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Abstract

Inspired by the modularity and the lifecycle of biological neurons,
we introduce Continual Learning via Neural Pruning (CLNP), a new
method aimed at lifelong learning in fixed capacity models based on
the pruning of neurons of low activity. In this method, an L; regula-
tor is used to promote the presence of neurons of zero or low activity
whose connections to previously active neurons is permanently sev-
ered at the end of training. Subsequent tasks are trained using these
pruned neurons after reinitialization and cause zero deterioration
to the performance of previous tasks. We show empirically that this
biologically inspired method leads to state of the art results beating
or matching current methods of higher computational complexity.

1 Introduction

Continual learning, the ability of models to learn to solve new tasks
beyond what has previously been trained, has garnered much at-
tention from the machine learning community in recent years. The
main obstacle for effective continual learning is the problem of cata-
strophic forgetting: machines trained on new problems forget about
the tasks that they were previously trained on. There are multiple ap-
proaches to this problem, from employing networks with many sub-
modules [1, 8, 12] to methods which penalize changing the weights
of the network that are deemed important for previous tasks [3, 5, 16].
These approaches either require specialized training schemes or still
suffer catastrophic forgetting, albeit at a smaller rate. Furthermore,
from a biological perspective, the current fixed capacity approaches
generally require the computation of a posterior in weight space
which is non-local and hence biologically implausible.

Motivated by the life-cycle of biological neurons [6], we introduce
a simple continual learning algorithm for fixed capacity networks
which can be trained using standard gradient descent methods and
suffers zero deterioration on previously learned problems during
the training of new tasks. In this method, the only modifications to
standard machine learning algorithms are simple and biologically
plausible: i.e. a sparsifying L; regulator and activation threshold
based neural pruning. We demonstrate empirically that these mod-
ifications to standard practice lead to state of the art performance
on standard catastrophic forgetting benchmarks.

2 Related work

Lifelong learning. Prior work addressing catastrophic forgetting
generally fall under two categories. In the first category, the model is
comprised of many individual modules at each layer and forgetting
is prevented either by routing the data through different modules 1]
or by successively adding new modules for each new task [8, 12].
This approach often has the advantage of suffering zero forgetting,
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however, the structure of these networks is specialized. In the case
of [8, 12], the modelis not fixed capacity and in the case of [ 1] training
is done using a tournament selection genetic algorithm. In the second
category of approachesto lifelong learning the network structure and
training scheme are standard, and forgetting is addressed by penaliz-
ing changes of weights which are deemed important [3, 5, 16]. These
approaches, generally referred to as weight elasticity methods, have
the advantage of simpler training schemes but still suffer catastrophic
forgetting, albeit at a smaller rate than unconstrained training.

Sparsification. While sparsification is a crucial tool that we use, it
is not in itself a focus of this work. For accessibility, we use a simple
neuron/filter based sparsification scheme which can be thought of
as a single iteration variation of [4].

3 Methodology

The core idea of our method is to take advantage of the fact that neu-
ral networks are vastly over-parametrized [10] . A manifestation of
this over-parametrization is through the practice of sparsification, i.e.
the compression of neural network with relatively little loss of perfor-
mance 2,4, 13]. Asan example, it was shownin [9] show that VGG-16
can be compressed by more than 16 times. In this section we first
show that given an activation based sparse network, we can leverage
the unused capacity of the model to develop a continual learning
scheme which suffers no catastrophic forgetting. We then discuss
the idea of graceful forgetting to address the tension between sparsi-
fication and model performance in the context of lifelong learning.

In what follows we will discuss sparsity for fully connected lay-
ers by looking at the individual neurons. The same argument goes
through identically for individual channels of convolutional layers.

Figure 1: The partition of an network with neuronal sparsity into
active, inactive and interference parts.

3.1 Generalities

Let us assume that we have a trained network which is sparse in the
sense that only a subset of the neurons of the network are active.
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Figure 2: Middle: A network trained on first task (blue) with neuronal sparsity, where the interference weights have been put to zero. Left,

right: the multi-head and single-head expansions on second task (green).

Networks with this form of sparsity can be thought of as narrow
subnetworks embedded inside the original structure. There are many
approaches that aim to train such sparse networks with little loss of
performance (e.g. [4, 9]). We will discuss our sparsification method
in detail in §3.2.

Fig. 1 shows a cartoon of our approach, where we have a network
with activation based neuronal sparsity, where the active and inac-
tive neurons are respectively denoted by blue and grey nodes. Based
on the connectivity structure, the weights of the network can also
be split into three classes. First, denoted in blue in Fig. 1, we have
the active weights W** which connect active nodes to active nodes.
Next we have the weights which connect any node to inactive nodes,
we call these the free weights W, denoted in grey. Finally we have
the weights which connect the inactive nodes to the active nodes,
we call these the interference weights W™, denoted in red dashed
lines. A more precise definition of the active and inactive neurons
and weights is given in §3.2.

The crux of our approach is the simple observation that if all the
interference weights W™ are set to zero, the free weights W™ can be
changed arbitrarily without causing any change whatsoever to the
output of the network. We can therefore utilize these weights to train
new tasks without any catastrophic forgetting of the previous tasks.

We can further split the free weights into two groups. First, the
weights which connect active nodes to inactive nodes. These are the
weights that take advantage of previously learned features and are
therefore responsible for transfer learning throughout the network.
We also have the weights that connect inactive nodes to inactive
nodes. These weights can form completely new pathways to the
input and train new features. A simple measure of the amount of
transfer learning taking place is the number of new active neurons
at each layer after the training of subsequent tasks. Given that an ef-
ficient sparse training scheme would not need to relearn the features
that are already present in the network, the number of new neurons
grown at each stage of training is an indicator of the sufficiency of
the already learned features for the purposes of the new task. For
example, if the features learned at some layer for previous tasks
provide sufficient statistics for purposes of a subsequent task, no
new neurons need to be trained at this layer during the training of
the subsequent task. We will see more of this point in §4.

Output architecture. Tofully flesh outacontinuallearning scheme,
we need to specify the connectivity structure of the output nodes.
There are two intuitive routes that we can take. In order to train a
new task, one option is to use a new output layer (i.e. a new head)
while saving the previous output layer. This option, demonstrated in
Fig. 2 on the left, isknown as the multi-head approach and is standard
in continual learning. Because each new output layer comes with its
own sets of weights which connect to the final hidden layer neurons,
this method is not a fully fixed capacity method. Note that in our
approach to continual learning, training a multi-head network with
a fully depleted core structure, i.e. a network where are no more free
neurons left, is equivalent to final layer transfer learning.

In scenarios where the output layer of the different tasks are
structurally compatible, for example when all tasks are classification
on the same number of classes, we can use a single-head approach.
Demonstrated in Fig. 2 on the right, in this approach we use the same
output layer for all tasks, but for each task, we mask out the neurons
of the final hidden layer that were trained on other tasks. In the case
of Fig. 2, only green nodes in the final hidden layer are connected
to the output for the second task and only blue nodes for the first
task. This is equivalent to a dynamic partitioning of the final hidden
layer into multiple unequal sized parts, one part for each task. In
practice this is done using a multiplicative masking operation with a
task dependent mask, denoted in Fig. 2 by dashed lines after the final
hidden layer. This structure, being truly fixed, is more restrictive to
train than its multi-head counterpart. Because of this, single head
continual algorithms were not possible previously, and as far as we
are aware, CLNP is the first viable such algorithm.

3.2 Methodology details

In what follows we will assume that we are using Rectifier Linear
Units (ReLU). While we have only tested our methodology with ReLU
networks, we expect it to work similarly with other activations.

Sparsification. So far in this section we have shown that given
a sparse network trained on a number of tasks, we can train the
network on new tasks without suffering any catastrophic forget-
ting. We now discuss the specific scheme that we use to achieve this
sparisty, which is similar in spirit to the network trimming approach
put forward in Ref. [4].
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Our sparsification method is comprised of two parts. First, during
the training of each task, we add an L! weight regulator to promote
sparsity and regulate the magnitude of the weights of the network.
This is akin to biological energy requirements for synaptic commu-
nication. The coefficient of « of this regulator is a hyperparameter of
our approach. We can also gain more control over the amount of spar-
sityin eachlayer by choosing a different & for different layers. The sec-
ond part of our sparsification scheme is post-training neuron pruning
based on the average activity of each neuron. This step is the analogue
of long term depression of synaptic connections between neurons
without correlated activities. Subsequently at the beginning of train-
ing a new task, the connections of these pruned neurons are reinitial-
ized in a manner reminiscent of the lifecycle of biological neurons [6].

Note that most efficient sparsification algorithms include a third
part which involves adjusting the surviving weights of the network
after pruning. This step is referred to as fine-tuning and is done by
retraining the network for a few epochs while only updating the
weights which survive sparsification. This causes the model to regain
some of its lost performance because of pruning. To achieve a yet
higher level of sparsity, one can iterate the pruning and fine-tuning
steps multiple times. For simplicity, unless otherwise specified, we
only perform one iteration of pruning without the fine tuning step.

Partitioning the network. In §3.1, we split the network into active
and inactive parts which we define as follows. Given network N,
comprised of L layers, we denote the neurons of each layer as N;
with[=1---L. Let us also assume that the network N has been trained
on dataset S. In order to find the active and inactive neurons of the
network, we compute the average activity over the entire dataset
S for each individual neuron. In a network with ReLU activations,
we identify the active neurons N, i.e. the blue nodes in Fig. 2, as
those whose average activation exceeds some threshold parameter
0: Nt = {N;| Es(N;) > 6}. The inactive neurons are taken as the
complement N;“““‘ =N; \Ni“‘. The threshold value 8 is a post-training

hyperparameter of our approach. Similar to the L! weight regulator
hyperparameter a, 6 can take different values for the different layers.
Furthermore, if = 0, N/ would be given by the neurons in the
network which are completely dead and the function being com-
puted by the network is entirely captured in N;**. We can therefore
view N/ as a compression of the network into a sub-network of
smaller width. Based on their connectivity structure, the weights of
each layer are again divided into active, free and interference parts,
respectively corresponding to the blue, grey and red lines in Fig. 2.

Graceful forgetting. While sparsity is crucial in our approach for
the training of later tasks, care needs to be taken so as not to overly
sparsify and thereby reduce the model’s performance. In practice,
model sparsity has a similar relationship with generalization as other
regularization schemes. As sparsity increases, initially the general-
ization performance of the model improves. However, as we push our
sparsity knobs (i.e. the L! regulator & and activity threshold 6) higher,
eventually both training and validation accuracy will suffer and the
network fails to fit the data properly. This means that in choosing
these hyperparameters, we have to make a compromise between
model performance and remaining network capacity for future tasks.

This brings us to a subject which is often overlooked in lifelong
learning literature generally referred to as graceful forgetting. This is
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the general notion that it would be preferable to sacrifice some accu-
racy in a controlled manner, if it reduces future catastrophic forget-
ting of this task and also helps in the training of subsequent tasks. We
believe any successful fixed capacity continual learning algorithm
needs to implement some form of graceful forgetting scheme. In our
approach, graceful forgetting is implemented through the sparsity vs.
performance compromise. In other words, after the training of each
task, we sparsify the model up to some acceptable level of perfor-
mance loss (given by a margin parameter m) in a controlled manner.
We then move on to subsequent tasks knowing that the model no
longer suffers any further deterioration from training future tasks.
This has to be contrasted with other weight elasticity approaches
which use soft constraints on the weights of the network and cannot
guarantee future performance of previously trained tasks.

The choice of sparsity hyperparameters is made based on this
incarnation of graceful forgetting as follows. We scan over a range of
hyperparameters (a, the L! weight regulator and &, the learning rate)
using grid search and note the value of the best validation accuracy
across all hyperparameters. We then pick the models which achieve
validation accuracy within a margin of m% of this best validation
accuracy. The margin parameter m controls how much we are willing
to compromise on accuracy to regain capacity and in experiments
we take it to be generally in the range of 0.05% to 2% depending on
the task. We sparsify the picked models using the highest activation
threshold 0 such that the model remains within this margin of the best
validation accuracy. We finally pick the hyperparameters which give
the highest sparsity among these models. In this way, we efficiently
find the optimal hyperparameters a*(m), 6*(m) and £*(m) which
afford the highest sparsity model with validation accuracy within
m% of the highest validation accuracy among all hyperparameters.

After pruning away the unused weights and neurons of the model
with the hyperparameters chosen as above, we report the test ac-
curacy of the sparsified network. This algorithm for training and
hyperparameter grid search does not incur any significant additional
computational burden over standard practice. The hyperparameter
search is performed in standard fashion, and the additional steps
of selecting networks within the acceptable margin, scanning the
threshold, and selecting the highest sparsity network only require
evaluation and do not include any additional network training.

4 Experiments

Permuted MNIST. In this experiment, we look at the performance
of our approach on ten tasks derived from the MNIST dataset via ten
random permutations of the pixels . To compare with previous work,
we start with the same structure and hyperparameters as in Ref. [16]:
a multi-head MLP architecture with two hidden layers, each with
2000 neurons and ReLU activation and a softmax multi-class cross-
entropy loss trained with Adam optimizer and batch size 256. In
order to make the task more challenging we look at two variations of
this structure: For the first variation, we employ only a single-head
to demonstrate the viability of our single-head approach. For the
second variation we use layers of width 100 instead of 2000.

For the first network variation (wide single-head structure), we
do a search over the hyperparameters on the first task using a
heldout validation set, just as in Ref. [16]. For the remaining tasks,
we settle on learning rate of 0.002 and L! weight regularization
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Figure 3: CIFAR-10 and split CIFAR-100 results on multi-head network.

a=1077,107°,107° respectively for the first, second and final layers.
Finally, when sparsifying after training each task, we allow for grace-
ful forgetting with a small margin of m =0.05%. With test error within
0.05% of single task SGD training, CLNP virtually eliminates cata-
strophic forgetting and achieves an average accuracy of 98.42+0.04
which is just shy of the single task performance of 98.48+0.05 (mean
+ STD over 5 iterations of the experiment).

In the second variation of the network (narrow multi-head struc-
ture), perform sparsification with 2 iterations of fine-tuning and
specifically choose a graceful forgetting margin (m=3%) such that
the network is saturated (runs out of free neurons) after all 10 tasks
have been trained. In this case, our method attains an average of
95.8% over 10 tasks. In both variations of the network, our results
achieve state of the art performance on networks with comparable
size, matching or exceeding prior methods of much higher concep-
tual and computational complexity (e.g. [11]). For an exhaustive
comparison of these results with previous methods see Tab. 2 in [14].

Split CIFAR-10/CIFAR-100. In this experiment, we train an image
classifier sequentially, first on CIFAR-10 (task 1) and then on CIFAR-
100 split into 10 different tasks, each with 10 classes (tasks 2-11).
We employ the same multi-head network used in Ref. [16], and we
use two different training schemes comprised of maximum graceful
forgetting of m = 1% and m = 2%. The validation accuracy of the 6
tasks after training them sequentially is shown in Fig. 3a. We see that
we again achieve state of the art performance. The more ambitious
m=1% scheme (which only allowed for a graceful forgetting of less
than 1%) runs out of capacity after the fourth task is trained. We notice
that after the model capacity is depleted (tasks 5 and 6 denoted with
red dashed lines), the performance of the m=1% scheme plummets,
showing the necessity for unused neurons for the performance of
the network. The more moderate forgetting scheme m=2% (denoted
in orange), however, maintains high performance throughout all
tasks and does not run out of capacity until final task is trained.

We repeated the experiment with a graceful forgetting of m=4%
but this time followed by fine-tuning, i.e. retraining of the remaining
weights after pruning. The results of this method are given in Fig. 3a
in green. We see that here there is virtually no catastrophic forgetting
on the first task (the model performs even better after pruning and
retraining as has been reported in previous sparsity literature [4, 7]).
The remaining tasks also get a significant boost from this improved

sparsification method. This is a simple demonstration of the poten-
tial of sparsification based continual learning methods given more
advanced sparsification schemes.

We also use a wider single-head network for comparison. InFig. 3b,
we can see the number of new channels learned at each layer for each
consecutive task. Of note, the first convolutional layer trains new
channels only for tasks 1 and 2. The second and third convolutional
layers, grow new channels up to task 3 and task 5 respectively. The
fourth layer keeps training new channels up to the last task. The fact
that the first layer grows no new channels after the second task im-
plies that the features learned during the training of the first two tasks
are eemed sufficient for the training of the subsequent tasks. The fact
that this sufficiency happens after training more tasks for layers 2
and 3 is a verification of the fact that features learned in lower layers
are more general and thus more transferable in comparison with the
features of the higher layers which are known to specialize [15]. This
observation implies that models which hope to be effective at contin-
ual learning need to be wider in the higher layers to accommodate
for this lack of transferability of the features at these scales.

5 Conclusion

In this work we have introduced an intuitive lifelong learning method
whichleverages the over-parametrization of neural networks to train
new tasks in the inactive neurons/filters of the network without suf-
fering any catastrophic forgetting in the previously trained tasks. We
implemented a controlled way of graceful forgetting by sacrificing
some accuracy at the end of the training of each task in order to regain
network capacity for training new tasks. We showed empirically
that this method leads to results which exceed or match the current
state-of-the-art while being less computationally intensive. Because
of this, we can employ larger models than otherwise possible, given
fixed computational resources.

Our methodology comes with simple diagnostics based on the
number of free neurons left for the training of new tasks. Model
capacity usage graphs are informative regarding the transferability
and sufficiency of the features of different layers. Using such graphs,
we have verified the notion that the features learned in earlier layers
are more transferable. We can leverage these diagnostic tools to
pinpoint any layers that run out of capacity prematurely, and resolve
these bottlenecks in the network by increasing the number of neu-
rons in these layers when moving on to the next task. In this way, our
method can expand to accommodate more tasks and compensate for
sub-optimal network width choices.
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