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ABSTRACT

Neural architecture search (NAS) has a great impact by automatically designing
effective neural network architectures. However, the prohibitive computational
demand of conventional NAS algorithms (e.g. 104 GPU hours) makes it difficult
to directly search the architectures on large-scale tasks (e.g. ImageNet). Differen-
tiable NAS can reduce the cost of GPU hours via a continuous representation of
network architecture but suffers from the high GPU memory consumption issue
(grow linearly w.r.t. candidate set size). As a result, they need to utilize proxy
tasks, such as training on a smaller dataset, or learning with only a few blocks,
or training just for a few epochs. These architectures optimized on proxy tasks
are not guaranteed to be optimal on the target task. In this paper, we present
ProxylessNAS that can directly learn the architectures for large-scale target tasks
and target hardware platforms. We address the high memory consumption issue
of differentiable NAS and reduce the computational cost (GPU hours and GPU
memory) to the same level of regular training while still allowing a large candi-
date set. Experiments on CIFAR-10 and ImageNet demonstrate the effectiveness
of directness and specialization. On CIFAR-10, our model achieves 2.08% test
error with only 5.7M parameters, better than the previous state-of-the-art architec-
ture AmoebaNet-B, while using 6× fewer parameters. On ImageNet, our model
achieves 3.1% better top-1 accuracy than MobileNetV2, while being 1.2× faster
with measured GPU latency. We also apply ProxylessNAS to specialize neural
architectures for hardware with direct hardware metrics (e.g. latency) and provide
insights for efficient CNN architecture design.1

1 INTRODUCTION

Neural architecture search (NAS) has demonstrated much success in automating neural network ar-
chitecture design for various deep learning tasks, such as image recognition (Zoph et al., 2018; Cai
et al., 2018a; Liu et al., 2018a; Zhong et al., 2018) and language modeling (Zoph & Le, 2017). De-
spite the remarkable results, conventional NAS algorithms are prohibitively computation-intensive,
requiring to train thousands of models on the target task in a single experiment. Therefore, directly
applying NAS to a large-scale task (e.g. ImageNet) is computationally expensive or impossible,
which makes it difficult for making practical industry impact. As a trade-off, Zoph et al. (2018)
propose to search for building blocks on proxy tasks, such as training for fewer epochs, starting
with a smaller dataset (e.g. CIFAR-10), or learning with fewer blocks. Then top-performing blocks
are stacked and transferred to the large-scale target task. This paradigm has been widely adopted
in subsequent NAS algorithms (Liu et al., 2018a;b; Real et al., 2018; Cai et al., 2018b; Liu et al.,
2018c; Tan et al., 2018; Luo et al., 2018).

However, these blocks optimized on proxy tasks are not guaranteed to be optimal on the target
task, especially when taking hardware metrics such as latency into consideration. More importantly,
to enable transferability, such methods need to search for only a few architectural motifs and then
repeatedly stack the same pattern, which restricts the block diversity and thereby harms performance.

In this work, we propose a simple and effective solution to the aforementioned limitations, called
ProxylessNAS, which directly learns the architectures on the target task and hardware instead of with

1Pretrained models and evaluation code are released at https://github.com/MIT-HAN-LAB/ProxylessNAS.
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Figure 1: ProxylessNAS directly optimizes neural network architectures on target task and hard-
ware. Benefiting from the directness and specialization, ProxylessNAS can achieve remarkably
better results than previous proxy-based approaches. On ImageNet, with only 200 GPU hours (200
× fewer than MnasNet (Tan et al., 2018)), our searched CNN model for mobile achieves the same
level of top-1 accuracy as MobileNetV2 1.4 while being 1.8× faster.

proxy (Figure 1). We also remove the restriction of repeating blocks in previous NAS works (Zoph
et al., 2018; Liu et al., 2018c) and allow all of the blocks to be learned and specified. To achieve
this, we reduce the computational cost (GPU hours and GPU memory) of architecture search to the
same level of regular training in the following ways.

GPU hour-wise, inspired by recent works (Liu et al., 2018c; Bender et al., 2018), we formulate
NAS as a path-level pruning process. Specifically, we directly train an over-parameterized network
that contains all candidate paths (Figure 2). During training, we explicitly introduce architecture
parameters to learn which paths are redundant, while these redundant paths are pruned at the end of
training to get a compact optimized architecture. In this way, we only need to train a single network
without any meta-controller (or hypernetwork) during architecture search.

However, naively including all the candidate paths leads to GPU memory explosion (Liu et al.,
2018c; Bender et al., 2018), as the memory consumption grows linearly w.r.t. the number of choices.
Thus, GPU memory-wise, we binarize the architecture parameters (1 or 0) and force only one path
to be active at run-time, which reduces the required memory to the same level of training a compact
model. We propose a gradient-based approach to train these binarized parameters based on Bina-
ryConnect (Courbariaux et al., 2015). Furthermore, to handle non-differentiable hardware objectives
(using latency as an example) for learning specialized network architectures on target hardware, we
model network latency as a continuous function and optimize it as regularization loss. Addition-
ally, we also present a REINFORCE-based (Williams, 1992) algorithm as an alternative strategy to
handle hardware metrics.

In our experiments on CIFAR-10 and ImageNet, benefiting from the directness and specialization,
our method can achieve strong empirical results. On CIFAR-10, our model reaches 2.08% test error
with only 5.7M parameters. On ImageNet, our model achieves 75.1% top-1 accuracy which is 3.1%
higher than MobileNetV2 (Sandler et al., 2018) while being 1.2× faster. Our contributions can be
summarized as follows:

• ProxylessNAS is the first NAS algorithm that directly learns architectures on the large-
scale dataset (e.g. ImageNet) without any proxy while still allowing a large candidate set
and removing the restriction of repeating blocks. It effectively enlarged the search space
and achieved better performance.

• We provide a new path-level pruning perspective for NAS, showing a close connection
between NAS and model compression (Han et al., 2016). We save memory consumption
by one order of magnitude by using path-level binarization.

• We propose a novel gradient-based approach (latency regularization loss) for handling
hardware objectives (e.g. latency). Given different hardware platforms: CPU/GPU/Mobile,
ProxylessNAS enables hardware-aware neural network specialization that’s exactly opti-
mized for the target hardware. To our best knowledge, it is the first work to study special-
ized neural network architectures for different hardware architectures.

• Extensive experiments showed the advantage of the directness property and the special-
ization property of ProxylessNAS. It achieved state-of-the-art accuracy performances on
CIFAR-10 and ImageNet under latency constraints on different hardware platforms (GPU,
CPU and mobile phone). We also analyze the insights of efficient CNN models specialized
for different hardware platforms and raise the awareness that specialized neural network
architecture is needed on different hardware architectures for efficient inference.
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2 RELATED WORK

The use of machine learning techniques, such as reinforcement learning or neuro-evolution, to re-
place human experts in designing neural network architectures, usually referred to as neural archi-
tecture search, has drawn an increasing interest (Zoph & Le, 2017; Liu et al., 2018a;b;c; Cai et al.,
2018a;b; Pham et al., 2018; Brock et al., 2018; Bender et al., 2018; Elsken et al., 2017; 2018b; Ka-
math et al., 2018). In NAS, architecture search is typically considered as a meta-learning process,
and a meta-controller (e.g. a recurrent neural network (RNN)), is introduced to explore a given
architecture space with training a network in the inner loop to get an evaluation for guiding explo-
ration. Consequently, such methods are computationally expensive to run, especially on large-scale
tasks, e.g. ImageNet.

Some recent works (Brock et al., 2018; Pham et al., 2018) try to improve the efficiency of this
meta-learning process by reducing the cost of getting an evaluation. In Brock et al. (2018), a hy-
pernetwork is utilized to generate weights for each sampled network and hence can evaluate the
architecture without training it. Similarly, Pham et al. (2018) propose to share weights among all
sampled networks under the standard NAS framework (Zoph & Le, 2017). These methods speed
up architecture search by orders of magnitude, however, they require a hypernetwork or an RNN
controller and mainly focus on small-scale tasks (e.g. CIFAR) rather than large-scale tasks (e.g.
ImageNet).

Our work is most closely related to One-Shot (Bender et al., 2018) and DARTS (Liu et al., 2018c),
both of which get rid of the meta-controller (or hypernetwork) by modeling NAS as a single training
process of an over-parameterized network that comprises all candidate paths. Specifically, One-
Shot trains the over-parameterized network with DropPath (Zoph et al., 2018) that drops out each
path with some fixed probability. Then they use the pre-trained over-parameterized network to
evaluate architectures, which are sampled by randomly zeroing out paths. DARTS additionally
introduces a real-valued architecture parameter for each path and jointly train weight parameters
and architecture parameters via standard gradient descent. However, they suffer from the large GPU
memory consumption issue and hence still need to utilize proxy tasks. In this work, we address the
large memory issue in these two methods through path binarization.

Another relevant topic is network pruning (Han et al., 2016) that aim to improve the efficiency of
neural networks by removing insignificant neurons (Han et al., 2015) or channels (Liu et al., 2017).
Similar to these works, we start with an over-parameterized network and then prune the redundant
parts to derive the optimized architecture. The distinction is that they focus on layer-level pruning
that only modifies the filter (or units) number of a layer but can not change the topology of the
network, while we focus on learning effective network architectures through path-level pruning. We
also allow both pruning and growing the number of layers.

3 METHOD

We first describe the construction of the over-parameterized network with all candidate paths, then
introduce how we leverage binarized architecture parameters to reduce the memory consumption
of training the over-parameterized network to the same level as regular training. We propose a
gradient-based algorithm to train these binarized architecture parameters. Finally, we present two
techniques to handle non-differentiable objectives (e.g. latency) for specializing neural networks on
target hardware.

3.1 CONSTRUCTION OF OVER-PARAMETERIZED NETWORK

Denote a neural network as N (e, · · · , en) where ei represents a certain edge in the directed acyclic
graph (DAG). Let O = {oi} be the set of N candidate primitive operations (e.g. convolution, pool-
ing, identity, zero, etc). To construct the over-parameterized network that includes any architecture
in the search space, instead of setting each edge to be a definite primitive operation, we set each
edge to be a mixed operation that has N parallel paths (Figure 2), denoted as mO. As such, the
over-parameterized network can be expressed as N (e = m1

O, · · · , en = mn
O).

Given input x, the output of a mixed operation mO is defined based on the outputs of its N paths. In
One-Shot,mO(x) is the sum of {oi(x)}, while in DARTS,mO(x) is weighted sum of {oi(x)}where
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Figure 2: Learning both weight parameters and binarized architecture parameters.

the weights are calculated by applying softmax to N real-valued architecture parameters {αi}:

mOne-Shot
O (x) =

N∑

i=1

oi(x), mDARTS
O (x) =

N∑

i=1

pioi(x) =

N∑

i=1

exp(αi)∑
j exp(αj)

oi(x). (1)

As shown in Eq. (1), the output feature maps of all N paths are calculated and stored in the memory,
while training a compact model only involves one path. Therefore, One-Shot and DARTS roughly
need N times GPU memory and GPU hours compared to training a compact model. On large-
scale dataset, this can easily exceed the memory limits of hardware with large design space. In the
following section, we solve this memory issue based on the idea of path binarization.

3.2 LEARNING BINARIZED PATH

To reduce memory footprint, we keep only one path when training the over-parameterized network.
Unlike Courbariaux et al. (2015) which binarize individual weights, we binarize entire paths. We in-
troduceN real-valued architecture parameters {αi} and then transforms the real-valued path weights
to binary gates:

g = binarize(p1, · · · , pN ) =





[1, 0, · · · , 0] with probability p1,
· · ·

[0, 0, · · · , 1] with probability pN .
(2)

Based on the binary gates g, the output of the mixed operation is given as:

mBinary
O (x) =

N∑

i=1

gioi(x) =





o1(x) with probability p1
· · ·

oN (x) with probability pN .
. (3)

As illustrated in Eq. (3) and Figure 2, by using the binary gates rather than real-valued path weights
(Liu et al., 2018c), only one path of activation is active in memory at run-time and the memory
requirement of training the over-parameterized network is thus reduced to the same level of training
a compact model. That’s more than an order of magnitude memory saving.

3.2.1 TRAINING BINARIZED ARCHITECTURE PARAMETERS

Figure 2 illustrates the training procedure of the weight parameters and binarized architecture pa-
rameters in the over-parameterized network. When training weight parameters, we first freeze the
architecture parameters and stochastically sample binary gates according to Eq. (2) for each batch
of input data. Then the weight parameters of active paths are updated via standard gradient descent
on the training set (Figure 2 left). When training architecture parameters, the weight parameters are
frozen, then we reset the binary gates and update the architecture parameters on the validation set
(Figure 2 right). These two update steps are performed in an alternative manner. Once the train-
ing of architecture parameters is finished, we can then derive the compact architecture by pruning
redundant paths. In this work, we simply choose the path with the highest path weight.

Unlike weight parameters, the architecture parameters are not directly involved in the computation
graph and thereby cannot be updated using the standard gradient descent. In this section, we intro-
duce a gradient-based approach to learn the architecture parameters.
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In BinaryConnect (Courbariaux et al., 2015), the real-valued weight is updated using the gradient
w.r.t. its corresponding binary gate. In our case, analogously, the gradient w.r.t. architecture param-
eters can be approximately estimated using ∂L/∂gi in replace of ∂L/∂pi:

∂L

∂αi
=

N∑

j=1

∂L

∂pj

∂pj
∂αi
≈

N∑

j=1

∂L

∂gj

∂pj
∂αi

=

N∑

j=1

∂L

∂gj

∂
(

exp(αj)∑
k exp(αk)

)

∂αi
=

N∑

j=1

∂L

∂gj
pj(δij − pi), (4)

where δij = 1 if i = j and δij = 0 if i 6= j. Since the binary gates g are involved in the com-
putation graph, as shown in Eq. (3), ∂L/∂gj can be calculated through backpropagation. However,
computing ∂L/∂gj requires to calculate and store oj(x). Therefore, directly using Eq. (4) to update
the architecture parameters would also require roughly N times GPU memory compared to training
a compact model.

To address this issue, we consider factorizing the task of choosing one path out of N candidates
into multiple binary selection tasks. The intuition is that if a path is the best choice at a particular
position, it should be the better choice when solely compared to any other path.2

Following this idea, within an update step of the architecture parameters, we first sample two paths
according to the multinomial distribution (p1, · · · , pN ) and mask all the other paths as if they do not
exist. As such the number of candidates temporarily decrease from N to 2, while the path weights
{pi} and binary gates {gi} are reset accordingly. Then we update the architecture parameters of
these two sampled paths using the gradients calculated via Eq. (4). Finally, as path weights are
computed by applying softmax to the architecture parameters, we need to rescale the value of these
two updated architecture parameters by multiplying a ratio to keep the path weights of unsampled
paths unchanged. As such, in each update step, one of the sampled paths is enhanced (path weight
increases) and the other sampled path is attenuated (path weight decreases) while all other paths
keep unchanged. In this way, regardless of the value of N , only two paths are involved in each
update step of the architecture parameters, and thereby the memory requirement is reduced to the
same level of training a compact model.

3.3 HANDLING NON-DIFFERENTIABLE HARDWARE METRICS

Besides accuracy, latency (not FLOPs) is another very important objective when designing efficient
neural network architectures for hardware. Unfortunately, unlike accuracy that can be optimized
using the gradient of the loss function, latency is non-differentiable. In this section, we present two
algorithms to handle the non-differentiable objectives.

3.3.1 MAKING LATENCY DIFFERENTIABLE

To make latency differentiable, we model the latency of a network as a continuous function of the
neural network dimensions 3. Consider a mixed operation with a candidate set {oj} and each oj is
associated with a path weight pj which represents the probability of choosing oj . As such, we have
the expected latency of a mixed operation (i.e. a learnable block) as:

E[latencyi] =
∑

j

pij × F (oij), (5)

where E[latencyi] is the expected latency of the ith learnable block, F (·) denotes the latency predic-
tion model and F (oij) is the predicted latency of oij . The gradient of E[latencyi] w.r.t. architecture
parameters can thereby be given as: ∂E[latencyi] / ∂p

i
j = F (oij).

For the whole network with a sequence of mixed operations (Figure 3 left), since these operations
are executed sequentially during inference, the expected latency of the network can be expressed
with the sum of these mixed operations’ expected latencies:

E[latency] =
∑

i

E[latencyi], (6)

2In Appendix D, we provide another solution to this issue that does not require the approximation.
3Details of the latency prediction model are provided in Appendix B.

5



Published as a conference paper at ICLR 2019

(1) Update weight parameters

Architecture Parameters
Binary Gate (0:prune, 1:keep)

OUTPUT

α    β    σ  …   δ
1   0   0  …  0 

(2) Update architecture parameters

INPUT

α    β    σ  …   δ
0   1   0  …  0 

update

fmap not in memory
fmap in memory

INPUT

CONV 
5x5

POOL 
3x3

... Weight  
Parameters

CONV 
3x3 Identity CONV 

5x5
POOL 

3x3
...Identity

update

CONV 
3x3

OUTPUT

Table 1

MIT Red

Trainer Latency 
Model

Direct measurement:
expensive and slow

Latency modeling:
cheap, fast and differentiable

MIT Red-1

Learnable Block 
i - 1

Learnable Block 
i 

…… 

Learnable Block  
i + 1

…… 

INPUT

OUTPUT

...

α   β    σ  …  ζ
CONV 

5x5
POOL 

3x3
...CONV 

3x3
Identity

E[latency] =
X

i

E[latencyi]
<latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit>

Loss = LossCE + �1||w||22 + �2E[latency]
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E[Latency] = ↵⇥ F (conv 3x3)+

� ⇥ F (conv 5x5)+

� ⇥ F (identity)+

......

⇣ ⇥ F (pool 3x3)
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Figure 3: Making latency differentiable by introducing latency regularization loss.

We incorporate the expected latency of the network into the normal loss function by multiplying a
scaling factor λ2(> 0) which controls the trade-off between accuracy and latency. The final loss
function is given as (also shown in Figure 3 right)

Loss = LossCE + λ1||w||22 + λ2E[latency], (7)
where LossCE denotes the cross-entropy loss and λ1||w||22 is the weight decay term.

3.3.2 REINFORCE-BASED APPROACH

As an alternative to BinaryConnect, we can utilize REINFORCE to train binarized weights as well.
Consider a network that has binarized parameters α, the goal of updating binarized parameters is to
find the optimal binary gates g that maximizes a certain reward, denoted asR(·). Here we assume the
network only has one mixed operation for ease of illustration. Therefore, according to REINFORCE
(Williams, 1992), we have the following updates for binarized parameters:

J(α) = Eg∼α[R(Ng)] =
∑

i

piR(N (e = oi)),

∇αJ(α) =
∑

i

R(N (e = oi))∇αpi =
∑

i

R(N (e = oi))pi∇α log(pi),

= Eg∼α[R(Ng)∇α log(p(g))] ≈
1

M

M∑

i=1

R(Ngi)∇α log(p(gi)), (8)

where gi denotes the ith sampled binary gates, p(gi) denotes the probability of sampling gi accord-
ing to Eq. (2) and Ngi is the compact network according to the binary gates gi. Since Eq. (8) does
not require R(Ng) to be differentiable w.r.t. g, it can thus handle non-differentiable objectives. An
interesting observation is that Eq. (8) has a similar form to the standard NAS (Zoph & Le, 2017),
while it is not a sequential decision-making process and no RNN meta-controller is used in our case.
Furthermore, since both gradient-based updates and REINFORCE-based updates are essentially two
different update rules to the same binarized architecture parameters, it is possible to combine them
to form a new update rule for the architecture parameters.

4 EXPERIMENTS AND RESULTS

We demonstrate the effectiveness of our proposed method on two benchmark datasets (CIFAR-10
and ImageNet) for the image classification task. Unlike previous NAS works (Zoph et al., 2018; Liu
et al., 2018c) that first learn CNN blocks on CIFAR-10 under small-scale setting (e.g. fewer blocks),
then transfer the learned block to ImageNet or CIFAR-10 under large-scale setting by repeatedly
stacking it, we directly learn the architectures on the target task (either CIFAR-10 or ImageNet) and
target hardware (GPU, CPU and mobile phone) while allowing each block to be specified.

4.1 EXPERIMENTS ON CIFAR-10

Architecture Space. For CIFAR-10 experiments, we use the tree-structured architecture space that
is introduced by Cai et al. (2018b) with PyramidNet (Han et al., 2017) as the backbone4. Specifically,

4The list of operations in the candidate set is provided in the appendix.
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Model Params Test error (%)
DenseNet-BC (Huang et al., 2017) 25.6M 3.46
PyramidNet (Han et al., 2017) 26.0M 3.31
Shake-Shake + c/o (DeVries & Taylor, 2017) 26.2M 2.56
PyramidNet + SD (Yamada et al., 2018) 26.0M 2.31
ENAS + c/o (Pham et al., 2018) 4.6M 2.89
DARTS + c/o (Liu et al., 2018c) 3.4M 2.83
NASNet-A + c/o (Zoph et al., 2018) 27.6M 2.40
PathLevel EAS + c/o (Cai et al., 2018b) 14.3M 2.30
AmoebaNet-B + c/o (Real et al., 2018) 34.9M 2.13
Proxyless-R + c/o (ours) 5.8M 2.30
Proxyless-G + c/o (ours) 5.7M 2.08

Table 1: ProxylessNAS achieves state-of-the-art performance on CIFAR-10.

we replace all 3 × 3 convolution layers in the residual blocks of a PyramidNet with tree-structured
cells, each of which has a depth of 3 and the number of branches is set to be 2 at each node (except the
leaf nodes). For further details about the tree-structured architecture space, we refer to the original
paper (Cai et al., 2018b). Additionally, we use two hyperparameters to control the depth and width
of a network in this architecture space, i.e. B and F , which respectively represents the number of
blocks at each stage (totally 3 stages) and the number of output channels of the final block.

Training Details. We randomly sample 5,000 images from the training set as a validation set for
learning architecture parameters which are updated using the Adam optimizer with an initial learn-
ing rate of 0.006 for the gradient-based algorithm (Section 3.2.1) and 0.01 for the REINFORCE-
based algorithm (Section 3.3.2). In the following discussions, we refer to these two algorithms as
Proxyless-G (gradient) and Proxyless-R (REINFORCE) respectively.

After the training process of the over-parameterized network completes, a compact network is de-
rived according to the architecture parameters, as discussed in Section 3.2.1. Next, we train the
compact network using the same training settings except that the number of training epochs in-
creases from 200 to 300. Additionally, when the DropPath regularization (Zoph et al., 2018; Huang
et al., 2016) is adopted, we further increase the number of training epochs to 600 (Zoph et al., 2018).

Results. We apply the proposed method to learn architectures in the tree-structured architecture
space with B = 18 and F = 400. Since we do not repeat cells and each cell has 12 learnable edges,
totally 12× 18× 3 = 648 decisions are required to fully determine the architecture.

The test error rate results of our proposed method and other state-of-the-art architectures on CIFAR-
10 are summarized in Table 1, where “c/o” indicates the use of Cutout (DeVries & Taylor, 2017).
Compared to these state-of-the-art architectures, our proposed method can achieve not only lower
test error rate but also better parameter efficiency. Specifically, Proxyless-G reaches a test error rate
of 2.08% which is slightly better than AmoebaNet-B (Real et al., 2018) (the previous best archi-
tecture on CIFAR-10). Notably, AmoebaNet-B uses 34.9M parameters while our model only uses
5.7M parameters which is 6× fewer than AmoebaNet-B. Furthermore, compared with PathLevel
EAS (Cai et al., 2018b) that also explores the tree-structured architecture space, both Proxyless-G
and Proxyless-R achieves similar or lower test error rate results with half fewer parameters. The
strong empirical results of our ProxylessNAS demonstrate the benefits of directly exploring a large
architecture space instead of repeatedly stacking the same block.

4.2 EXPERIMENTS ON IMAGENET

For ImageNet experiments, we focus on learning efficient CNN architectures (Iandola et al., 2016;
Howard et al., 2017; Sandler et al., 2018; Zhu et al., 2018) that have not only high accuracy but
also low latency on specific hardware platforms. Therefore, it is a multi-objective NAS task (Hsu
et al., 2018; Dong et al., 2018; Elsken et al., 2018a; He et al., 2018; Wang et al., 2018; Tan et al.,
2018), where one of the objectives is non-differentiable (i.e. latency). We use three different hard-
ware platforms, including mobile phone, GPU and CPU, in our experiments. The GPU latency is
measured on V100 GPU with a batch size of 8 (single batch makes GPU severely under-utilized).
The CPU latency is measured under batch size 1 on a server with two 2.40GHz Intel(R) Xeon(R)
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Model Top-1 Top-5 Mobile Hardware No No Search cost
Latency -aware Proxy Repeat (GPU hours)

MobileNetV1 [16] 70.6 89.5 113ms - - 7 Manual
MobileNetV2 [30] 72.0 91.0 75ms - - 7 Manual
NASNet-A [38] 74.0 91.3 183ms 7 7 7 48, 000
AmoebaNet-A [29] 74.5 92.0 190ms 7 7 7 75, 600
MnasNet [31] 74.0 91.8 76ms 3 7 7 40, 000
MnasNet (our impl.) 74.0 91.8 79ms 3 7 7 40, 000
Proxyless-G (mobile) 71.8 90.3 83ms 7 3 3 200
Proxyless-G + LL 74.2 91.7 79ms 3 3 3 200
Proxyless-R (mobile) 74.6 92.2 78ms 3 3 3 200

Table 2: ProxylessNAS achieves state-of-the art accuracy (%) on ImageNet (under mobile latency
constraint ≤ 80ms) with 200× less search cost in GPU hours. “LL” indicates latency regularization
loss. Details of MnasNet’s search cost are provided in appendix C.

74.6

76.7

68.2

65.4

72.0

74.71.83x faster

Figure 4: ProxylessNAS consistently
outperforms MobileNetV2 under vari-
ous latency settings.
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Figure 5: Our mobile latency model is
close to y = x. The latency RMSE is
0.75ms.

CPU E5-2640 v4. The mobile latency is measured on Google Pixel 1 phone with a batch size of
1. For Proxyless-R, we use ACC(m) × [LAT (m)/T ]w as the optimization goal, where ACC(m)
denotes the accuracy of model m, LAT (m) denotes the latency of m, T is the target latency and w
is a hyperparameter for controlling the trade-off between accuracy and latency.

Additionally, on mobile phone, we use the latency prediction model (Appendix B) during architec-
ture search. As illustrated in Figure 5, we observe a strong correlation between the predicted latency
and real measured latency on the test set, suggesting that the latency prediction model can be used
to replace the expensive mobile farm infrastructure (Tan et al., 2018) with little error introduced.

Architecture Space. We use MobileNetV2 (Sandler et al., 2018) as the backbone to build the archi-
tecture space. Specifically, rather than repeating the same mobile inverted bottleneck convolution
(MBConv), we allow a set of MBConv layers with various kernel sizes {3, 5, 7} and expansion ratios
{3, 6}. To enable a direct trade-off between width and depth, we initiate a deeper over-parameterized
network and allow a block with the residual connection to be skipped by adding the zero operation to
the candidate set of its mixed operation. In this way, with a limited latency budget, the network can
either choose to be shallower and wider by skipping more blocks and using larger MBConv layers
or choose to be deeper and thinner by keeping more blocks and using smaller MBConv layers.

Training Details. We randomly sample 50,000 images from the training set as a validation set
during the architecture search. The settings for updating architecture parameters are the same as
CIFAR-10 experiments except the initial learning rate is 0.001. The over-parameterized network is
trained on the remaining training images with batch size 256.
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Model Top-1 Top-5 GPU latency
MobileNetV2 (Sandler et al., 2018) 72.0 91.0 6.1ms
ShuffleNetV2 (1.5) (Ma et al., 2018) 72.6 - 7.3ms
ResNet-34 (He et al., 2016) 73.3 91.4 8.0ms
NASNet-A (Zoph et al., 2018) 74.0 91.3 38.3ms
DARTS (Liu et al., 2018c) 73.1 91.0 -
MnasNet (Tan et al., 2018) 74.0 91.8 6.1ms
Proxyless (GPU) 75.1 92.5 5.1ms

Table 3: ImageNet Accuracy (%) and GPU latency (Tesla V100) on ImageNet.

ImageNet Classification Results. We first apply our ProxylessNAS to learn specialized CNN
models on the mobile phone. The summarized results are reported in Table 2. Compared to Mo-
bileNetV2, our model improves the top-1 accuracy by 2.6% while maintaining a similar latency on
the mobile phone. Furthermore, by rescaling the width of the networks using a multiplier (San-
dler et al., 2018; Tan et al., 2018), it is shown in Figure 4 that our model consistently outperforms
MobileNetV2 by a significant margin under all latency settings. Specifically, to achieve the same
level of top-1 accuracy performance (i.e. around 74.6%), MobileNetV2 has 143ms latency while
our model only needs 78ms (1.83× faster). While compared with MnasNet (Tan et al., 2018), our
model can achieve 0.6% higher top-1 accuracy with slightly lower mobile latency. More importantly,
we are much more resource efficient: the GPU-hour is 200× fewer than MnasNet (Table 2).

Additionally, we also observe that Proxyless-G has no incentive to choose computation-cheap op-
erations if were not for the latency regularization loss. Its resulting architecture initially has 158ms
latency on Pixel 1. After rescaling the network using the multiplier, its latency reduces to 83ms.
However, this model can only achieve 71.8% top-1 accuracy on ImageNet, which is 2.4% lower
than the result given by Proxyless-G with latency regularization loss. Therefore, we conclude that it
is essential to take latency as a direct objective when learning efficient neural networks.

Besides the mobile phone, we also apply our ProxylessNAS to learn specialized CNN models on
GPU and CPU. Table 3 reports the results on GPU, where we find that our ProxylessNAS can
still achieve superior performances compared to both human-designed and automatically searched
architectures. Specifically, compared to MobileNetV2 and MnasNet, our model improves the top-1
accuracy by 3.1% and 1.1% respectively while being 1.2× faster. Table 4 shows the summarized
results of our searched models on three different platforms. An interesting observation is that models
optimized for GPU do not run fast on CPU and mobile phone, vice versa. Therefore, it is essential to
learn specialized neural networks for different hardware architectures to achieve the best efficiency
on different hardware.

Specialized Models for Different Hardware. Figure 6 demonstrates the detailed architectures of
our searched CNN models on three hardware platforms: GPU/CPU/Mobile. We notice that the ar-
chitecture shows different preferences when targeting different platforms: (i) The GPU model is
shallower and wider, especially in early stages where the feature map has higher resolution; (ii) The
GPU model prefers large MBConv operations (e.g. 7 × 7 MBConv6), while the CPU model would
go for smaller MBConv operations. This is because GPU has much higher parallelism than CPU
so it can take advantage of large MBConv operations. Another interesting observation is that our
searched models on all platforms prefer larger MBConv operations in the first block within each
stage where the feature map is downsampled. We suppose it might because larger MBConv oper-
ations are beneficial for the network to preserve more information when downsampling. Notably,
such kind of patterns cannot be captured in previous NAS methods as they force the blocks to share
the same structure (Zoph et al., 2018; Liu et al., 2018a).

5 CONCLUSION

We introduced ProxylessNAS that can directly learn neural network architectures on the target task
and target hardware without any proxy. We also reduced the search cost (GPU-hours and GPU
memory) of NAS to the same level of normal training using path binarization. Benefiting from
the direct search, we achieve strong empirical results on CIFAR-10 and ImageNet. Furthermore,

9



Published as a conference paper at ICLR 2019

April May June July

Region 1 Region 2

M
B

1 
3x

3 
 

M
B

3 
5x

5 

M
B

3 
7x

7 

M
B

6 
7x

7 

M
B

3 
5x

5 
 

M
B

6 
5x

5 

M
B

3 
3x

3 

M
B

3 
5x

5 
 

M
B

6 
7x

7 

M
B

6 
7x

7 

M
B

6 
7x

7 

M
B

6 
5x

5 

M
B

6 
7x

7 

C
on

v 
3x

3

P
oo

lin
g 

FC

M
B

3 
3x

3 40
x1
12
x1
12

24
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

56
x2
8x
28

56
x2
8x
28

11
2x
14
x1
4

11
2x
14
x1
4

12
8x
14
x1
4

12
8x
14
x1
4

12
8x
14
x1
4

25
6x
7x
7

25
6x
7x
7

25
6x
7x
7

25
6x
7x
7

43
2x
7x
7

C
on

v 
3x

3

M
B

1 
3x

3 
 

M
B

3 
5x

5

M
B

3 
3x

3 

M
B

3 
7x

7 

M
B

3 
3x

3 

M
B

3 
5x

5 

M
B

3 
5x

5 

M
B

6 
7x

7 32
x1
12
x1
12

32
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

32
x5
6x
56

40
x2
8x
28

40
x2
8x
28

40
x2
8x
28

40
x2
8x
28

M
B

3 
5x

5 

M
B

3 
5x

5 

80
x1
4x
14

80
x1
4x
14

M
B

6 
5x

5 

M
B

3 
5x

5 

M
B

3 
5x

5 

M
B

3 
5x

5 

M
B

6 
7x

7 

M
B

3 
7x

7 

M
B

6 
7x

7 

P
oo

lin
g 

FC

80
x1
4x
14

96
x1
4x
14

96
x1
4x
14

96
x1
4x
14

19
2x
7x
7

19
2x
7x
7

19
2x
7x
7

19
2x
7x
7

32
0x
7x
7

M
B

3 
5x

5 

80
x1
4x
14

M
B

6 
7x

7 

M
B

3 
7x

7 

96
x1
4x
14

C
on

v 
3x

3

M
B

1 
3x

3 
 

M
B

6 
3x

3 

M
B

3 
3x

3 

M
B

3 
3x

3 

M
B

3 
3x

3 

M
B

6 
3x

3 

M
B

3 
3x

3 

M
B

3 
3x

3 40
x1
12
x1
12

24
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

32
x5
6x
56

32
x5
6x
56

32
x5
6x
56

48
x2
8x
28

48
x2
8x
28

M
B

6 
3x

3 

M
B

3 
5x

5 

48
x2
8x
28

48
x2
8x
28

M
B

6 
5x

5 

M
B

3 
3x

3 

M
B

3 
3x

3 

M
B

3 
3x

3 

M
B

6 
5x

5 

M
B

3 
3x

3 

M
B

6 
5x

5 
 

P
oo

lin
g 

FC

88
x1
4x
14

10
4x
14
x1
4

10
4x
14
x1
4

10
4x
14
x1
4

21
6x
7x
7

21
6x
7x
7

21
6x
7x
7

21
6x
7x
7

36
0x
7x
7

M
B

3 
3x

3 

88
x1
4x
14

M
B

3 
5x

5 

M
B

3 
5x

5 

10
4x
14
x1
4

(1) Efficient mobile architecture found by ProxylessNAS. 

(2) Efficient CPU architecture found by ProxylessNAS. 

(3) Efficient GPU architecture found by ProxylessNAS. 
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(a) Efficient GPU model found by ProxylessNAS.
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(1) Efficient mobile architecture found by ProxylessNAS. 

(2) Efficient CPU architecture found by ProxylessNAS. 

(3) Efficient GPU architecture found by ProxylessNAS. 
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(b) Efficient CPU model found by ProxylessNAS.
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(1) Efficient mobile architecture found by ProxylessNAS.

(2) Efficient CPU architecture found by ProxylessNAS. 

(3) Efficient GPU architecture found by ProxylessNAS. 
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(c) Efficient mobile model found by ProxylessNAS.

Figure 6: Efficient models optimized for different hardware. “MBConv3” and “MBConv6” denote
mobile inverted bottleneck convolution layer with an expansion ratio of 3 and 6 respectively. In-
sights: GPU prefers shallow and wide model with early pooling; CPU prefers deep and narrow
model with late pooling. Pooling layers prefer large and wide kernel. Early layers prefer small
kernel. Late layers prefer large kernel.

Model Top-1 (%) GPU latency CPU latency Mobile latency
Proxyless (GPU) 75.1 5.1ms 204.9ms 124ms
Proxyless (CPU) 75.3 7.4ms 138.7ms 116ms
Proxyless (mobile) 74.6 7.2ms 164.1ms 78ms

Table 4: Hardware prefers specialized models. Models optimized for GPU does not run fast on CPU
and mobile phone, vice versa. ProxylessNAS provides an efficient solution to search a specialized
neural network architecture for a target hardware architecture, while cutting down the search cost by
200× compared with state-of-the-arts (Zoph & Le, 2017; Tan et al., 2018).

we allow specializing network architectures for different platforms by directly incorporating the
measured hardware latency into optimization objectives. We compared the optimized models on
CPU/GPU/mobile and raised the awareness of the needs of specializing neural network architecture
for different hardware architectures.
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A THE LIST OF CANDIDATE OPERATIONS USED ON CIFAR-10

We adopt the following 7 operations in our CIFAR-10 experiments:

• 3× 3 dilated depthwise-separable convolution
• Identity
• 3× 3 depthwise-separable convolution
• 5× 5 depthwise-separable convolution
• 7× 7 depthwise-separable convolution
• 3× 3 average pooling
• 3× 3 max pooling

B MOBILE LATENCY PREDICTION

Measuring the latency on-device is accurate but not ideal for scalable neural architecture search.
There are two reasons: (i) Slow. As suggested in TensorFlow-Lite, we need to average hundreds
of runs to produce a precise measurement, approximately 20 seconds. This is far more slower
than a single forward / backward execution. (ii) Expensive. A lot of mobile devices and software
engineering work are required to build an automatic pipeline to gather the latency from a mobile
farm. Instead of direct measurement, we build a model to estimate the latency. We need only 1
phone rather than a farm of phones, which has only 0.75ms latency RMSE. We use the latency
model to search, and we use the measured latency to report the final model’s latency.

We sampled 5k architectures from our candidate space, where 4k architectures are used to build the
latency model and the rest are used for test. We measured the latency on Google Pixel 1 phone using
TensorFlow-Lite. The features include (i) type of the operator (ii) input and output feature map size
(iii) other attributes like kernel size, stride for convolution and expansion ratio.

C DETAILS OF MNASNET’S SEARCH COST

Mnas (Tan et al., 2018) trains 8,000 mobile-sized models on ImageNet, each of which is trained
for 5 epochs for learning architectures. If these models are trained on V100 GPUs, as done in our
experiments, the search cost is roughly 40,000 GPU hours.

D IMPLEMENTAION OF THE GRADIENT-BASED ALGORITHM

A naive implementation of the gradient-based algorithm (see Eq. (4)) is calculating and storing oj(x)
in the forward step to later compute ∂L/∂gj in the backward step:

∂L/∂gj = reduce sum(∇yL ◦ oj(x)), (9)

where∇yL denotes the gradient w.r.t. the output of the mixed operation y, “◦” denotes the element-
wise product, and “reduce sum(·)” denotes the sum of all elements.

Notice that oj(x) is only used for calculating ∂L/∂gj when jth path is not active (i.e. not involved
in calculating y). So we do not need to actually allocate GPU memory to store oj(x). Instead, we
can calculate oj(x) after getting∇yL in the backward step, use oj(x) to compute ∂L/∂gj following
Eq. (9), then release the occupied GPU memory. In this way, without the approximation discussed
in Section 3.2.1, we can reduce the GPU memory cost to the same level of training a compact model.
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