
Under review as a conference paper at ICLR 2020

STRUCTURAL LANGUAGE MODELS FOR
CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of Any-Code-to-Code Generation (AnyC2C) – generating
code given its surrounding code without any restriction on the vocabulary or struc-
ture. The state-of-the-art in this problem is the sequence-to-sequence (seq2seq)
approach, which treats code as a sequence and does not leverage any structural
information. We introduce a new approach to AnyC2C that leverages the strict
syntax of programming languages to model a code snippet as a tree – structural
language modeling (SLM). SLM estimates the probability of the program’s ab-
stract syntax tree (AST) by decomposing it into a product of conditional proba-
bilities over its nodes. We present a neural model that computes these conditional
probabilities by considering all AST paths leading to a target node. Unlike pre-
vious structural techniques that have severely restricted the kinds of expressions
that can be generated in this task , our approach can generate arbitrary expressions
in any programming language. Our model significantly outperforms both seq2seq
and a variety of existing structured approaches in generating Java and C# code.
We make our code, datasets, and models available online.

1 INTRODUCTION

Generating source code requires reasoning over an unbounded number of syntactic structures and
potential symbols. Previous approaches have avoided this issue by limiting the generation prob-
lem: program synthesis approaches (Manna and Waldinger, 1971) are tailored to domain-specific
languages (Gulwani, 2011), semantic parsing approaches focus on highly templated datasets (Ling
et al., 2016; Shin et al., 2019) or SQL (Yu et al., 2018; Dong and Lapata, 2018), while other recent
approaches generate code in general languages like Java and C#, but severely restrict the syntax,
vocabulary or nature of the generated expressions (Murali et al., 2017; Brockschmidt et al., 2019a).

We introduce the task of Any-Code-to-Code Generation (AnyC2C) – generating source code in
a general-purpose programming language without any restriction on its vocabulary or structure.
Specifically, we focus on generating code in context: given a program P and some part of the
program p, predict p from the rest of the program P−=P\p. The only restriction we place is that
the target pmust have a valid subtree within the program’s abstract syntax tree (AST). AnyC2C thus
generalizes the restricted expression generation task of Brockschmidt et al. (2019a), where target
code contains only primitive types and excludes user-defined functions. Figure 1 shows two such
AnyC2C examples.

While a sequence-to-sequence (seq2seq) model with a copy mechanism works better than existing
code generation approaches on AnyC2C (see Section 5), it ignores the structural information avail-
able from the code’s AST. We present a new approach that explicitly leverages the strict syntax
of programming languages to model code snippets as trees – structural language modeling (SLM).
SLM estimates the probability of the program’s AST by decomposing it into a product of conditional
probabilities over its nodes. We present a neural model that computes these conditional probabilities
by considering all AST paths leading to a target node. While prior work uses AST paths to read
programs (Alon et al., 2019a), we generate code by producing the target AST node-by-node.

We evaluate SLM on Java AnyC2C benchmarks, where our model achieves a new state-of-the-art
exact-match accuracy of 18.04% (previous SOTA: 16.93%). SLMs also outperform existing models
on the restricted expression generation task of Brockschmidt et al. (2019a) in C# by a wide margin,
37.61% compared to 26.42%. Our ablation study reveals the importance of using AST paths for

1

Under review as a conference paper at ICLR 2020

public static Path[] stat2Paths(
FileStatus[] stats) {

if (stats == null)
return null;

Path[] ret = new Path[stats.length];
for (int i = 0; i < stats.length; ++i) {

ret[i] = stats[i].getPath() ;

}
return ret;

}

int TrailingSpaces(this StringBuilder builder) {
var bound = builder.Length - 1;
if (builder.Length == 0) return 0;
if (builder[bound] != ' ') return 0;
var c = 0;
for (var i = bound; i <= bound; i--) {
if (i < 0) break;

if (builder[i] != ' ') break;

c++;
}
return c;

}

Figure 1: AnyC2C examples from the Java (left) and C# (right) test sets. The highlighted expression
in each example is the target p, which we wish to generate from the rest of the snippet.

both reading and generating code. Finally, we discuss the theoretical advantages of SLMs, and show
how they generalize many previous structural approaches for code generation.

2 CODE GENERATION AS STRUCTURAL LANGUAGE MODELING

We model the task of Any-Code-to-Code Generation (AnyC2C) by computing the probability of a
program Pr (P), similar to how a language model computes the probability of a natural language
sentence. While language models typically assume a sequence as their input, our input is an ab-
stract syntax tree AP . We thus introduce a structural language modeling approach (SLM) for code
generation.

We first show a chain-rule decomposition of the tree’s probability Pr (AP) into a product of con-
ditional node probabilities, and then describe our path-based model for computing the individual
conditional probabilities. We explain how to construct a tree from local node predictions, and fi-
nally discuss how our approach differs from previous work on production-based tree generation.

Representing Code as a Tree A program P is a sequence of tokens that is unambiguously equiv-
alent to an abstract syntax tree AP , where each node represents an element in the language (e.g.
conditions, loops, variable declarations) from a set T . The AST’s leaves (terminals) have an addi-
tional user-defined value v ∈ V . Nonterminal nodes can have a varying number of children nodes.

Decomposing the Probability of a Tree Given a tree AP , we first traverse the tree, depth-first,1 to
induce an ordering over its nodes a0, . . . , a|AP | ∈ AP . We can now decompose the probability of a
tree Pr (AP) using the chain rule, akin to the standard approach in language modeling:

Pr (AP) =
∏
t

Pr (at|a<t) (1)

where a<t are all the nodes that were traversed before at.

In AnyC2C, part of the tree (AP−) is already observed. Therefore, we order the nodes of AP−
before the nodes of the target p, and compute only the conditional probabilities over the nodes in p,
essentially conditioning on the observed tree AP− .

Representing Partial Trees via Paths How can we represent the partial tree composed of a<t
when computing Pr (at|a<t)? In regular language modeling, the structure is linear, and a<t is a
sequence. One way to represent a partial tree is to linearize it according to the traversal order (Xiao
et al., 2016); however, this could create artificially long distances between the current node at and
ancestor nodes (e.g., the root a0). Another option is to use only the path from the root node to at
(Rabinovich et al., 2017), but this ignores a lot of contextual information (e.g., sibling nodes).

We follow Alon et al. (2018) and use the set of paths from every leaf to the current node to expand,
as well as the path Rt originating from the root. We denote the (candidate) node at time t as at, its
(given) parent, which is the currently expanded node, by π (at), and the set of all paths as St:

St = {` π (at) |` ∈ leaves (a<t)} ∪ {a0 π (at)} (2)

1Depth-first ordering is common practice in tree generation (Maddison and Tarlow, 2014; Raychev et al.,
2016; Brockschmidt et al., 2019a), but our framework also allows for other orderings, in theory.

2

Under review as a conference paper at ICLR 2020

IfExpr

Method
Root

?

(a)

Greater

IfExpr

Method
Root

?

(b)

Greater

Name

IfExpr

Method
Root

?

(c)

Greater

Name

IfExpr

x

Method
Root

?

(d)

Greater

Name IntExp

IfExpr

x

Method
Root

?

(e)

...

if(x > 1) {
...

}
...

(f)

Figure 2: The expression x > 1 is generated given its surrounding code context. At each step, the
model generates the next node (denoted by a question mark: ?) of path1, path2 and path3 using
the root pathR. Dashed lines denote AST parent-child relations; solid lines denote AST paths.

where ` π (at) is the (only) path in the tree between a leaf ` and the current node to expand
π (at), and Rt = a0 π (at) is the path from the root of the program to π (at), which represents
the current, relative position of π (at) in the program (marked as R in Figure 2). Whereas prior
work used whole paths (between two leaf nodes) to encode an AST (Alon et al., 2019b;a), our
model observes partial paths (between a leaf and an intermediate node) and learns to extend them.

Figure 2 illustrates the traversal order of a subtree that represents the expression x > 1, as well as
some of the paths used to compute the probability at each step. At each step, the probability of the
next node is computed given the paths St from the root and every given leaf up to the current node
to expand. Figure 2(d) shows how after the terminal node Name and its value x are given, path3
originating from this leaf is also used to compute the probability of the next nodes.

Our path-based approach generalizes previous approaches, such as parent feeding (Yin and Neubig,
2017), previous action encoding (Yin and Neubig, 2017), context nodes (Bielik et al., 2016), and
some of the graph-edges of Brockschmidt et al. (2019a). See Section 8 for further discussion.

Greater

Name IntExp

x
EOStok

1
EOStok

EOSnode

Figure 3: Aug-
menting the AST
with EOSnode and
EOStok nodes

Generating Trees In sequence generation, the length of the generated se-
quence is controlled by generating a single EOS token to stop. When gener-
ating trees, we require a more sophisticated mechanism to control arity and
depth. We augment AP in two ways to allow node-by-node generation.

First, we add a special EOSnode node to every nonterminal to control for arity.
Generating this node indicates that the parent node has no more children.
Second, we decompose each terminal node nv into a sequence of terminal
nodes Tv by splitting up the node’s value v into subtokens based on camel
notation (Allamanis et al., 2015). For example, if v = toLowerCase, then
Tv = to → lower → case → EOStok. We end each subtoken sequence
with a special EOStok node to control for depth during generation. Figure 3
shows an example of both EOSnode and EOStok in action.

Node Trees vs. Production Trees While we predict a single node at each step, previous work
(Iyer et al., 2018; Brockschmidt et al., 2019a) predicts a grammar production rule. This more
direct grammatical representation decomposes the code in a way that often forces the model to
predict with partial information. For instance, consider the expression str.Substring(3). The

3

Under review as a conference paper at ICLR 2020

model of Brockschmidt et al. (2019a) would first predict the rule Expr→Expr.Substring(Expr),
and only then expand Expr→str and Expr→3; i.e., the model needs to predict the method name
(Substring) before the invoking object (str). Further, the Substring method can get either one
or two arguments, forcing the model to choose whether to use the one- or two-argument production
rule in advance. Node generation, however, allows us to predict the presence of a function call and
only then to predict its object, method name, and arguments, rather than predicting these a priori.

We note that there exist other approaches that generate an arbitrary number of child nodes with
production rule-based models. For example, Rabinovich et al. (2017) used a “horizontal LSTM” to
decide whether or not to generate another child; and Yin and Neubig (2018) presented a transition
system with a “Reduce” action.

3 MODEL ARCHITECTURE

In the previous section, we described how we can generate code given the probabilities Pr (at|a<t),
where a<t is represented by the set of partial AST paths St. Here, we present a neural model that
estimates Pr (at|St). We first apply an LSTM-based path encoder to represent each path in St
as a vector (Section 3.1). We then contextualize and aggregate the entire set into a single vector
(Section 3.2). Finally, we predict the target node at by combining a limited output vocabulary with
a syntactic copy mechanism (Section 3.3).

3.1 ENCODING AST PATHS

Given a partial AST path (node sequence n1, . . . , nk), our goal is to create a vector representation.

We first represent each node ni using embeddings. A subtoken node is represented by the index of
its subtoken w in the embedding matrix Esubtoken; AST nodes are represented as a pair ni = (τ, κ)
where τ is the node type, e.g. IfStatement, and κ is the node index among its sibling nodes. We
represent node types using a learned embedding matrix Etype and the child indices using a learned
matrix Eindex. The node’s vector representation is the concatenation of the type and index vectors.

e (ni) =

{
Esubtoken
w ni is the subtoken w[
Etype
τ ;Eindex

κ

]
ni is the AST node (τ, κ)

(3)

We encode the entire path using a uni-directional LSTM stack, and take the final states:2

f (n1, . . . , nk) = LSTM(e (n1) , . . . , e (nk))

Given a set of partial paths S (omitting the iterator t for simplicity), we denote their encodings as
H = {

f (n1, . . . , nk) | (n1, . . . , nk) ∈ S}.

Efficient Computation When processing an entire tree, there are large overlaps between paths from
different time steps. In particular, paths that originate from the same leaf share the same prefix. We
therefore apply the LSTM on the prefix once, and cache the state across suffixes, speeding up both
training and inference significantly. An example is shown in Figure 6 in the Appendix.

3.2 AGGREGATING MULTIPLE PATHS

Given the set of paths S leading up to the target node’s parent π(a), our goal is to represent S as a
vector, in the context of predicting a. To do so, we introduce the aggregation function g (H, r, i).
As its input, g takes the set of encoded paths H , the encoded root path r, and the child index i of the
currently predicted child node a relatively to its parent.

We first contextualize the path encodings H using a transformer encoder (Vaswani et al., 2017).3 In
parallel, we apply a non-linear transformation to the encoding of the root path r =

f (R), in order

to inform it that we wish to predict the i-th child of π(at):

Z = Transformer (H) r̃ =Wa · ReLU (Ci · r) (4)

2Replacing the LSTMs with transformers yielded similar results in preliminary experiments.
3Since H is a set, we do not use positional embeddings.

4

Under review as a conference paper at ICLR 2020

In this formulation, the parameter matrix Ci is used when the child index is i, while the parameter
matrix Wa is used for every instance.

We then compute attention over the set of contextualized path encodings Z with the index-informed
root-path encoding r̃ as the query, pass the weighted average z̃ and the root-path encoding r̃ through
another fully-connected layer and denote the resulting vector representation as h̃:

α = softmax (Z · r̃) z̃ =
∑
j

αj · Zj h̃ = g (H, r, i) = ReLU (Wg [z̃; r̃]) (5)

3.3 PREDICTING WITH A SYNTACTIC COPY MECHANISM

We can now predict a from the representation h̃. If the target node’s parent π(a) is a nonterminal
AST node, then a must be an AST node; otherwise, a is a subtoken.

Predicting AST Nodes We predict a using a softmax over the node type embeddings Etype:

Pr (a|S) = softmax
(
Etype · h̃

)
(π(a) is a nonterminal) (6)

Predicting Subtokens Programs repeatedly refer to previously declared symbols, resulting in highly
repetitive usage of identifiers. We therefore add a copy mechanism (Gu et al., 2016) to allow our
model to predict either entire tokens or subtokens that already exist in the context. As we show in
Section 6, copying greatly improves our model’s performance. For brevity, we describe how entire
tokens are copied, and elaborate on the copy of subtokens in Appendix C. We score each leaf ` using
a bilinear function (Wc) between its path’s encodingH` and h̃. At the same time, we score the token
w, which is the token associated with `, from a limited vocabulary using the inner product between
its representation in the subtoken embedding matrix Esubtoken and h̃.

scopy (`) = H` ·Wc · h̃ sgen (w) = Esubtoken
w · h̃ (7)

The scores scopy and sgen are then summed over different occurrences that correspond to the same
symbol, and subsequently normalized via softmax. A key difference from previous work (Gu et al.,
2016; Yin and Neubig, 2017) is that our copy mechanism uses the syntactic relation between the
source and the target (AST path), rather than their sequential relation. Yin et al. (2019) proposed
a graph-based copying mechanism that is capable of copying both tokens and subtrees from the
context.

4 EXPERIMENTAL SETUP

4.1 BENCHMARKS

Any-Code Generation (AnyC2C): Java We take the Java-small dataset of Alon et al. (2019a),
which contains 11 GitHub projects, broken down to a single method per example, and split to
train/dev/test by project to reduce code overlap. This dataset was found to contain the least code du-
plication by Allamanis (2018b). We create AnyC2C examples by selecting every expression larger
than a single AST node as the target, using the remainder of the method as the context. We remove
methods that contain the word “test” in their body or file name, and remove methods longer than 20
lines to avoid auto-generated code. To make the task even harder, we remove examples where the
target subtree appear as-is in the context. This dataset contains 1.3M/10k/20k train/dev/test exam-
ples. The average number of targets for our model is 10.8; for the seq2seq baselines the average is
7.8 targets; if we modeled our targets using production rules, the average would have been 7.9.

Restrict Code Generation (RestrictC2C): C# Since the restricted expression generation (Re-
strictC2C) dataset of Brockschmidt et al. (2019a) is not publicly available, we consulted with
Brockschmidt et al. directly and use the dataset of Allamanis et al. (2018a). This dataset con-
tains 30 GitHub projects broken down to one method per example, and use the “unseen projects
test” split. To create RestrictC2C examples, we use the code of Brockschmidt et al. (2019a) which
filters out examples where the targets contain non-primitive types or user-defined functions. We
extract the exact same types of limited expressions. This dataset contains 16k/8k/3k train/dev/test
examples.

5

Under review as a conference paper at ICLR 2020

Detailed statistics of all datasets are provided in Appendix A.

Metrics We follow Brockschmidt et al. (2019a) and report exact match accuracy at 1 and 5. We
also introduce a new tree@k metric, which counts a prediction as correct if the entire tree structure,
ignoring leaf values, is identical to the tree of the ground truth. For example, the expressions x > 1
and y > 2 would not count as identical in exact match, but would count as “tree-match identical”
because both express that an identifier is greater than an integer (NAME > INT). tree@k is interesting
because it allows us to tease apart the model’s syntactic errors from incorrect subtoken predictions.

4.2 BASELINES

We compare our model to a variety of original implementations and adaptations of existing models.
We put significant effort to perform a fair comparison, including adding a copy mechanism to the
NMT baselines and subtokenization as in our model. We adapt strong baselines from the literature to
our task, even if they were designed to different tasks such as NL→code and code→NL. We re-train
all the following baselines on the same datasets as our model.

Neural Machine Translation We use standard autoregressive sequence-to-sequence NMT base-
lines, in which we subtokenize the given code snippet, replace the target in the source with a special
PRED symbol, and train the network to predict the target as a sequence of subtokens. Transformer-
base+copy (Vaswani et al., 2017) uses the implementation of OpenNMT (Klein et al., 2017) with
a copy mechanism (Gu et al., 2016). Transformer-small+copy uses dmodel = 256, dff = 1024, and
4 self attention heads per layer. BiLSTM→LSTM+copy is a d = 512 2-layer bidirectional LSTM
encoder-decoder with attention (Luong et al., 2015). seq2tree+copy follows Aharoni and Goldberg
(2017) and learns to generate the linearized, subtokenized target AST, with the same architecture as
BiLSTM→LSTM+copy.

Java-specific Baselines We used the original implementation of Iyer et al. (2018), and also their
seq2prod baseline which is a re-implementation of Yin and Neubig (2017); these are designed for
NL→code tasks, in which we feed the (sub)tokenized code context as the NL input. The model of
Iyer et al. (2018) is designed to get additional input of the available variables and their types, for
which we do not feed types. While in theory these models could also be applied to other languages,
their implementation only supports Java.

C#-specific Baselines We compare our model to GNN→NAG using the original implementation
of Brockschmidt et al. (2019a) which contains additional improvements using ideas from Cvitkovic
et al. (2019). Bielik et al. (2016) kindly trained and tested their non-neural PHOG model on our C#
dataset. We note that PHOG does not have an explicit copy mechanism, and considers only context
to the left of the target code, while we consider also context to the right. Extending PHOG to use
copying and considering more context could potentially improve its results.

In both Java and C#, we compare to code2seq (Alon et al., 2019a), which is a strong code→NL
model and train it to generate the target code as a sequence of subtokens.

4.3 IMPLEMENTATION AND HYPERPARAMETER SETTINGS

Architecture We use embeddings of size 512, 2 layers of LSTMs with 256 units, and 4 transformer
layers with 8 attention heads. We kept a subtoken vocabulary of size 1,000 to encourage the model to
learn to copy; larger vocabularies did not show an improvement. These resulted in a very lightweight
model of only 15M trainable parameters, which is close to Transformer-small (11.8M parameters).
In comparison, the Transformer-base model had more than 45M trainable parameters.

Training We train the model end-to-end using the cross entropy objective and the Adam optimizer
(Kingma and Ba, 2014), an initial learning rate of 10−4 decayed by a factor of 0.95 every 20k steps.
We bucket examples based on the number of predictions in the target subtree (nodes + subtokens +
EOS symbols), and vary the batch size such that each batch contains about 512 targets. We train the
model to prefer copying entire tokens rather than copying subtokens, if possible. We apply dropout
of 0.25 in the Transformer layers, and a recurrent dropout of 0.5 in the LSTMs.

Inference We perform beam search with width of 5, and optimize for accuracy@1.

6

Under review as a conference paper at ICLR 2020

Model acc@1 acc@5 tree@1 tree@5

code2seq (Alon et al., 2019a) 10.68 15.56 30.46 43.94
Iyer et al. (2018) 5.94 9.19 25.54 36.75
seq2prod (Yin and Neubig, 2017) 8.05 11.82 30.77 41.73
Transformer-small (Vaswani et al., 2017)+copy 14.23 21.35 31.83 47.40
Transformer-base (Vaswani et al., 2017)+copy 16.65 24.05 34.68 50.52
BiLSTM→LSTM (Luong et al., 2015)+copy 16.93 23.17 34.29 49.72
seq2tree (Aharoni and Goldberg, 2017)+copy 16.81 23.04 38.14 52.36

SLM (this work) 18.04 24.83 39.10 55.32

Table 1: Results on Any-Code-to-Code Generation (AnyC2C) in Java.

Model acc@1 acc@5 tree@1 tree@5

GNN→NAG 15.19 27.05 26.48 40.09
code2seq 6.20 10.05 21.97 30.89
seq2seq+copy 26.42 37.94 34.10 49.23
seq2tree+copy 22.29 35.86 31.85 48.53
PHOG 7.40 12.00 – –

SLM (this work) 37.61 45.51 51.10 59.82

Table 2: Results on RestrictC2C in C#.

Ablation acc@1 acc@5

Paths→Seq 12.95 18.52
Seq→Path 12.12 17.12
Paths→Paths 17.63 24.62
No Root Att 14.43 18.48
No Copy 10.72 15.70

SLM (original model) 18.04 24.83

Table 3: Ablations on AnyC2C in Java.

5 RESULTS

Any-Code Generation: Java Table 1 shows that our SLM achieves over 1.1% and 0.78% bet-
ter acc@1 and acc@5 (respectively) over the two strongest baselines. The improvement over
Transformer-small, which is closer to our model in the number of parameters, is even higher: over
3.8% and 3.4% in acc@1 and acc@5.

In general, the NMT baselines performed better than code-specific baselines. We hypothesize that
the reason is that the NMT baselines are more generic, while the code-specific baselines are designed
for different tasks: seq2prod is designed for tasks which involve generating code given natural
language input; Iyer et al. (2018) additionally expects all member methods, variables, and their
types as input; code2seq is designed to generate sequences rather than code, and does not have a
copy mechanism. An approximation of code2seq with a copy mechanism is presented in Section 6.

Interestingly, the syntactically-informed seq2tree baseline achieved the highest tree@k among the
baselines, while our model achieved higher acc@k and tree@k. This shows that leveraging the
syntax can be beneficial in NMT baselines as well.

Restricted Code Generation (RestrictC2C): C# Table 2 shows the results for the RestrictC2C
task in C#, where seq2seq+copy is the BiLSTM→LSTM+copy model which performed the best
among the Java baselines. We first observe that the seq2seq+copy and the seq2tree+copy baselines
outperform the GNN→NAG of Brockschmidt et al. (2019a), who introduced this task. Although
Brockschmidt et al. (2019a) did compare to a seq2seq baseline, their GNN→NAG model could
copy symbols from the context, but their baseline did not. To conduct a fair comparison with our
SLM model, we equip the seq2seq and seq2tree baselines with a copy mechanism. Even though the
seq2seq+copy and the seq2tree+copy baselines perform substantially better than the state of the art
in this setting, our SLM model is able to go beyond, achieving significant gains over all models.

Examples for predictions made by our model and baselines can be found in Appendices D and E.

6 ABLATION STUDY

To understand the importance of the various components and design decisions in our model, we
conducted an extensive ablation study on the AnyC2C task in Java.

7

Under review as a conference paper at ICLR 2020

private void handleTaskFinishedEvent(TaskFinishedEvent event) {

TaskInfo taskInfo = info.tasksMap.get(event.getTaskId());

taskInfo.counters = event.getCounters();
taskInfo.finishTime = event.getFinishTime();
taskInfo.status = TaskStatus.State.SUCCEEDED.toString();
taskInfo.successfulAttemptId = event.getSuccessfulTaskAttemptId();

}

True ref: event.getTaskId()

SLM top-5 candidates:
event.getTaskName() (8.8%) (tree-match)
event.getId() (8.2%) (tree-match)
event.getTask() (3.4%) (tree-match)
event.getName() (3.3%) (tree-match)
event.getTaskId() (3.3%) (exact match)

Figure 4: A Java AnyC2C example from our test set along with the predictions of our model. The
predictions of the baselines are shown in Figure 8 in Appendix D.

Paths→Seq follows code2seq (Alon et al., 2019a) and separates the model to an encoder and a
decoder, where the decoder generates the target subtree as a sequence of subtokens. The main
difference from code2seq is that Paths→Seq includes a copy mechanism, as in our SLM model.

Seq→Path follows Rabinovich et al. (2017) and separates the model to an encoder and a decoder
(including a copy mechanism), where the encoder encodes the context as a sequence of subtokens
using a BiLSTM, and the decoder uses only the root path and the index of the generated child.

Paths→Paths uses separate encoder and decoder which both are AST-path based. These encoder
and decoder have different parameters, unlike our SLM model which models the context and the
prediction using the same components.

No Root Attention uses max pooling instead of attention in aggregating multiple paths (see Sec-
tion 3.2). The index-informed path from the root to the target’s parent (R in Figure 2) is concate-
nated with the result, instead of being used as attention query.

No Copy replaces copy mechanism with a much larger vocabulary (25k subtokens instead of 1k).

Table 3 shows the results of these alternatives. The significantly lower results of Paths→Seq and
Seq→Path show the great benefit of using a unified structural language model, instead of separate
encoder and decoder components. While this separation between encoders and decoders might be
necessary in semantic parsing (Rabinovich et al., 2017; Dong and Lapata, 2018), NL→code (Yin
and Neubig, 2017) and code→NL (Alon et al., 2019a; Fernandes et al., 2019) tasks because of the
different modalities of the input and the output, this separation may hurt performance when the
output is essentially a missing part of the input’s AST. As expected, Paths→Seq performs better
than code2seq (Table 1), as it includes a copy mechanism and code2seq does not.

As SLM performs better than Paths→Paths, this ablation shows the importance of joint modeling
of the context and the target subtree by parameter tying. Each of Paths→Paths and the seq2seq
baselines (Table 1) performs better than Paths→Seq and Seq→Path; this shows the importance of
using the same type of encoder and decoder for the AnyC2C task, rather than combining “an opti-
mal encoder” with “an optimal decoder”. Paths→Paths performs better than the seq2seq baselines
(Table 1), showing the advantage of using paths over textual sequences, even without parameter
tying.

No Root Attention degrades acc@1 and acc@5 by 3.6% to 6.3%. This shows that dynamically
attending to the context paths given the current root path is crucial, even though the root path is
necessarily included as a sub-path of other paths in the set St which go through self-attention.

Not using a copying mechanism results in a degradation of 7.3% to 9.1%. Programs use symbols
and identifiers repetitively, thus the ability to copy symbols from the context is crucial for this task.
For this reason, we included a copying mechanism in all NMT baselines in Section 4.

8

Under review as a conference paper at ICLR 2020

protected void checkRpcAdminAccess() throws
IOException, AccessControlException {

UserGroupInformation ugi = UserGroupInformation.getCurrentUser();
UserGroupInformation zkfcUgi = UserGroupInformation.getLoginUser();
if (adminAcl.isUserAllowed(ugi) ||

ugi.getShortUserName().equals(zkfcUgi.getShortUserName())) {

LOG.info("Allowed RPC access from " + ugi
+ " at " + Server.getRemoteAddress());

return;
}

String msg = "Disallowed RPC access from " + ugi
+ " at " + Server.getRemoteAddress()
+ ". Not listed in " + DFSConfigKeys.DFS_ADMIN;

LOG.warn(msg);
throw new AccessControlException(msg);

}

True ref: zkfcUgi.getShortUserName()

SLM top-5 candidates:
zkfcUgi.getShortUserName() (11.7%) (exact match)
DFSConfigKeys.DFS (4.5%)
zkfcUgi.getUserName() (2.6%) (tree-match)
zkfcUgi.getUser() (1.7%) (tree-match)
zkfcUgi.getUserId() (0.6%) (tree-match)

Entirely copied tokens are marked in brown; unknown copied subtokens are marked in blue; in-vocabulary
subtokens are marked in black; subtokens that are both in-vocabulary and copied from context are marked in
purple.

Figure 5: A Java AnyC2C example from our test set along with the predictions of our model. The
predictions of the baselines are shown in Figure 7 in Appendix D.

7 QUALITATIVE ANALYSIS

7.1 CORRECT TREE, INCORRECT IDENTIFIER ASSIGNMENT

As shown in Section 5, there is a gap between acc@k and tree@k across all models: when ignoring
identifier values and considering only the tree structure, the accuracy is significantly higher. Our
SLM model performs better than all baselines in acc@k (Table 1); further, our model also shows a
greater potential for improvement in its tree@k results which are much higher than the baselines.

We focus on the studying the cases where the tree structure was predicted correctly, but the model
failed to generate the code exactly including names. Figure 4 shows a representative example for
this case: the ground truth event.getTaskId() was predicted correctly only as the fifth candidate;
nevertheless, all top-5 candidates are a “tree-match” since all of them express a method which is
invoked on an object without arguments, of the form: NAME.NAME(). Generating the correct method
name [get,task,id] is very difficult in this case, since neither getTaskId nor TaskId appear
in the context and there is no apparent hint for them.

7.2 USEFULNESS OF COPY MECHANISM

As shown in Section 6, the ability to copy is crucial for the AnyC2C task, because of the repetitive
use of identifiers and symbols in programs. Figure 5 shows a representative example for the necessity
of the copy mechanism: generating the ground truth zkfcUgi.getShortUserName() is feasible
only thanks to the copy mechanism, since zkfc is obviously an UNK subtoken which was not
observed in the training data.

In this case, since both zkfcUgi and getShortUserName appear in context, both were copied as
entire tokens, rather than generated using subtokens. This example also shows how the ability to
copy entire tokens ease the generation process by reducing the number of target symbols (our SLM
model is able to copy and combine single subtokens as well).

9

Under review as a conference paper at ICLR 2020

8 RELATED WORK

Generalizing Previous Approaches Our approach frames code generation as predicting the next
node in all partial AST paths. This simple framing generalizes most previous work, without hand-
crafted special edges and actions:

• All models that use information about ancestor nodes only (Rabinovich et al., 2017; Maddison
and Tarlow, 2014), as well as the “Parent Feeding” of Yin and Neubig (2017), are generalized
by our model, since all paths that go into a node at pass through its parent, and the path from
the rootRt (Figure 2) is used as the attention query.

• The “previous action encoding” of Yin and Neubig (2017) is also a special case of our approach,
because St contains the paths starting from the previously expanded leaves of Ap into the
currently expanded node π (at), such as path3 in Figure 2(e).

• The “context node” of PHOG (Bielik et al., 2016) is just one of the previously-traversed leaf
nodes in a<t. Thus, not only that our model conditions on this context node as well, our model
also takes into account the syntactic relation, i.e., the path, between the context and π (at).
Moreover, while PHOG conditions on a single leaf, SLMs condition on every leaf in a<t.

• Finally, Brockschmidt et al. (2019a) define special graph edges (e.g., “NextSib” and “Child”)
to capture relations on the AST. Most of these relations can be expressed as partial AST paths.

Program Generation Learning to generate programs is one of the oldest problems in machine
learning (Waldinger and Lee, 1969) and has been considered by some as the “holy grail of computer
science” (Pnueli and Rosner, 1989; Gulwani et al., 2017). Typically, the task is to generate a program
given some form of input or context, such as complete formal specifications (Green, 1981) or input-
output examples (Gulwani, 2011; Devlin et al., 2017; Parisotto et al., 2017). While these approaches
work well in some cases, they are bounded to DSLs that prevent them from being applied to realistic,
general-purpose code. Maddison and Tarlow (2014) and Amodio et al. (2017) generate supposedly
general-purpose code in a modern programming language, but do not deal with the challenge of
fitting the code to a given context. Murali et al. (2017) generate code conditioned on a set of APIs;
they state that their approach is thus intrinsically limited to generate API-heavy programs and is
unusable for general, logical programs lacking external calls. Further, their generated programs are
in an only ”Java-like” language. Yin and Neubig (2017), Iyer et al. (2018) and Rabinovich et al.
(2017) generated general-purpose code as well, but for another task of generating code given natural
language description. Yin et al. (2019) generated “any code” given an encoded edit that needs to be
applied to a given code snippet.

Other work used datasets that are either small (Ling et al., 2016), containing highly aligned examples
(Oda et al., 2015; Chen et al., 2018), limited-purpose languages like SQL (Yu et al., 2018), or
general-purpose but containing eminently templated programs (Ling et al., 2016). Brockschmidt
et al. (2019a) limit their model to generate only expressions of primitive types or arrays of these;
use a closed vocabulary; and ignore expressions containing user-defined functions, because function
names are hardcoded in their syntax production rules. In this paper, we lift these constraints and
allow any, general-purpose, generation of code, of all types and containing any names. Our work
is also related to Habash (2004), who used structural n-grams over dependency trees for statistical
machine translation (SMT).

9 CONCLUSION

We presented a novel approach for generating code given surrounding context: computing the prob-
ability of an AST using a structural language model. We show that our approach generalizes most
previous work in this area, while reaching state-of-the-art performance on of challenging bench-
marks. We are eager to see future work advance SLMs further, and apply them to other real-life
coding applications as well as other structured-data domains.

REFERENCES

Roee Aharoni and Yoav Goldberg. Towards string-to-tree neural machine translation. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Pa-
pers), pages 132–140, Vancouver, Canada, July 2017. Association for Computational Linguistics.
doi:10.18653/v1/P17-2021. URL https://www.aclweb.org/anthology/P17-2021.

10

https://doi.org/10.18653/v1/P17-2021
https://www.aclweb.org/anthology/P17-2021

Under review as a conference paper at ICLR 2020

Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of code.
arXiv preprint arXiv:1812.06469, 2018b.

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. Suggesting accurate method
and class names. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 38–49, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3675-8. doi:10.1145/2786805.2786849. URL http://doi.acm.org/10.1145/
2786805.2786849.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018a. URL https:
//openreview.net/forum?id=BJOFETxR-.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based representation
for predicting program properties. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, pages 404–419, New York,
NY, USA, 2018. ACM. ISBN 978-1-4503-5698-5. doi:10.1145/3192366.3192412. URL http:
//doi.acm.org/10.1145/3192366.3192412.

Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating sequences from structured rep-
resentations of code. In International Conference on Learning Representations, 2019a. URL
https://openreview.net/forum?id=H1gKYo09tX.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning distributed rep-
resentations of code. Proc. ACM Program. Lang., 3(POPL):40:1–40:29, January 2019b. ISSN
2475-1421. doi:10.1145/3290353. URL http://doi.acm.org/10.1145/3290353.

Matthew Amodio, Swarat Chaudhuri, and Thomas Reps. Neural attribute machines for program
generation. arXiv preprint arXiv:1705.09231, 2017.

Pavol Bielik, Veselin Raychev, and Martin T. Vechev. PHOG: probabilistic model for code. In
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, pages 2933–2942, 2016. URL http://jmlr.org/
proceedings/papers/v48/bielik16.html.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr Polozov. Generative
code modeling with graphs. In International Conference on Learning Representations, 2019a.
URL https://openreview.net/forum?id=Bke4KsA5FX.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation. In
Advances in Neural Information Processing Systems, pages 2547–2557, 2018.

Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. Open vocabulary learning on source
code with a graph-structured cache. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pages 1475–
1485, 2019. URL http://proceedings.mlr.press/v97/cvitkovic19b.html.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International Conference
on Machine Learning, pages 990–998, 2017.

Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 731–742, 2018.

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural summa-
rization. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1ersoRqtm.

Cordell Green. Application of theorem proving to problem solving. In Readings in Artificial Intel-
ligence, pages 202–222. Elsevier, 1981.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint arXiv:1603.06393, 2016.

11

https://doi.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://doi.org/10.1145/3192366.3192412
http://doi.acm.org/10.1145/3192366.3192412
http://doi.acm.org/10.1145/3192366.3192412
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353
http://doi.acm.org/10.1145/3290353
http://jmlr.org/proceedings/papers/v48/bielik16.html
http://jmlr.org/proceedings/papers/v48/bielik16.html
https://openreview.net/forum?id=Bke4KsA5FX
http://proceedings.mlr.press/v97/cvitkovic19b.html
https://openreview.net/forum?id=H1ersoRqtm
https://openreview.net/forum?id=H1ersoRqtm

Under review as a conference paper at ICLR 2020

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In ACM
Sigplan Notices, volume 46, pages 317–330. ACM, 2011.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

Nizar Habash. The use of a structural n-gram language model in generation-heavy hybrid machine
translation. In International Conference on Natural Language Generation, pages 61–69. Springer,
2004.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to code
in programmatic context. arXiv preprint arXiv:1808.09588, 2018.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. ArXiv e-prints, 2017.

Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. Latent predictor networks for code generation. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pages 599–609, Berlin, Germany, August 2016. Association for Computational Linguistics.
doi:10.18653/v1/P16-1057. URL https://www.aclweb.org/anthology/P16-1057.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages
1412–1421, 2015. URL http://aclweb.org/anthology/D/D15/D15-1166.pdf.

Chris J. Maddison and Daniel Tarlow. Structured generative models of natural source code. In
Proceedings of the International Conference on Machine Learning - Volume 32, ICML’14,
pages II–649–II–657. JMLR.org, 2014. URL http://dl.acm.org/citation.cfm?id=
3044805.3044965.

Zohar Manna and Richard J Waldinger. Toward automatic program synthesis. Communications of
the ACM, 14(3):151–165, 1971.

Vijayaraghavan Murali, Swarat Chaudhuri, and Chris Jermaine. Bayesian sketch learning for pro-
gram synthesis. CoRR, abs/1703.05698, 2017. URL http://arxiv.org/abs/1703.
05698.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. Learning to generate pseudo-code from source code using statistical machine
translation (t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on, pages 574–584. IEEE, 2015.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. In ICLR, 2017.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 179–190.
ACM, 1989.

Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1139–1149. Association for Com-
putational Linguistics, 2017. doi:10.18653/v1/P17-1105. URL http://www.aclweb.org/
anthology/P17-1105.

Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning programs from noisy
data. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’16, pages 761–774, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-3549-2. doi:10.1145/2837614.2837671. URL http://doi.acm.org/
10.1145/2837614.2837671.

12

https://doi.org/10.18653/v1/P16-1057
https://www.aclweb.org/anthology/P16-1057
http://aclweb.org/anthology/D/D15/D15-1166.pdf
http://dl.acm.org/citation.cfm?id=3044805.3044965
http://dl.acm.org/citation.cfm?id=3044805.3044965
http://arxiv.org/abs/1703.05698
http://arxiv.org/abs/1703.05698
https://doi.org/10.18653/v1/P17-1105
http://www.aclweb.org/anthology/P17-1105
http://www.aclweb.org/anthology/P17-1105
https://doi.org/10.1145/2837614.2837671
http://doi.acm.org/10.1145/2837614.2837671
http://doi.acm.org/10.1145/2837614.2837671

Under review as a conference paper at ICLR 2020

Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, and Oleksandr Polozov. Program synthesis
and semantic parsing with learned code idioms. CoRR, abs/1906.10816, 2019. URL http:
//arxiv.org/abs/1906.10816.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pages 6000–6010, 2017.

Richard J Waldinger and Richard CT Lee. Prow: A step toward automatic program writing. In
Proceedings of the 1st international joint conference on Artificial intelligence, pages 241–252.
Morgan Kaufmann Publishers Inc., 1969.

Chunyang Xiao, Marc Dymetman, and Claire Gardent. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1341–1350, 2016.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code genera-
tion. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 440–450. Association for Computational Linguistics, 2017.
doi:10.18653/v1/P17-1041. URL http://www.aclweb.org/anthology/P17-1041.

Pengcheng Yin and Graham Neubig. Tranx: A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 7–12, 2018.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt.
Learning to represent edits. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=BJl6AjC5F7.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3911–3921, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi:10.18653/v1/D18-1425. URL https://www.aclweb.org/anthology/
D18-1425.

13

http://arxiv.org/abs/1906.10816
http://arxiv.org/abs/1906.10816
https://doi.org/10.18653/v1/P17-1041
http://www.aclweb.org/anthology/P17-1041
https://openreview.net/forum?id=BJl6AjC5F7
https://doi.org/10.18653/v1/D18-1425
https://www.aclweb.org/anthology/D18-1425
https://www.aclweb.org/anthology/D18-1425

Under review as a conference paper at ICLR 2020

Table 4: Statistics of our datasets. When not mentioned otherwise, the statistic was measured on the
training set.

Java C#

#projects - training 9 25
#projects - dev 1 2
#projects - test 1 3
#examples - training 1,309,842 16,295
#examples - dev 10,000 8,183
#examples - test 20,000 3,305
Avg. number of paths 27.8 131.1
Avg. source length - lines 10.4 57.5
Avg. source length - tokens 77.7 264.3
Avg. source length - subtokens 100.6 343.6
Avg. target length - tokens 5.4 3.9
Avg. target length - subtokens 7.8 5.0
Avg. target length - tree nodes 3.8 3.9
Avg. target length - tree targets (including subtokens & EOS) 10.8 10.8

A DATA STATISTICS

Table 4 shows some statistics of our used datasets. In Java: for the validation set, we randomly
sampled 10, 000 examples from the raw dev set; for the test set, we randomly sampled 20, 000
examples from the raw test set.

B CODE GENERATION PSEUDOCODE

Algorithm 1 shows the pseudocode for our depth-first, left-to-right, code generation approach. We
keep a stack (line 1) which is initialized with an initial node to expand. We loop while the stack is
not empty (line 3), and pop (line 4) the next node to expand at each step. If the node to expand is
a nonterminal, we predict a child node (line 7). If the node is a terminal to a subtoken, we predict
a subtoken from a vocabulary or copy (line 7). If the predicted child node, whether AST node or
subtoken, can be further expanded (line 10), it is pushed back to the stack (line 12).

C COPYING SINGLE SUBTOKENS

In addition to scoring the entire token to be copied, we also score each of the subtokens composing it
according to their position. For each position i, we add a scoring function scopyi , such that scopyi (`)
produces the copying score of the i’th subtoken of `, which we denote as `i:

sw = sgen (w) +
∑

val(`)=w

scopy token (`) +
∑
i

∑
val(`i)=w

scopyi (`) (8)

Pr (a|S) = softmax (s) (9)

Where scopy token is the scoring function of copying the entire token, described in Section 3.3.

For example, a token of getX is scored entirely using scopy token; each of its subtokens, get and X,
are scored using scopy1 and scopy2 respectively. That is, the model can either copy the entire token,
or copy only some of its subtokens. This ability is especially useful in generating a name like setX,
where getX appears in the context, and X is any unknown, user-defined, subtoken; the model learns
to generate set from the vocabulary, and copy only the subtoken X.

D JAVA EXAMPLES

Figures 5-12 contain examples from our test set for the AnyC2C task in Java, along with the pre-
diction of our model and some of the baselines. The highlighted expressions are the true references
that should be generated. Indentation and line breaks may have been altered for typesetting reasons.

14

Under review as a conference paper at ICLR 2020

Algorithm 1: Pseudocode for the code generation algorithm.
Input : partial AST A−, initial node to expand a0
Output: subtree τ

1 stack ← emptyStack(); push(stack, a0);
2 τ ← initTree(a0) ;
3 while stack is not empty do
4 parent← pop(stack);
5 S ← encodePaths(A−,τ , parent);
6 if parent ∈ nonterminals then
7 a← predictNode(S, parent);
8 else if parent ∈ terminals or parent ∈ subtokens then
9 a← predictSubtoken(S, parent);

10 if a is not EOS then
11 τ ←insertChild(τ , parent, y);
12 push(stack, a);
13 return τ ;

Greater

Name IntExp

IfExpr

x 1time=3

time=4

Figure 6: Efficient computation: partial paths for different time steps share the same prefix, allowing
a shared computation. In this example, the prefix is the shared path from the leaf (not shown) to
Greater, and is much longer than either of the suffixes.

E C# EXAMPLES

Figures 13-20 contain examples from our test set for the RestrictC2C task in C# along with the
prediction of our model some of the baselines. The highlighted expressions are the true references
that should be generated. Indentation and line breaks may have been altered for typesetting reasons.

15

Under review as a conference paper at ICLR 2020

private static String getNameServiceId(
Configuration conf, String addressKey) {

String nameserviceId = conf.get(DFS_NAMESERVICE_ID);
if (nameserviceId != null) {
return nameserviceId;

}
Collection<String> nsIds = getNameServiceIds(conf);

if (1 == nsIds.size()) {

return nsIds.toArray(new String[1])[0];
}
String nnId = conf.get(DFS_HA_NAMENODE_ID_KEY);
return
getSuffixIDs(conf, addressKey, null, nnId, LOCAL_ADDRESS_MATCHER)[0];

}

Model Predictions
True ref: nsIds.size()

SLM (this work)
nsIds.size() (83.7%)
conf.size() (3.0%)
getSuffixIDs(conf).length (2.5%)

Transformer-base +copy
-1
ns.size()
conf.size()

BiLSTM→LSTM +copy
-1
Integer.MAX VALUE
conf.size()

Seq2tree +copy
1
nsIds.size()
stringPool.blank

protected void checkRpcAdminAccess() throws
IOException, AccessControlException {

UserGroupInformation ugi = UserGroupInformation.getCurrentUser();
UserGroupInformation zkfcUgi = UserGroupInformation.getLoginUser();
if (adminAcl.isUserAllowed(ugi) ||

ugi.getShortUserName().equals(zkfcUgi.getShortUserName())) {

LOG.info("Allowed RPC access from " + ugi
+ " at " + Server.getRemoteAddress());

return;
}

String msg = "Disallowed RPC access from " + ugi
+ " at " + Server.getRemoteAddress()
+ ". Not listed in " + DFSConfigKeys.DFS_ADMIN;

LOG.warn(msg);
throw new AccessControlException(msg);

}

Model Predictions
True ref: zkfcUgi.getShortUserName()

SLM (this work)
zkfcUgi.getShortUserName() (11.7%)
DFSConfigKeys.DFS (4.5%)
zkfcUgi.getUserName() (2.6%)

Transformer-base +copy
server.getRemoteAddress()
server.getRemoteUserName()
server.getShortUserName()

BiLSTM→LSTM +copy
server.getUserName()
zkfcUgi.getUserName()
ugiUgi.getUserName()

Seq2tree +copy
dfsConfigKeys.dfsAdmin
zkfc.getUserName()
zkfcUgi.getRemoteAddress()

Figure 7: Java examples from our test set along with the predictions of our model and the baselines.16

Under review as a conference paper at ICLR 2020

private C findCounter(T key) {
int i = key.ordinal();
if (counters[i] == null) {

counters[i] = newCounter(key);
}

return (C) counters[i] ;

}

Model Prediction
True ref: (C) counters[i]

SLM (this work)
(C) counters[i] (71.6%)
(C) this (6.3%)
counters[i] (4.8%)

Transformer-base +copy
(C) this
(C) counters[i]
(C) counters

BiLSTM→LSTM +copy
(C) this
(C) counters[i]
counters[i]

Seq2tree +copy
(C) counters[i]
(C) counters[i].ordinal()
(C) counters.get(i)

private void handleTaskFinishedEvent(TaskFinishedEvent event) {

TaskInfo taskInfo = info.tasksMap.get(event.getTaskId());

taskInfo.counters = event.getCounters();
taskInfo.finishTime = event.getFinishTime();
taskInfo.status = TaskStatus.State.SUCCEEDED.toString();
taskInfo.successfulAttemptId = event.getSuccessfulTaskAttemptId();

}

Model Prediction
True ref: event.getTaskId()

SLM (this work)
event.getTaskName() (8.8%)
event.getId() (8.2%)
event.getTask() (3.4%)

Transformer-base +copy
event.getTaskInfo()
event.getTaskId()
event.getId()

BiLSTM→LSTM +copy
event.name
event.type
event.getId()

Seq2tree +copy
event.getId()
event.getPath()
event.getDescription()

Figure 8: Java examples from our test set along with the predictions of our model and the baselines.

17

Under review as a conference paper at ICLR 2020

static String replaceSubstitution(
String base, Pattern from, String to, boolean repeat) {

Matcher match = from.matcher(base);
if (repeat) {

return match.replaceAll(to) ;

} else {
return match.replaceFirst(to);

}
}

Model Prediction
True ref: match.replaceAll(to)

SLM (this work)
match.toString() (9.0%)
match.replaceAll(to) (8.2%)
match.replaceAll(to, from) (6.5%)

Transformer-base +copy
match.replaceFirst(to)
replace.replaceFirst(to)
matcher.replaceFirst(to)

BiLSTM→LSTM +copy
match.getFirst()
match.replaceFirst(to)
match.replaceFirst(to, to)

Seq2tree +copy
match.replaceFirst(base)
match.replaceFirst(to)
match.replaceFirst(repeat)

public void responseReceived(ResponseReceivedEvent event) {
RequestResult result = event.getRequestResult();
Date startDate = result.getStartDate();
Date stopDate = result.getStopDate();
long elapsed = stopDate.getTime() - startDate.getTime();
synchronized (this) {
this.lastE2Elatency = elapsed;

}

if (LOG.isDebugEnabled()) {

int statusCode = result.getStatusCode();
String etag = result.getEtag();
HttpURLConnection urlConnection =

(HttpURLConnection) event.getConnectionObject();
int contentLength = urlConnection.getContentLength();
String requestMethod = urlConnection.getRequestMethod();
long threadId = Thread.currentThread().getId();
LOG.debug(String.format(
"SelfThrottlingIntercept:: ResponseReceived:
... threadId=%d, Status=%d, Elapsed(ms)=%d,
... ETAG=%s, contentLength=%d, requestMethod=%s",
threadId, statusCode, elapsed, etag, contentLength, requestMethod));

}
}

Model Prediction
True ref: LOG.isDebugEnabled()

SLM (this work)
elapsed != null (32.1%)
LOG.isDebugEnabled() (29.0%)
!LOG.isDebugEnabled() (2.4%)

Transformer-base +copy
stopDate != null
result.hasStatusCode()
result.hasStatusCode() != elapsed

BiLSTM→LSTM +copy
result != null
elapsed > 0
result.getStatusCode() == workflowConstants.STATUS

Seq2tree +copy
event.getConnectionObject() instanceof HttpUrlConnection
startDate != null
LOG.isDebugEnabled()

Figure 9: Java examples from our test set along with the predictions of our model and the baselines.
18

Under review as a conference paper at ICLR 2020

private static boolean isNameResolved(InetAddress address) {

String hostname = address.getHostName() ;

String ip = address.getHostAddress();
return !hostname.equals(ip) || NetUtils.isLocalAddress(address);

}

Model Prediction
True ref: address.getHostName()

SLM (this work)
address.getHostname() (3.5%)
address.getHostName() (2.0%)
inetAddress.getByName(address.getAddress()) (0.7%)

Transformer-base +copy
address.getHostAddress()
address.getLastElement().getValue()
address.getAddress()

BiLSTM→LSTM +copy
address.getHostAddress()
address.getPort()
address.getAddress()

Seq2tree +copy
address.getHostAddress()
address.getPort()
address.getAddress()

private synchronized void initJournals(List<URI> dirs) {
int minimumRedundantJournals = conf.getInt(

DFSConfigKeys.DFS_NAMENODE_EDITS_DIR_MINIMUM_KEY,
DFSConfigKeys.DFS_NAMENODE_EDITS_DIR_MINIMUM_DEFAULT);

journalSet = new JournalSet(minimumRedundantJournals);
for (URI u : dirs) {
boolean required =

FSNamesystem.getRequiredNamespaceEditsDirs(conf).contains(u);

if (u.getScheme() .equals(NNStorage.LOCAL_URI_SCHEME)) {

StorageDirectory sd = storage.getStorageDirectory(u);
if (sd != null) {
journalSet.add(

new FileJournalManager(conf, sd, storage),
required, sharedEditsDirs.contains(u));

}
} else {
journalSet.add(createJournal(u),

required, sharedEditsDirs.contains(u));
}

}
if (journalSet.isEmpty()) {
LOG.error("No edits directories configured!");

}
}

Model Prediction
True ref: u.getScheme()

SLM (this work)
u.getName() (27.4%)
u.getScheme() (13.1%)
u.getVersion() (8.2%)

Transformer-base +copy
journalSet.LOCAL URI SCHEME
u.getName()
Boolean.true

BiLSTM→LSTM +copy
u.toString()
Boolean.true
u.getURI()

Seq2tree +copy
u.getScheme()
u.getName()
storage.getLocalUriScheme()

Figure 10: Java examples from our test set along with the predictions of our model and the baselines.19

Under review as a conference paper at ICLR 2020

static EnumSet<FileAttribute> parse(String s) {
if (s == null || s.length() == 0) {
return EnumSet.allOf(FileAttribute.class);

}
EnumSet<FileAttribute> set = EnumSet.noneOf(FileAttribute.class);
FileAttribute[] attributes = values();

for (char c : s.toCharArray()) {

int i = 0;
for (; i < attributes.length && c != attributes[i].symbol; i++) ;
if (i < attributes.length) {
if (!set.contains(attributes[i])) {
set.add(attributes[i]);

} else {
throw new IllegalArgumentException("There are more than one '"

+ attributes[i].symbol + "' in " + s);
}

} else {
throw new IllegalArgumentException("'" + c + "' in "

+ s + " is undefined.");
}

}
return set;

}

Model Prediction
True ref: s.toCharArray()

SLM (this work)
s.toCharArray() (22.4%)
attributes[0].value (18.5%)
attributes[undefined].length (4.6%)

Transformer-base +copy
s.split(" "
set.split(" ")
attributes.keySet()

BiLSTM→LSTM +copy
attributes.length
attributes[0]
attributes[0].next

Seq2tree +copy
set.toArray()
s.toCharArray()
set.toCharArray()

public static Path[] stat2Paths(FileStatus[] stats) {
if (stats == null)
return null;

Path[] ret = new Path[stats.length];
for (int i = 0; i < stats.length; ++i) {

ret[i] = stats[i].getPath() ;

}
return ret;

}

Model Prediction
True ref: stats[i].getPath()

SLM (this work)
stats[i].getPath() (25.2%)
new Path(stats[i]) (3.3%)
new Path(stats[i], charset) (2.5%)

Transformer-base +copy
stats[i]
stats[i].getPath()
new Path(stats[i])

BiLSTM→LSTM +copy
stats[i]
new Path(stats[i])
stats[i].toString()

Seq2tree +copy
stats[i]
new Path(stats[i])
stat(stats[i])

Figure 11: Java examples from our test set along with the predictions of our model and the baselines.
20

Under review as a conference paper at ICLR 2020

void ensureCurrentDirExists() throws IOException {
for (

Iterator<StorageDirectory> it = storage.dirIterator();
it.hasNext();) {

StorageDirectory sd = it.next();
File curDir = sd.getCurrentDir();

if (!curDir.exists() && !curDir.mkdirs()) {

throw new IOException("Could not create directory " + curDir);
}

}
}

Model Prediction
True ref: !curDir.exists()

SLM (this work)
!curDir.exists() (29.0%)
curDir != null (25.8%)
curDir.exists() (24.4%)

Transformer-base +copy
curDir != null
!curDir.exists()
curDir.exists()

BiLSTM→LSTM +copy
curDir != null
curDir.exists()
sd != null

Seq2tree +copy
curDir != null
curDir.exists()
!curDir.exists()

public static byte[] getXAttr(final Map<?, ?> json, final String name)
throws IOException {

if (json == null) {
return null;

}
Map<String, byte[]> xAttrs = toXAttrs(json);
if (xAttrs != null) {

return xAttrs.get(name) ;

}
return null;

}

Model Prediction
True ref: xAttrs.get(name)

SLM (this work)
xAttrs.get(name) (28.2%)
xAttrs.get(xAttrs) (5.8%)
xAttrs.toByteArray() (4.4%)

Transformer-base +copy
xAttrs.get(name)
xAttrs.toByteArray()
new byte[0]

BiLSTM→LSTM +copy
xAttrs.getBytes()
new byte[0]
xAttrs.toByteArray()

Seq2tree +copy
xAttrs.get(name)
xAttrs.get()
xAttrs.get(0)

Figure 12: Java examples from our test set along with the predictions of our model and the baselines.

21

Under review as a conference paper at ICLR 2020

private void setFlag(long flag) {
long prev;
do {
prev = unsafe.getLongVolatile(null, this.slotAddress);

if ((prev & flag) != 0) {

return;
}

} while (!unsafe.compareAndSwapLong(
null, this.slotAddress, prev, prev | flag));

}

Model Prediction
True ref: (prev & flag)

SLM (this work)
(prev & flag) (8.9%)
(prev & flagSlot) (5.4%)
unsafe.get(prev) (5.0%)

Transformer-base +copy
(prev & flag)
(prev | flag)
unsafe.compareTo(prev)

BiLSTM→LSTM +copy
prev
prev + 1
prev - 1

Seq2tree +copy
unsafe prev flag (Syntax error)
(volatile prev unsafe.get()) (Syntax error)
(volatile prev unsafe.getLongVolatile(null, prev)) (Syntax error)

public synchronized void setInput(byte[] b, int off, int len) {
if (b == null) {
throw new NullPointerException();

}

if (off < 0 || len < 0 || off > b.length - len) {
throw new ArrayIndexOutOfBoundsException();

}
finished = false;
if (len > uncompressedDirectBuf.remaining()) {
this.userBuf = b;
this.userBufOff = off;
this.userBufLen = len;

} else {
((ByteBuffer) uncompressedDirectBuf).put(b, off, len);
uncompressedDirectBufLen = uncompressedDirectBuf.position();

}
bytesRead += len;

}

Model Predictions
True ref: len < 0

SLM (this work)
len < 0 (41.3%)
off > b.length (23.4%)
len > b.length (14.1%)

Transformer-base +copy
off < 0
len < 0
b == null

BiLSTM→LSTM +copy
off < 0
len < 0
b == null

Seq2tree +copy
off < 0
len < 0
0 < off

Figure 13: Java examples from our test set along with the predictions of our model and the baselines.

22

Under review as a conference paper at ICLR 2020

private int readData(byte[] buf, int off, int len) throws IOException {
int bytesRead = 0;
while (bytesRead < len) {
int n = IOUtils.wrappedReadForCompressedData(

in, buf, off + bytesRead , len - bytesRead);

if (n < 0) {
return bytesRead;

}
bytesRead += n;

}
return len;

}

Model Prediction
True ref: off + bytesRead

SLM (this work)
bytesRead - bytesRead (35.0%)
off + bytesRead (14.1%)
off - bytesRead (9.4%)

Transformer-base +copy
off - bytesRead
off + len
len - bytesRead

BiLSTM→LSTM +copy
-bytesRead
bytesRead++
bytesRead - bytesRead

Seq2tree +copy
compressed bytesRead (Syntax error)
off + bytesRead
len - bytesRead

private Path getPath(int curId, int limitPerDir, Type type) {
if (curId <= 0) {
return basePath;

}
String name = "";
switch(type) {
case FILE:
name = FILE_PREFIX + new Integer(curId % limitPerDir).toString();
break;

case DIRECTORY:
name = DIR_PREFIX + new Integer(curId % limitPerDir).toString();
break;

}
Path base = getPath((curId / limitPerDir), limitPerDir, Type.DIRECTORY);

return new Path(base, name) ;

}

Model Prediction
True ref: new Path(base, name)

SLM (this work)
new Path(base, name) (6.0%)
new Path(base, name, limitPerDir) (2.9%)
new Path(base, name, type) (2.8%)

Transformer-base +copy
new Path(base)
new Path(name)
getPath(base)

BiLSTM→LSTM +copy
new Path(base)
new File(base)
new Path(base.getPath())

Seq2tree +copy
new Path(base)
new File(base, name)
new Path(base, name)

Figure 14: Java examples from our test set along with the predictions of our model and the baselines.

23

Under review as a conference paper at ICLR 2020

private static IEnumerable<Token> OfSequence(
this IEnumerable<Token> tokens, Token nameToken, TypeDescriptor info)

{
var nameIndex = tokens.IndexOf(t => t.Equals(nameToken));

if (nameIndex >= 0)
{
return info.NextValue.MapValueOrDefault(

_ => info.MaxItems.MapValueOrDefault(
n => tokens.Skip(nameIndex + 1).Take(n),

tokens.Skip(nameIndex + 1).TakeWhile(v => v.IsValue())),
tokens.Skip(nameIndex + 1).TakeWhile(v => v.IsValue()));

}
return new Token[] { };

}

Model Prediction
True ref: nameIndex >= 0

SLM (this work)
nameIndex >= 0 (22.6%)
nameIndex == -1 (19.1%)
nameIndex > -1 (13.9%)

BiLSTM→LSTM +copy
!nameIndex
nameIndex == -1
nameIndex < 0

GNN→NAG (Brockschmidt et al., 2019a)
nameIndex == 0
nameIndex > 0
nameIndex < 0

public static IEnumerable<T[]> Group<T>(
this IEnumerable<T> source, int groupSize)

{
if (groupSize < 1)
{
throw new ArgumentOutOfRangeException(nameof(groupSize));

}
T[] group = new T[groupSize];
int groupIndex = 0;
foreach (var item in source)
{
group[groupIndex++] = item;

if (groupIndex == groupSize)

{
yield return group;
group = new T[groupSize];
groupIndex = 0;

}
}

}

Model Prediction
True ref: groupIndex == groupSize

SLM (this work)
groupIndex < 0 (21.4%)
groupIndex == -1 (10.3%)
groupIndex < groupIndex (5.3%)

BiLSTM→LSTM +copy
group.IsNullOrEmpty()
groupGroup[groupIndex++]
group.EndsWith(group)

GNN→NAG (Brockschmidt et al., 2019a)
groupIndex == 0
groupIndex == 1
groupIndex == groupSize

Figure 15: C# examples from our test set of the RestrictC2C task along with the predictions of our
model and the baselines.

24

Under review as a conference paper at ICLR 2020

internal static void AddLine(StringBuilder builder,
string value, int maximumLength)

{
if (builder == null)
{
throw new ArgumentNullException(nameof(builder));

}
if (value == null)
{
throw new ArgumentNullException(nameof(value));

}
if (maximumLength < 1)
{
throw new ArgumentOutOfRangeException(nameof(value));

}

value = value.Trim() ;

builder.AppendWhen(builder.Length > 0, Environment.NewLine);
do
{
var wordBuffer = 0;
var words = value.Split(' ');
for (var i = 0; i < words.Length; i++)
{
if (words[i].Length < (maximumLength - wordBuffer))
{
builder.Append(words[i]);
wordBuffer += words[i].Length;
if ((maximumLength - wordBuffer) > 1 && i != words.Length - 1)
{
builder.Append(" ");
wordBuffer++;

}
}
else if (words[i].Length >= maximumLength && wordBuffer == 0)
{
builder.Append(words[i].Substring(0, maximumLength));
wordBuffer = maximumLength;
break;

}
else break;

}
value = value.Substring(Math.Min(wordBuffer, value.Length));
builder.AppendWhen(value.Length > 0, Environment.NewLine);

}
while (value.Length > maximumLength);
builder.Append(value);

}

Model Prediction
True ref: value.Trim()

SLM (this work)
value.Trim() (16.0%)
value.Substring(0, maximumLength) (10.9%)
value.Replace(maximumLength, maximumLength (10.7%)

BiLSTM→LSTM +copy
maximumLength - 1
value.Trim()
valueLength++

GNN→NAG
value + <UNK>
value + maximumLength
value.Substring(0, maximumLength)

Figure 16: C# examples from our test set of the RestrictC2C task along with the predictions of our
model and the baselines.

25

Under review as a conference paper at ICLR 2020

public static string[] TrimStringArray(this IEnumerable<string> array)
{

return array.Select(item => item.Trim()).ToArray();

}

Model Prediction
True ref: item.Trim()

SLM (this work)
item.Trim() (20.1%)
item.ToUpperInvariant() (3.5%)
item.ToUpper() (1.6%)

BiLSTM→LSTM +copy
item.Trim()
item.ToTrim()
item.] (Syntax error)

GNN→NAG (Brockschmidt et al., 2019a)
item + <UNK>
item + item
item + 1

public static string Camelize(this string input)
{

var word = Pascalize(input);

return word.Substring(0, 1) .ToLower() + word.Substring(1) ;

}

Model Prediction
True ref: word.Substring(0, 1) word.Substring(1)

SLM (this work)
word.Substring(0, 1) word.Substring(1)
word.Trim() wordData.Substring(1)
word.Substring(1) word.Substring(0, 1)

BiLSTM→LSTM +copy
input.Replace("&", ") input.Replace("&", " <UNK>)
input.Replace(1, ’’) input + "." + input
input.Replace("&", "") input.Substring(0, 1)

GNN→NAG
word.CombineWith(<UNK>) word.CombineWith(<UNK>)
word.Trim() word + <UNK>
word.CombineWith(input) word.Replace(<UNK>, <UNK>)

Figure 17: C# examples from our test set of the RestrictC2C task along with the predictions of our
model and the baselines.

26

Under review as a conference paper at ICLR 2020

public string Truncate(string value, int length, string truncationString,
TruncateFrom truncateFrom = TruncateFrom.Right)

{
if (value == null)
return null;

if (value.Length == 0)
return value;

if (truncationString == null)
truncationString = string.Empty;

if (truncationString.Length > length)
return truncateFrom == TruncateFrom.Right ?
value.Substring(0, length) : value.Substring(value.Length - length);

var alphaNumericalCharactersProcessed = 0;

if (value.ToCharArray().Count(char.IsLetterOrDigit) <= length)
return value;

if (truncateFrom == TruncateFrom.Left)
{
for (var i = value.Length - 1; i > 0; i--)
{
if (char.IsLetterOrDigit(value[i]))
alphaNumericalCharactersProcessed++;

if (alphaNumericalCharactersProcessed + truncationString.Length
== length)

return truncationString + value.Substring(i);
}

}

for (var i = 0; i < value.Length - truncationString.Length; i++)
{
if (char.IsLetterOrDigit(value[i]))

alphaNumericalCharactersProcessed++ ;

if (alphaNumericalCharactersProcessed + truncationString.Length
== length)

return value.Substring(0, i + 1) + truncationString;
}

return value;
}

Model Prediction
True ref: alphaNumericalCharactersProcessed++

SLM (this work)
alphaNumericalCharactersProcessed++ (48.1%)
iCount++ (5.8%)
iIndex++ (1.6%)

BiLSTM→LSTM +copy
i++
truncation++
alpha--

GNN→NAG
alphaNumericalCharactersProcessed++
alphaNumericalCharactersProcessed--
--alphaNumericalCharactersProcessed

Figure 18: C# examples from our test set of the RestrictC2C task along with the predictions of our
model and the baselines.

27

Under review as a conference paper at ICLR 2020

public static int BinarySearch<TItem, TSearch>(
this IList<TItem> list, TSearch value,
Func<TSearch, TItem, int> comparer)

{
if (list == null)
{
throw new ArgumentNullException("list");

}
if (comparer == null)
{
throw new ArgumentNullException("comparer");

}

var lower = 0;
var upper = list.Count - 1;

while (lower <= upper)
{
var middle = lower + (upper - lower) / 2;
var comparisonResult = comparer(value, list[middle]);

if (comparisonResult < 0)

{
upper = middle - 1;

}

else if (comparisonResult > 0)

{
lower = middle + 1;

}
else
{
return middle;

}
}

return lower;
}

Model Prediction
True ref: comparisonResult < 0 comparisonResult > 0

SLM (this work)
comparisonResult < 0 comparisonResult > 0
comparisonResult > 0 comparisonResult < 0
middle == comparisonResult comparisonResult == 0

BiLSTM→LSTM +copy
lowerResult == middle lower < 0
lowerResult == 0 lower + "."
lower != middle lower != middle

GNN→NAG
comparisonResult == 0 comparisonResult == 0
comparisonResult > 0 comparisonResult > 0
comparisonResult < 0 comparisonResult == middle

Figure 19: C# examples from our test set of the RestrictC2C task along with the predictions of our
model and the baselines.

28

Under review as a conference paper at ICLR 2020

public override string ToString()
{

// use reflection to display all the properties that
// ... have non default values
StringBuilder result = new StringBuilder();
var props = this.GetType().GetTypeInfo().DeclaredProperties;
result.AppendLine("{");
foreach (var prop in props)
{
if (prop.Name != "Content" && prop.Name != "Subtitle"

&& prop.Name != "Title" && prop.Name != "UniqueId")
{

object value = prop.GetValue(this);
bool valueIsNull = value == null;
object defaultValue = Common.GetDefault(prop.PropertyType);
bool defaultValueIsNull = defaultValue == null;
if ((valueIsNull != defaultValueIsNull)

// one is null when the other isn't

|| (!valueIsNull
&& (value.ToString() != defaultValue.ToString())))

// both aren't null, so compare as strings
{
result.AppendLine(prop.Name + " : " + prop.GetValue(this));

}
}

}
result.AppendLine("}");
return result.ToString();

}

Model Prediction
True ref: !valueIsNull

SLM (this work)
!valueIsNull (52.4%)
!defaultValueIsNull (9.0%)
!valueIsNull.IsNullOrEmpty() (3.2%)

BiLSTM→LSTM +copy
!defaultValueIsNull
(defaultValueIsNull || value)
(defaultValueIsNull || defaultValue)

GNN→NAG (Brockschmidt et al., 2019a)
!valueIsNull
!defaultValueIsNull
!!valueIsNull

Figure 20: C# examples from our test set of the RestrictC2C task along with the predictions of our
model and the baselines.

29

Under review as a conference paper at ICLR 2020

public TradierOrderResponse PlaceOrder(string accountId,
TradierOrderClass classification,
TradierOrderDirection direction,
string symbol,
decimal quantity,
decimal price = 0,
decimal stop = 0,
string optionSymbol = "",
TradierOrderType type = TradierOrderType.Market,
TradierOrderDuration duration = TradierOrderDuration.GTC)

{
//Compose the request:
var request = new RestRequest("accounts/{accountId}/orders");
request.AddUrlSegment("accountId", accountId.ToString());

//Add data:
request.AddParameter("class", GetEnumDescription(classification));
request.AddParameter("symbol", symbol);
request.AddParameter("duration", GetEnumDescription(duration));
request.AddParameter("type", GetEnumDescription(type));
request.AddParameter("quantity", quantity);
request.AddParameter("side", GetEnumDescription(direction));

//Add optionals:
if (price > 0) request.AddParameter("price", Math.Round(price, 2));
if (stop > 0) request.AddParameter("stop", Math.Round(stop, 2));

if (optionSymbol != "")

request.AddParameter("option_symbol", optionSymbol);

//Set Method:
request.Method = Method.POST;

return Execute<TradierOrderResponse>(request,
TradierApiRequestType.Orders);

}

Model Prediction
True ref: optionSymbol != ""

SLM (this work)
optionSymbol != "" (5.5%)
optionSymbol == "" (4.4%)
optionSymbol.IsNullOrEmpty() (1.1%)

BiLSTM→LSTM +copy
!stopSymbol
stopSymbol != optionSymbol
(stopSymbol " && optionSymbol) (Syntax error)

GNN→NAG (Brockschmidt et al., 2019a)
optionSymbol == <UNK>
optionSymbol == symbol
optionSymbol != symbol

Figure 21: C# examples from our test set of the RestrictC2C task along with the predictions of our
model and the baselines.

30

Under review as a conference paper at ICLR 2020

[Test, TestCaseSource("GetLeanDataLineTestParameters")]
public void GetSourceMatchesGenerateZipFilePath(

LeanDataLineTestParameters parameters)
{

var source = parameters.Data.GetSource(
parameters.Config, parameters.Data.Time.Date, false);

var normalizedSourcePath = new FileInfo(source.Source).FullName;
var zipFilePath = LeanData.GenerateZipFilePath(

Globals.DataFolder, parameters.Data.Symbol,
parameters.Data.Time.Date,
parameters.Resolution, parameters.TickType);

var normalizeZipFilePath = new FileInfo(zipFilePath).FullName;
var indexOfHash = normalizedSourcePath.LastIndexOf(

"#", StringComparison.Ordinal);
if (indexOfHash > 0)
{

normalizedSourcePath =

normalizedSourcePath.Substring(0, indexOfHash) ;

}
Assert.AreEqual(normalizeZipFilePath, normalizedSourcePath);

}

Model Prediction
True ref: normalizedSourcePath.Substring(0, indexOfHash)

SLM (this work)
normalizedSourcePath.Substring(0, indexOfHash) (28.3%)
normalizedSourcePath.Substring(1) (8.8%)
normalizedSourcePath.Remove(indexOfHash) (8.2%)

BiLSTM→LSTM +copy
indexOfHash + "<UNK>"
indexOfHash > normalizedOfHash
indexOfHash > 0

GNN→NAG
normalizedSourcePath + normalizeZipFilePath
normalizedSourcePath + normalizedSourcePath
normalizedSourcePath + normalizeZipFilePath + <UNK>

Figure 22: C# examples from our test set of the RestrictC2C task along with the predictions of our
model and the baselines.

31

	Introduction
	Code Generation as Structural Language Modeling
	Model Architecture
	Encoding AST Paths
	Aggregating Multiple Paths
	Predicting with a Syntactic Copy Mechanism

	Experimental Setup
	Benchmarks
	Baselines
	Implementation and Hyperparameter Settings

	Results
	Ablation Study
	Qualitative Analysis
	Correct Tree, Incorrect Identifier Assignment
	Usefulness of Copy Mechanism

	Related Work
	Conclusion
	Data statistics
	Code Generation Pseudocode
	Copying Single Subtokens
	Java Examples
	C# Examples

