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Abstract 

It has long been speculated that deep 

neural networks function by discovering a 

hierarchical set of domain-specific core 

concepts or patterns, which are further 

combined to recognize even more 

elaborate concepts for the classification or 

other machine learning tasks. Meanwhile 

disentangling the actual core concepts 

engrained in the word embeddings (like 

word2vec or BERT) or deep convolutional 

image recognition neural networks (like 

PG-GAN) is difficult and some success 

there has been achieved only recently. In 

this paper we propose a novel neural 

network nonlinearity named Differentiable 

Disentanglement Filter (DDF) which can 

be transparently inserted into any existing 

neural network layer to automatically 

disentangle the core concepts used by that 

layer. The DDF probe is inspired by the 

obscure properties of the hyper-

dimensional computing theory. The DDF 

proof-of-concept implementation is shown 

to disentangle concepts within the neural 

3D scene representation – a task vital for 

visual grounding of natural language 

narratives. 

1 Introduction 

The recent success with disentangling the 

semantically meaningful core concept 

dimensions within the representations learned by 

the popular deep neural networks (Dupont, 2018; 

Subramanian et al., 2018; Shabo 2018; Hewitt et 

al. 2019; Locatello et al., 2019) reveals that the 

“black box” un-interpretable nature of the neural 

networks is not their inherent property, but rather 

a byproduct of the too relaxed constraints during 

their training.  

In this paper we introduce a Differentiable 

Disentanglement Filter (DDF) nonlinearity which 

can be transparently inserted into any existing 

deep neural network layer to disentangle the 

actual core concepts used by that layer. The 

approach is inspired by the obscure properties of 

the hyper-dimensional computing theory 

(Kanerva, 2009) developed before the current 

deep neural network revolution. This paper is the 

first proof-of-concept implementation on the DDF 

idea (Barzdins, 2018) and more rigorous testing in 

other domains including NLP is still ongoing.  

The DDF implementation in this paper is tested 

on disentangling only one, albeit a rather famous 

GQN deep neural network by Eslami et al. (2018) 

of high importance to both computer vision and 

NLP communities (Hermann et al., 2017; 

Barzdins et al., 2017). The generative GQN is 

chosen also for the clear visualization of the DDF 

results (Figure 1). The currently reported results 

provide only a low-level disentanglement – a 

stepping-stone towards a complete understanding 

of the representations learned by the GQN or 

other deep neural networks. 

   The paper is organized as follows: Section 2 

discusses the related work on the semantic 

disentanglement of the deep neural network 

dimensions with emphasis on NLP, Section 3 

introduces hyper-dimensional computing and 

DDF, Section 3 describes the GQN and DDF 

implementation used and Section 4 concludes 
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Figure 1: Given five views of the same 3D scene 

(left) the GQN reconstructs a view from any other 

viewpoint (center). Ground truth (right). 
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with the DDF results on the GQN reference 

implementation. 

2 Related Work on Disentanglement 

Since the early days of connectionism (Hinton et 

al., 1986) it has been speculated that the concepts 

we use in the natural language are not entirely 

independent from each other, but rather are points 

distributed in the multidimensional space where 

some concepts are closer to each other while 

others are further apart. Widespread success of 

neural word embeddings (Mikolov et al., 2013) 

further cemented this distributional view about 

the nature of the concepts while also implicitly 

revealing the compositional structure of the 

embedding space with word analogies like King-

Man+Woman≈Queen. Sparse non-negative 

embeddings (Subramanian et al., 2018) allow 

disentangling the semantic dimensions (core 

concepts) of the word embedding space at the 

cost of slightly increasing the number of the 

embedding dimensions. Unlike indirect 

compositionality evidence from the word 

analogies, the sparse non-negative embedding 

disentanglement provides an explicit word 

meaning decomposition into the core concepts 

represented by the semantically clear embedding 

dimensions. This disentangling success was a 

direct stimulus for this paper; we also observed 

that the semantic clarity of the dimensions greatly 

improves after the normalization of the 

embedding vectors. The non-negative aspect of 

this embedding disentanglement is reused also in 

our DDF approach.  

Moving beyond words towards whole sentence 

embeddings has been more challenging for 

disentanglement (Conneau et al., 2018). Despite 

the early success of seq2seq embedding models 

for neural machine translation (Bahdanau et al., 

2014), only the recent BERT embeddings (Devlin 

et al., 2019) have enabled partial sentence level 

embedding disentanglement (Hewitt et al., 2019).  

Disentanglement of the BERT sentence level 

embeddings with the linear transformation 

(learned in the supervised manner) revealed the 

full dependency parsing tree encoded by part of 

the dimensions. This result shows that the 

disentangled dimensions might have vastly 

different functions (what we observe also in our 

results in Section 4) with only a small fraction of 

the dimensions involved with the encoding of the 

parsing tree graph. However, contrary to the post-

processing and supervised approach to 

disentanglement used in (Hewitt et al., 2019), our 

DDF approach performs disentanglement in 

completely unsupervised manner during the 

training of the host deep neural network. 

Other examples of successful semantic 

dimension disentanglement in the visual domain 

are Dupont, (2018), Shabo (2018) and Locatello 

et al., 2019. 

3 Differentiable Disentanglement Filter 

We propose a novel semi-transparent and 

differentiable neural network nonlinearity called 

Differentiable Disentanglement Filter (DDF). Due 

to its multiple inputs and outputs the DDF 

externally resembles the popular Softmax 

nonlinearity, but internally DFF is organized like 

a small neural network (Fig. 2). The DDF consists 

of two fully connected linear neuron layers and a 

ReLU nonlinearity layer between them. What 

makes DDF to act as a regular nonlinearity 

function is that it is differentiable during 

backpropagation just like any regular neural 

network, but the weights within the fully 

connected layers of DDF are never updated 

during the training; thus the DDF as a function is 

defined by the initial random initialization of its 

weights.  

   The reason why such DDF nonlinearity is able 

to disentangle the semantic dimensions is 

explained by the hyper-dimensional computing 

theory (Kanerva, 2009). This theory builds upon 

the fact that high-dimensional vectors randomly 

initialized with uniform bipolar weights are 

mutually nearly orthogonal in the sense that their 

dot product is nearly 0. The dot product can 

deviate from 0 only if the two involved vectors 

correlate. If one of the involved random vectors A 

is unknown, it is impossible to build another 

vector B which would correlate with A. 

Meanwhile the sum of random vectors A+B 

 

Figure 2: Differentiable Disentanglement Filter 

(DDF). 
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correlates with both vectors A and B allowing to 

encode their compositionality within a single 

vector. 

   This hyper-dimensional computing theory 

suggests two easy to implement constraints on the 

weight initialization within the DDF to make it an 

orthogonal vector disentangling bottleneck: the 

random initialization of the weights must be 

bipolar (roughly the same number of weights 

must be positive and negative) and the bias weight 

must be negative. The first constraint is fulfilled 

by the popular normalized Gaussian, Xavier or 

Kaiming (Glorot, and Bengio, 2010; He et al., 

2015) random initializations. Meanwhile the 

negative bias weights effectively regulate the 

ReLU nonlinearity cut-off point and should be set 

above the noise level to recognize only the true 

correlation between the DDF input activations 

and input weights. In practice we set the bias 

weight to small negative random values. 

   The randomly initialized output layer of the 

DDF again linearly entangles the orthogonal 

features detected by the DDF hidden layer and 

changes the output dimensionality to match the 

input dimensionality. 

   The DDF nonlinearity is fully differentiable and 

semi-transparent (it has equal number D of input 

and output neurons) and thus can be inserted 

between any layers within the existing DNN as a 

probe. DDF nonlinearity has one hyperparameter 

N – the number of hidden ReLU neurons. In our 

experiments we set N = D = 256 (the size of the 

representation layer within the host GQN 

network). To avoid disentangled feature 

duplication, ideally N would need to be adjusted 

to the lowest possible value with which the host 

network is still retrainable to its original quality.  

   Kanerva (2009) in his seminal paper also 

proposed a way to encode an arbitrary graph 

inside a high-dimensional vector. The scalar 

multiplication C=A*B of random vectors A and B 

is orthogonal to both A and B thus allowing to 

conceal the “entanglement” of vectors A and B 

inside C. Scalar multiplication of C with any of its 

components untangles the other component 

allowing to encode a key-value pair in a high-

dimensional vector. By combining sum and scalar 

multiplication operations a set of graph vertex 

pairs (graph) can be encoded in a single high-

dimensional vector. We did not include this graph-

encoding option in the current incarnation of the 

DDF, but mention it as an interesting exploration 

path in the future.    

4 GQN and DDF Implementation 

For the proof-of-concept test of DDF we rely on 

the Generative Query Network (GQN) introduced 

by Eslami et al. (2018). This model learns 3D 

scene representation from 2D input views (images 

and information about the viewpoint angle and 

location) and predicts views from previously 

unobserved viewpoints (Fig. 1).  

   In their seminal paper Eslami et al. (2018) 

experimented with several architectures for 

representation part of the model. In this paper we 

use Pool architecture – convolutional network 

with Global Average Pooling layer at the end (Fig. 

3). Even though Eslami et al. noted that this 

architecture was not the fastest to learn across 

datasets, it was more likely to exhibit view-

invariant. Moreover, Pool architecture provides a 

more convenient shape (1x1x256) for the initial 

DDF implementation testing. 

   To get the final representation tensor, the 

observed view goes through the chosen 

representation network and is concatenated with a 

reshaped vector of viewpoint parameters (Fig. 4). 

If multiple views are given, the final 

representation tensor is a sum of all single 

representation tensors. 

For the generative part of the GQN Eslami et 

al. (2018) suggest employing a state-of-the-art 

deep, iterative, latent variable density model – 

Convolutional DRAW (Gregor et al., 2016). With 

 

Figure 3:  Representation network (Pool 

architecture). 

 

Figure 4: GQN-DDF architecture. 
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this model, it is possible to generate views 

accounting for objects, background, lighting, 

shadows etc. Since Convolution DRAW model is 

probabilistic, GQN can handle uncertainty and 

produce images even in case of occlusion or 

partial observability. Our implementation of GQN 

model (Eslami 2018 provided only the training 

data, not the actual code) is written within the 

PyTorch framework and is available at 

https://github.com/esidorovics/gqn-pytorch.git.  

Eslami et al. noted that “The values of all 

hyper-parameters were selected by performing 

informal search. We did not perform a systematic 

grid search owing to the high computational cost”. 

Hence, we deviated from the original hyper-

parameters and used ones recommended in the 

author’s later publications on GQN (Kumar et al., 

2018).  

One of the key hyper-parameters for the 

Convolution DRAW is the number of generative 

steps. Gregor et al. (2016) showed that more 

generative steps produce sharper images and 

Eslami et al. (2018) suggest using 12 generative 

steps to train GQN model. However in our 

experiments we have used 8 steps because: (1) 

training takes less time, (2) produced results are 

still of reasonable quality. 8 generative steps is a 

good balance between the training speed and 

quality. 

In our experiments we are interested in 

disentangling representation of the 3D space 

generated by the GQN model, hence DDF layer 

was integrated between the representation and 

generative parts of the model. General 

architecture can be observed in Figure 4. DDF 

layers were initialized by Kaiming (Kaiming et 

al., 2015) random initialization. Due to high 

computational costs we have experimented only 

with N=256 (size of the hidden bottleneck layer 

of the DDF) which is equal to the GQN 

representation layer size 1x1x256 as shown in 

Figure 3. 

 

5 Experimental Results 

5.1 Training process 

We have trained GQN-original and GQN-DDF 

networks for 400,000 iterations with the same 

hyper-parameters (the only difference being DDF 

inserted after the representation calculation into 

one of them). Such training takes about one week 

 

Figure 5:  KL Divergence at training GQN-original 

(left) and GQN-DDF (right). DDF layer presence has 

negligible effect on the training speed and quality. 

 

Figure 6: The 3D scene in the GQN-original is 

represented by the non-disentangled 256 neuron 

vector (middle image). Increasing (right) or 

decreasing (left) the value of individual neurons 

distorts all features of the image. 

 

Figure 7: The 3D scene in the GQN-DDF is 

represented by the disentangled 256 neuron vector 

(middle image). Increasing (right) or decreasing (left) 

the value of individual neurons changes individual 

features (floor, wall, shaped object, two objects). 

https://github.com/esidorovics/gqn-pytorch.git
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on the Intel i7-5820K 6-core CPU workstation 

with 64GB DRAM and Nvidia GeForce GTX 

TITAN X, 12GB GPU. GQN end-to-end training 

loss consists of two terms: reconstruction loss and 

KL divergence. Reconstruction loss behaved 

identically, while KL divergence initially was 

slower to pick up (Figure 5) for GQN-DDF. 

Nevertheless, DDF effect on the training process 

was negligible.  

5.2 GQN-DDF and GQN-original 

comparison 

Results of image reconstructions from both GQN-

original and GQN-DDF were of similar quality. 

Differences in the produced details can be 

attributed to the probabilistic nature of the 

generative model. Hence the DDF insertion did 

not affect the eventual GQN results.  

   The main purpose of this paper is to test if the 

DDF layer can disentangle the concepts from the 

complex 3D representation vector and if the DDF 

disentanglement is superior to the original GQN 

representation. To test these hypotheses, we went 

through all 256 neurons of the hidden layer in 

DDF and manually changed individual neuron 

value by [-0.3, -0.2, -0.1, 0, +0.1, +0.2, +0.3] and 

observed how the generated image differed from 

the image without any alterations (Fig. 7). To test 

disentanglement level of GQN-original and to 

compare it with GQN-DDF we performed the 

same manipulations with the GQN-original 

representation layer neurons as well (Fig. 6)  

Figures 6 and 7 summarize the results of such 

manipulations with the representation layers of 

GQN-original and GQN-DDF respectively. We 

will discuss differences and similarities from the 

two viewpoints – the image quality and the level 

of disentanglement. 

Image quality: middle images in Figures 6 and 

7 are quite similar; difference in quality can be 

attributed to the probabilistic nature of the model. 

However, the farther we go away from the “true” 

value of the neuron the higher the distortions are 

in the GQN-original model. In the GQN-DDF 

model quality also decreases, but to a much lesser 

extent. One of the obvious reasons is ReLU 

presence in the GQN-DDF model; however it 

explains only the lack of distortion on the left side 

suggesting the positive impact of the DDF layer.  

Disentanglement: In Figure 6 we can observe 

that change in the single neuron of GQN-original 

representation triggers multiple feature changes in 

the generated image - size, color, shadows, wall 

texture etc. This identifies correlation between 

neurons, hence no disentanglement. In case of 

GQN-DDF, changes in some neurons also trigger 

multiple feature changes, however to much lesser 

extent (Figure 7). We have observed that the 

number of single feature neurons (change of 

single neuron value affects only one feature in the 

generated image) have been increasing over 

training, which makes us conclude that DDF will 

continue learning to improve disentanglement of 

the complex 3D representations. 

5.3 Disentanglement results 

Observation of produced DDF disentanglement 

results (Figure 7) makes us distinguish 3 types of 

disentanglement: (1) continuous, (2) discrete and 

(3) redundant. 

1. Continuous: In the first two rows the value 

of the neurons affects the output. In the 

first row, ball is absent if neuron value is 

decreased. ReLU blocks us from observing 

what the negative value would have done 

with the output image. But increasing the 

value changes color, adds an additional 

object and modifies the shape of the object. 

Similar behavior is observed in the second 

row – increase in value adds a new object 

and changes the color. Even though it 

cannot be called a clear disentanglement 

because multiple features are affected by 

the single neuron, it seems to be limited to 

just a few features and to decrease with 

more training. 

2. Discrete:  Next four layers represent clear 

disentanglement. A certain neuron from a 

specific threshold value represents a 

specific feature: yellow floor, orange walls, 

purple color of the object. Also, interesting 

to note that the neuron in the 6
th
 row 

represents the object itself, since 

decreasing value will make the object 

disappear. If we increase the value – the 

object stays the same. Disentanglement can 

be called discrete as a certain value serves 

as a “switch” for a specific feature, but the 

value of the neuron (after the specific 

threshold value) has no effect whatsoever.  

3. Redundant: Last row in Figure 7 shows 

that changing a specific neuron has no 

effect in the generated image. This result 

indicates that the current neuron represents 
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no feature and is uncorrelated with other 

neurons, hence the number of dimensions 

in the hidden layer of DDF could be 

reduced or with more training some feature 

might disentangle and “move” to this 

neuron.  

6 Conclusions 

The DDF layer design described in this paper 

might seem counter-intuitive and therefore more 

rigorous testing of the DDF properties has to 

continue, especially in other domains like NLP. 

But the ReLU nonlinearity or dropout 

regularization were also counter-intuitive before 

they were proved to actually work well and 

become the staple of the modern deep neural 

networks. 

   Successful disentanglement of the core concepts 

in each layer is only the first step towards 

understanding the internal logic of the deep neural 

network. Nevertheless, it is a vital first step 

towards such deciphering. It shall also be noted 

that the disentangled semantic dimensions appear 

to be somewhat arbitrary as observed already in 

Subramanian et al. (2018) – although we typically 

see individual objects, their color, size and shape 

getting disentangled, there remain other 

dimensions with less clear semantics which are 

either affected by the specifics of the domain 

(training data set) or the representation techniques 

beyond our current understanding.  
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