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Abstract

Recent findings show that deep generative models can judge out-of-distribution samples
as more likely than those drawn from the same distribution as the training data. In this
work, we focus on variational autoencoders (VAEs) and address the problem of misaligned
likelihood estimates on image data. We develop a novel likelihood function that is based not
only on the parameters returned by the VAE but also on the features of the data learned
in a self-supervised fashion. In this way, the model additionally captures the semantic
information that is disregarded by the usual VAE likelihood function. We demonstrate the
improvements in reliability of the estimates with experiments on the FashionMNIST and
MNIST datasets.
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1. Introduction

Deep Generative Models (DGMs) have gained in popularity due to their ability to model
the density of the observed training data from which one can draw novel samples. How-
ever, as Nalisnick et al. (2018) pointed out in their recent paper, the inferences made by
likelihood-based models, such as Variational Autoencoders (VAEs) (Kingma and Welling,
2015; Rezende et al., 2014) and flow-based models (Kingma and Dhariwal, 2018; van den
Oord et al., 2016), are not always reliable. They can judge out-of-distribution (OOD)
samples to be more likely than in-distribution (ID) samples that are drawn from the same
distribution as the training data. Concretely, a DGM trained on the FashionMNIST dataset
will on average assign higher likelihoods to images from the MNIST dataset than to test
images from the FashionMNIST dataset (see for example top left image in Figure 1(a)).
In this work we tackle the problem of misaligned likelihood estimates produced by
VAEs on image data and propose a novel likelihood estimation during test time. Owur
method leverages findings reported in our earlier work Biitepage et al. (2019), which are
summarised in Section 2, and is based on the idea to evaluate a given test image not
only locally, using individual parameters returned by a VAE as it is usually done, but also
globally using learned feature representations of the data. The main contribution of this
paper is the introduction of a feature-based likelihood trained in a self-supervised fashion.
This likelihood evaluates the model also based on the semantics of a given image and not
solely on the values of each pixel. We elaborate on this idea in Section 3 and demonstrate
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the improvements with an empirical evaluation presented in Section 4. We emphasise that
the aim of our work is exclusively to improve the reliability of the likelihood estimation
produced by VAEs. We focus on image data in particular as we have not observed the
misalignment in our earlier experiments on various non-image datasets from UCI Machine
Learning Repository (Dua and Graff, 2017). We plan to investigate this further in the
future work. Due to the lack of space we omit the experiments on non-image data as well as
the specifics of VAEs for which we refer the reader to Kingma and Welling (2015); Rezende
et al. (2014).

2. Modeling and evaluation assumptions influencing likelihood estimates

This section provides a background on the evaluation of VAEs and summarizes our earlier
work presented in (Biitepage et al., 2019).

In VAEs, the observed random variable X is assumed to be generated from the joint
distribution p(X,Z) = p(X|Z)p(Z) where Z denotes the latent variables. Using variational
inference the intractable true posterior distribution p*(Z|X) is approximated with a simpler
parametrised distribution ¢(Z|X). VAEs employ amortized inference where encoder and
decoder neural networks, ¢,(X) and ¢,(Z), are jointly trained to represent the approximate
posterior distribution ¢(Z|¢.(X)) and likelihood function p(X|¢z(Z)), respectively.

From a Bayesian perspective, we can evaluate a successfully trained VAE using two
different evaluation schemes

P (x[X) = / p(x| e (2))p(z) (1)

Z

RO (x[X) = / p(x|a(2)) (2|62 (x)), (2)

where p{;f}E denotes the prior predictive (PR) and p{}ﬁ% the approximate posterior pre-
dictive (APO) distribution. Biitepage et al. (2019) argue that the likelihood estimates
produced by a trained VAE are influenced by both 1) the choice of the above listed evalua-
tion scheme and 2) the choice of the parametrisation of the likelihood function p(X|¢z(Z)).
Here, two common choices are a Gaussian distribution in the case of colored images or a
Bernoulli distribution in the case of black and white (or grey-scaled) images. The effect of
both 1) and 2) is best demonstrated in Figure 1(a) where we visualise the log likelihood
estimates from a VAE Vj, parametrised by a Bernoulli likelihood (top row), and a VAE V5,
parametrised by a Gaussian likelihood (bottom row), using both PR (left column) and APO
(right column) evaluation schemes from Equations (1) and (2). Both VAEs were trained
on the FashionMNIST dataset and tested on test images from both the FashionMNIST
and MNIST datasets. In the case of Vj the pixel values of the images were binarised with
threshold 0.5, and in the case of V5 scaled to the interval [0, 1].

The choice of the evaluation scheme influences the variance of the estimates of the train-
ing data as it directly affects the variability of the parameters ¢,(z) returned by the VAE
(see left vs right column in Figure 1(a)). Namely, PR produces more diverse parameters
corresponding to the latent representations of the whole training data while APO generates
more homogeneous samples corresponding to the latent representation of a given test point
x. On the other hand, the choice of the likelihood parametrisation (top vs bottom row in
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Figure 1(a)) influences the actual values of the estimates since images are evaluated under
distributions of different shapes. We refer the interested reader to (Biitepage et al., 2019)
for a detailed discussion. Note that only the top-left combination in Figure 1(a) reproduces
the results reported in (Nalisnick et al., 2018).
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(a) Using the wusual VAE likelihood (b) Using the improved prryvap(x|¢z(z))
pvAE(X|pz(2)). likelihood from Equation (4).

Figure 1: Normalised histogram of the log likelihood under the prior (left) and approximate
posterior (right) using model V; with an iid Bernoulli likelihood function (top)
and model V5 with an iid Gaussian likelihood function (bottom).

3. Self-supervised likelihood learning

This section describes the self-supervised feature-based likelihood function which is the main
contribution of this work.

In addition to the influencing factors discussed in Section 2, we hypothesise that the like-
lihood estimates are also affected by the assumption that image pixels are independent and
identically distributed (iid) around the likelihood function parameterised by the decoder.
Let a test image x be represented as a concatenated vector of length D and let x? denote
its d-th component. Using the assumption of iid pixels, the likelihood function becomes a
product of individual pixel-wise likelihoods: pyar(x|¢z(z)) = H?Zl p(x4¢(2z)?). There-
fore, when computing the probability of x, the likelihood only captures pixel-wise errors
that are evaluated locally under the parameters ¢,(z) returned by the VAE and does not
take into account the ”global” information contained in the image (such as the semantics of
the dataset). To mitigate the lack of the global evaluation, we propose to weight the likeli-
hood term during test time with an additional term that relates the semantic information
of both the test point x and the parameters ¢,(z) to the semantics of the whole training
dataset. We define the details below.

We separately train a self-supervised classifier I' and use its [-th layer to extract a low
dimensional feature representation f,, = I(x) of an image x. We train I" on the same training
dataset X = {x1,...,Xxx} as we train the VAE. We then fit a Bayesian Gaussian Mixture
(BGM) model with C' components to the set F = {f;,...,f; } of feature representations
extracted from a randomly sampled subset of X of size n < N (see also Section 4 for details).
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Let £, be the feature representation of a test image x. During the evaluation of the BGM
on f, each mixture component is assigned a weight that indicates its contribution to the
generation of f,. Let C, denote the mixture component with the highest weight. Given
likelihood parameters ¢,(z) returned by the VAE, we define the global likelihood of x as the
product

pre(felfs (z) = PrE(f:]Cy, (2))PFE(f5, (2)| Coy (2)) (3)

where prp(fz|Cy, (z)) is the likelihood of the test point in feature space under the mixture
component Cy, () determined by the representation fy (,) of the parameters ¢,(z) and
PrE(f4,(2)|Cg,(z)) is the likelihood of f; () under the same component Cy_ (,). The first
term can be seen as a global likelihood of the test point under the decoded parameters and
the second term represents a global likelihood of the parameters themselves.

We then propose to evaluate the test image x under the combined likelihood function

PrEVAE(X|02(2)) := pvar(x|¢:(2))pre (£ |fh, (2) (4)
D
= [H p(XdI%(Z)d)] Pre(felfs (z)
d—1

where py ap as before captures local pixel-wise errors and ppp additionally captures the
global (semantic) likelihood.

4. Experiments

We evaluate our method with experiments on FashionMNIST and MNIST datasets and
present the results below.

Feature extraction We obtained low dimensional features of the training data by de-
ploying a self-supervised Jigsaw classifier I' presented by Noroozi and Favaro (2016). The
classifier receives a Jigsaw puzzle, which is a shuffled 3 x 3 grid of tiles extracted from a given
image, and outputs (the class of) the permutation that was applied to the original unshuf-
fled grid (see Appendix A for the implementation details). Note that any self-supervised
learning strategy could be deployed as long as the obtained low dimensional features are
of high quality and represent the training data well. After the completed training we ran-
domly sampled n = 10000 training images {x1, ..., X, } and obtained their low dimensional
representations {fi,...,f,} from the first layer I! of the classifier I', to which we fitted a
BGM model with C = 15 components. The parameters n and C' were determined using a
hyperparameter grid search. We used representations from the first layer because we hy-
pothesise that the earlier layers of the classifier carry useful information about the training
data while the later layers carry information about the task itself. We leave experiments
with representations obtained from different layers for the future work.

Experiment We trained two VAEs, Vi and V», and two Jigsaw classifiers, I'y and I'y with
specifications described in Appendix A on the FashionMNIST dataset. Here, the subscripts
1 and 2 denote that the model in consideration was trained on images binarised with thresh-
old 0.5 and on images with pixel values scaled to the interval [0, 1], respectively. As in the
experiment producing the results in Figure 1(a), V4 additionally assumes a Bernoulli like-
lihood and V3 a Gaussian likelihood. For a given (binarised) test image x and parameters
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¢ (z) obtained from the trained VAE V;, we first calculate the VAE likelihood py 4g in the
usual way using the assumption of iid pixels. We then obtain their low dimensional features
f, = I} (x) and fo.(2) = 1}(¢2(z)) from the first layer I} of the trained Jigsaw classifier T;
and calculate ppp under the fitted BGM following Equation (3). The product of the two
likelihoods then equals the newly proposed likelihood pppy ap from Equation (4).

Given this pipeline, VAE; 4+ I'; for i« = 1,2 and our likelihood prpyvag, we compared
the log likelihood estimates using the PR and APO evaluation schemes from Equations (1)
and (2) on the images from the test splits of FashionMNIST and MNIST datasets. The
results are visualised in Figure 1(b). We see that our method significantly improves the
estimates when using Gaussian likelihood parametrisation (bottom row) as it clearly sep-
arates the OOD samples from the ID samples. Note that the VAE parameters ¢,(z) in
the PR evaluation always reflect the distribution of the entire training data. This means
that the global likelihood of a test point evaluates the test point under all classes that were
presented during training time. In practice this means that the PR evaluation of the global
likelihood averages over all classes which results in a less distinct separation of the OOD
samples. When using Bernoulli likelihood (top row) our method increases the variance of
the likelihood of OOD samples but fails to achieve the same separation as in the Gaussian
case. This is because a significant amount of the semantic information is lost during the
binarisation process of the FashionMNIST dataset. The resulting binarised images are of-
ten unrecognisable with a sparse pixel distribution which makes the task of solving Jigsaw
puzzles more difficult. Since digits in MNIST images are also sparse they become likely
under prgr. We observe their estimates fusing with FashionMNIST estimates if we corrupt
the background using salt and pepper noise (see Figure 2 in Appendix B). We therefore
hypothesise that in this particular case OOD samples simply become too similar to the
ID samples, suggesting that the Bernoulli likelihood is not the most appropriate modelling
choice. The inadequacy of the Bernoulli distribution in VAEs has also recently been dis-
cussed by Loaiza-Ganem and Cunningham (2019) who instead suggest to use their fully
characterized continuous Bernoulli distribution.

5. Conclusion

We have discussed how the problematic assumption that the image pixels are iid around
the decoded parameters narrows the focus of the VAE likelihood function py 4 to a local
area of the data density. Thus, the model likelihood function disregards the global data
density, including the semantic information. Our proposed likelihood function mitigates this
problem by leveraging self-supervised feature learning. In the future, we aim to evaluate
our method on more complex datasets, such as CIFAR-10 and SVHN, and to design an
end-to-end training procedure of VAEs using our proposed likelihood.
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Appendix A. Implementation details

Feature extraction We designed the Jigsaw classifier as an MLP with four hidden layers
of dimensions 100, 80, 60, 40 respectively, each followed by a ReLU activation function and
a dropout layer with rate 0.2. We extracted tiles of dimension 7 x 7 and generated 100
permutations. We trained the Jigsaw classifier for 200 epochs using SGD optimizer with
0.9 momentum, weight decay 5e — 4, learning rate 0.1 and batch size 128.

VAE For the VAEs we followed the setup used by Nalisnick et al. (2018) as closely as
possible. We designed an encoder with five convolutional layers with feature maps of di-
mensions 8,16, 32,64,64 and stride 2,1,2,1,2 respectively. The kernel size was set to 5
in all layers. The last convolutional layer was additionally followed by a linear layer of
dimension 50. The decoder consisted of a linear layer of dimension 3136 and four transpose
convolutional layers with feature maps of dimensions 32,32, 3, 1, kernel sizes 3,3,4,5 and
stride 2,1,2, 1 respectively. Each of the (transpose) convolutional layers was followed by
the ReLU activation function, batch normalisation and a dropout layer with rate 0.1. We
additionally used Sigmoid activation function after the last layer of the decoder. We used
20 Gaussian latent variables. The model was trained for 15K epochs using RMS optimizer
with learning rate le — 3 and batch size 512.
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Appendix B. Log likelihood estimates on the corrupted MINIST dataset

We evaluate the VAE V; and Jigsaw classifier I'y described in Section 4 on binarised test
images from the FashionMNIST dataset and corrupted binarised MNIST images. An exam-
ple of an MNIST image corrupted with salt and pepper noise is shown in Figure 2(a). We
evaluated the models using our proposed likelihood prgy 4 and the PR evaluation scheme.
The resulting log likelihood estimates are visualised in Figure 2(b). We observe the MNIST
estimates fusing with the FashionMNIST estimates which demonstrates the influence of the
sparse pixel distribution in binarised images as discussed in Section 4.

PR with Bernoulli likelihood

0.004 FashionMNIST
MNIST corrupted

0.002

0.000

—3200 -2400 -1600
(a) Example of an original MNIST (b) The PR log likelihoods on the

image (left) and the corrupted FashionMNIST test split and

version (right). corrupted MNIST test split un-
der the ppgyv ag likelihood func-
tion.

Figure 2: Repeated experiment from Section 4 on the corrupted MNIST dataset.
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