GLNc against deep generative models, GraphRNN, Kronecker, and MMSB,
on the Community (C = 2 and C = 4), and Geometric Figures datasets. The evaluation metric is MMD for
degree (Deg.), cluster (Clu.), and orbits (Orb.) shown column-wise per dataset, where smaller numbers denote
better performance. For the proposed methods, the ‘noise’ rows denote the use of noise as input to simulate a
generative method, while the others were tested on the test partition.

C=2 C=4 Geom. Figs.

Deg. Clu. Orb. Deg. Clu. Orb. Deg. Clu. Orb.

MMSB 1.7610 1.8817 1.4524 1.7457 1.9876 1.5095 0.6163 0.2855 0.6066
Kronecker 1.0295 1.2837 1.1846 1.3741 1.3962 1.3283 0.5817 0.3815 0.5052
GraphRNN 0.0027 0.0052 0.0033 0.2843 0.2272 1.9987 0.0023 0.0001 0.0015
GLNf 0.0081 0.0073 0.7451 0.0021 0.0020 0.8582 0.0008 0.0002 0.0003
GLNc 0.0086 0.0078 0.7395 0.0021 0.0020 0.8538 0.0014 0.0003 0.0005
GLNf on noise 1.1628 1.0938 1.7384 1.2174 1.0204 1.8807 0.5918 0.4927 0.5096
GLNc on noise 1.2095 1.1123 1.6097 1.2505 1.2276 1.7833 0.5852 0.4683 0.5134

where ·> is the transposition operator.

We also regularize all the parameters Θ in the model by

Lreg =
∑
θ∈Θ

‖θ‖2. (15)

Finally, we aim to minimize the total loss that is the sum of all of the previous ones, defined by

L = λ1Lclass + λ2Lstruct + λ3Lsym + λ4Lreg , (16)

where λ1, λ2, λ3, and λ4 are hyper-parameters that define the contribution of each loss to the learn-
ing process.

3 EXPERIMENTS

We consider two versions of our GLN model (10), one when we use a function approximator that
uses the whole graph, gl = fl, that we will refer to as GLNf ; and the other is when we use the local
operations to predict the structure, gl = cl, that we will refer to as GLNc.

In this work, we evaluate our model as an edge classifier, and simulate its performance as a graph
generator by inputing noise as features and predicting on them. This task is more challenging than
that performed by generators, and can be considered as a lower bound for our prediction capabilities.
We perform experiments on a new synthetic dataset that consists of images with geometric figures
for segmentation (see Appendix A for details), and on the Community dataset that comprises two
sets with C = 2 and C = 4 communities with 40 and 80 vertices each, respectively, created with
the caveman algorithm (Watts, 1999), where each community has 20 people. For our experiments,
we used 80% of the graphs in each dataset for training, and test on the rest.

3.1 ARCHITECTURE

For both models, we use the following settings. Our activation functions, σl, are ReLU for all layers,
except for the last layer of the gL functions where σL is a sigmoid. We use L = 4 layers to extract
the final adjacency and embeddings. The feature dimensions, dl, for each layer are 128, 64, 64, 3,
respectively. The learning rate is set 0.0001 for all the experiments, except for the geometric figure,
where the learning rate is set 0.001. Additionally, the number of epochs changes depending on the
experiment. To convert the prediction of the adjacency into a binary edge, we use a fixed threshold
of ε = 0.5. The hyper-parameters in our loss function (16) are λ1 = 2, λ2 = 10, λ3 = 2, and
λ4 = 0.05, for both models. In our experiments, we did not needed the regularization for the GLNf ,
hence, λ4 = 0 for it. Finally, for training, we used the ADAM optimization algorithm on Nvidia
GTX Titan X GPU with 12 GB of memory.
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Figure 2. We show the predicted graph for our models and over the ground-truth of the Community dataset.
On the first row, the positions of graphs’ nodes correspond to the original coordinates (features), and, on the
second row, we show the final 3D learned features used to predict the adjacency. The red edges represent false
negatives (i.e., not predicted edges), blue edges represent false positives (i.e., additional predicted edges), and
black edges are correctly predicted ones. The graphs were normalized (w.r.t. scale and translation) for better
visualization.

3.2 GRAPH GENERATION

To evaluate the capability to learn the structure from graphs of our method, we compare it against
generative graph models that also learn the structure from a given set of input graphs. We com-
pare against traditional generative models for graphs: mixed-membership stochastic block models
(MMSB) (Airoldi et al., 2008), and Kronecker graph models (Leskovec et al., 2010); and recent deep
graph generative models, such as the auto-regressive model: GraphRNN (You et al., 2018). Due to
infrastructure restrictions, we did not compare against generative models that have large quantity
of parameters (Li et al., 2018; Simonovsky & Komodakis, 2018), and, therefore, are taxing to train.
Our evaluation metric is the Maximum Mean Discrepancy (MMD) measure (You et al., 2018), which
measures the Wasserstein distance over three statistics of the graphs: degree, clustering coefficients,
and orbits. We report the results on this experiment on Table 1.

For the experiments on the Community dataset, for both models, we trained for 150 epochs with 400
graphs, and tested on 100. In this task, we receive as input the nodes’ (x, y) positions in the space.
Similarly, we trained our method on the Geometric Figures dataset for 80 epochs with 2000 images,
and tested on the remaining 5000. In this experiment, the inputs were the RGB information on the
images.

As can be seen on Table 1, our method can predict structures over the never seen test partition for all
the datasets. Additionally, we simulate a generative process by inputing noise (within the domain
of the features) to the network, and analyze the structures that the method produces. We use this
experiment as a way to evaluate how our method can perform on the worst case. Our results are
on par with classical methods for generation of graphs (cf. Kronnecker and MMSB), but cannot
improve over deep generative models on noise data.

3.3 EDGE PREDICTION

Our second evaluation corresponds to the accuracy of the predicted structures w.r.t. the ground truth.
For this task we measure accuracy, intersection-over-union, recall, and precision. Table 2 shows our
model performance on these measures.

In Fig. 2, we present our edge prediction results on the Communities using our models. Despite our
model not focusing on node classification, we can clearly see a latent feature space with well sepa-
rated classes. Most of the structure is recovered with few missing edges in each graph. Additional
results are shown in Appendix B. Similarly, we use our models for a segmentation experiment on a
synthetic dataset of Geometric Figures. Fig. 3 shows a set of graphs that divide the given images.
Additional results of this experiment are shown in Appendix C.
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Table 2. Comparison of GLNf against GLNc, on the Community (C = 2 and C = 4), and with Geometric
Figures datasets. The evaluation metric are accuracy (Acc.), intersection-over-union (IoU), Recall (Rec.), and
Precision (Prec.) shown row-wise per method, where larger numbers denote better performance.

C=2 C=4 Geom. Figs.

Acc. IoU Rec. Prec. Acc. IoU Rec. Prec. Acc. IoU Rec. Prec.

GLNf 0.997 0.994 0.999 0.999 0.999 0.997 0.997 0.999 0.998 0.963 0.986 0.976
GLNc 0.995 0.991 0.994 0.999 0.999 0.994 0.995 0.999 0.998 0.974 0.987 0.980

Figure 3. Predicted graphs using GLNc on images with geometric shape of 10 × 10 pixels. The image
behind the graph corresponds to the input values at each node (RGB values), the white edges represent correct
predictions, light blue dashed edges are false negatives (i.e., not predicted edges), and yellow dashed edges are
false positives (i.e., additional predicted edges).

An interesting result of our method is that it can learn different densities of connections using the
same architecture. For instance, the communities are densely connected for a given set of vertices,
and then appear disconnected between the other parts. On the other hand, the geometric figures
represent images that have at most four neighbors (due to the lattice structure used on the ground
truth). In this case, the nodes present a constant connection rate with some of them disconnected
depending on the features. Regardless of the initial input structure, the proposed methods recovered
these structures without changes on their configurations.

3.4 ROBUSTNESS TO INITIAL STRUCTURE

We also investigated the robustness of our model to structural inputs by randomly changing the
proportion of the initial connections (i.e., 10%, 20%, . . . , 100%) in our input adjacency matrix
for each input sample on the test set. (Note that the original features remained unaltered.) Fig. 4
shows the results of this experiment on the Community dataset (C = 4) by executing five times
the generation of random structural inputs, and we are reporting the average values for both models
GLNf and GLNc. We obtain minimum variation on the prediction capabilities of the network.
Hence, the best option is to select a minimal graph as input, i.e., the identity.
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Figure 4. MMD metrics on GLNc (left) and GLNf (right) when varying the input structure on Community
C = 4. The input corresponds to an adjacency matrix with different proportions of connections.
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4 RELATED WORKS

Our approach is positioned in the center of a rich range of recent works in the areas of graph gen-
eration and classification, and link prediction. For instance, we predict the structures given a set of
nodes, like link prediction, and we create rich and novel structures, like graph generation. Similarly,
our node embeddings and edge prediction can be considered as a classification task.

Link prediction’s goal is to predict the likelihood of a future relationship between two nodes in a
graph. A variety of models based on Graph Convolutional Network (Kipf & Welling, 2017) have
been proposed (Berg et al., 2018; Schlichtkrull et al., 2018; Zhang & Chen, 2018). For example,
methods for recommendation systems on bipartite graphs were proposed by Berg et al. (2018). In
addition, Schlichtkrull et al. (2018) merged auto-encoder and factorization methods (i.e., use of
scoring function) to predict labeled edges. Other approaches are based on generative adversarial
network (Bojchevski et al., 2018), recurrent neural networks (Monti et al., 2017), and heuristic
methods (Zhang & Chen, 2018). Similarly, we predict the edges of the graph based on an initial set
of nodes and a configuration. However, we learned transformations based on a neighborhood around
the nodes, while also transforming the features to, in turn, enhance the structure prediction.

On the other hand, graph classification goal is to discriminate between different classes of graphs.
The traditional methods are based on kernel graphs (Rogers & Hahn, 2010; Shervashidze et al.,
2009). Usually, they calculate certain statistics on the graph structures (i.e., graph features), and
then learn a classifier based on a kernel. Inspired by Convolutional Neural Networks, there is a set
of methods (Defferrard et al., 2016; Duvenaud et al., 2015; Kipf & Welling, 2017; Niepert et al.,
2016) that approximate convolution operations directly on the graphs. In recent years, Dai et al.
(2016) and Zhang et al. (2018) tried to extract relevant features (i.e., graph embedding) from the
graph structures based on the premise that groups of graphs of the same class exhibit common
patterns. Currently, the models are beginning to use attention methods on the graph structures (Lee
et al., 2018), allowing focus on smaller sub-structures but that contain more information. In contrast,
our node embedding is driven by the structure-prediction task.

For the generative models, the Variational Autoencoder (VAE) (Kingma & Welling, 2014) proved
to be competent at generating graphs. Generative graph VAE aims to learn a latent representation
from a certain number of samples (graphs) that usually belong to the same family (Grover et al.,
2018; Simonovsky & Komodakis, 2018). On the other hand, the most recent approaches combine
VAE with a breadth-first search (You et al., 2018) with the objective of delimiting the search space
on the graph generation. Finally, Li et al. (2018) and You et al. (2018) propose to perform auto-
regressive models (i.e., generate node-to-node graphs), to generate graphs with similar structure.
Despite our lack of generation from random seeds, we can simulate such process by randomly
creating points and using the identity matrix to generate new graphs. Nevertheless, we consider
relevant to contrast ourselves with the generative methods since they aim to learn the structures
(regardless of the difference on the final task).

5 CONCLUSIONS

We proposed a simple yet effective method to predict the structure of a set of vertices. Our method
works by learning node embedding and adjacency prediction functions, and chaining them. This
process produces expected embeddings which are used to obtain the most probable adjacency. We
encode this process into a neural network architecture. Our experiments demonstrate the prediction
capabilities of our model on two databases with structures with different characteristics (the com-
munities are densely connected on some parts, and sparse on others, while the images are connected
with at most four neighbors). Further experiments are necessary to evaluate the robustness of the
proposed method on larger graphs, with more features and more challenging structures.
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A GEOMETRIC FIGURES DATASET

We made the Geometric Figures dataset for the task of image segmentation within a controlled
environment. Segmentation is given by the connected components of the graph ground-truth. We
provide RGB images, and their expected segmentations.

The Geometric Figures dataset contains 2500 images of size n×n, that are generated procedurally.1
Each image contains circles, rectangles, and lines (dividing the image into two parts). We also add
white noise to the color intensity of the images to perturb and mixed their regions.

The geometrical figures are of different dimensions, within [1, n], and positioned randomly on the
image (taking care in no losing the geometric figure). There is no specific color for each geometric
shape and their background.

For our experiments we use a version of dimension n = 10, and limit the generation for two colors.

B ADDITIONAL RESULTS ON COMMUNITY DATASET

We show additional results for two versions of the Community dataset on Fig. B.1.

C ADDITIONAL RESULTS ON GEOMETRIC FIGURES DATASETS

We show additional results for two Geometric Figures dataset on Fig. C.1.

1The code will be available after releasing the paper.
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Figure B.1. Results on Community dataset predictions for the proposed methods, and the learned latent space,
used for build adjacency matrix in the prediction. The red edges represent false negatives (i.e., not predicted
edges), blue edges represent false positives (i.e., additional predicted edges), and black edges are correctly
predicted ones. The graphs were normalized (w.r.t. scale and translation) for better visualization.
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Figure C.1. Predicted graphs using GLNc on images with geometric shape of 10 × 10 pixels. The image
behind the graph corresponds to the input values at each node (RGB values), the white edges represent correct
predictions, light blue dashed edges are false negatives (i.e., not predicted edges), and yellow dashed edges are
false positives (i.e., additional predicted edges).
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