

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Abstract

It has long been speculated that deep

neural networks function by discovering a

hierarchical set of domain-specific core

concepts or patterns, which are further

combined to recognize even more

elaborate concepts for the classification or

other machine learning tasks. Meanwhile

disentangling the actual core concepts

engrained in the word embeddings (like

word2vec or BERT) or deep convolutional

image recognition neural networks (like

PG-GAN) is difficult and some success

there has been achieved only recently. In

this paper we propose a novel neural

network nonlinearity named Differentiable

Disentanglement Filter (DDF) which can

be transparently inserted into any existing

neural network layer to automatically

disentangle the core concepts used by that

layer. The DDF probe is inspired by the

obscure properties of the hyper-

dimensional computing theory. The DDF

proof-of-concept implementation is shown

to disentangle concepts within the neural

3D scene representation – a task vital for

visual grounding of natural language

narratives.

1 Introduction

The recent success with disentangling the

semantically meaningful core concept

dimensions within the representations learned by

the popular deep neural networks (Dupont, 2018;

Subramanian et al., 2018; Shabo 2018; Hewitt et

al. 2019; Locatello et al., 2019) reveals that the

“black box” un-interpretable nature of the neural

networks is not their inherent property, but rather

a byproduct of the too relaxed constraints during

their training.

In this paper we introduce a Differentiable

Disentanglement Filter (DDF) nonlinearity which

can be transparently inserted into any existing

deep neural network layer to disentangle the

actual core concepts used by that layer. The

approach is inspired by the obscure properties of

the hyper-dimensional computing theory

(Kanerva, 2009) developed before the current

deep neural network revolution. This paper is the

first proof-of-concept implementation on the DDF

idea (Barzdins, 2018) and more rigorous testing in

other domains including NLP is still ongoing.

The DDF implementation in this paper is tested

on disentangling only one, albeit a rather famous

GQN deep neural network by Eslami et al. (2018)

of high importance to both computer vision and

NLP communities (Hermann et al., 2017;

Barzdins et al., 2017). The generative GQN is

chosen also for the clear visualization of the DDF

results (Figure 1). The currently reported results

provide only a low-level disentanglement – a

stepping-stone towards a complete understanding

of the representations learned by the GQN or

other deep neural networks.

 The paper is organized as follows: Section 2

discusses the related work on the semantic

disentanglement of the deep neural network

dimensions with emphasis on NLP, Section 3

introduces hyper-dimensional computing and

DDF, Section 3 describes the GQN and DDF

implementation used and Section 4 concludes

Differentiable Disentanglement Filter:

an Application Agnostic Core Concept Discovery Probe

Guntis Barzdins Eduards Sidorovics

 University of Latvia, IMCS University of Latvia

 Rainis Blvd 29 Rainis Blvd 19

 Riga, Latvia Riga, Latvia
 guntis.barzdins@lumii.lv e.sidorovics@gmail.com

Figure 1: Given five views of the same 3D scene

(left) the GQN reconstructs a view from any other

viewpoint (center). Ground truth (right).

2

with the DDF results on the GQN reference

implementation.

2 Related Work on Disentanglement

Since the early days of connectionism (Hinton et

al., 1986) it has been speculated that the concepts

we use in the natural language are not entirely

independent from each other, but rather are points

distributed in the multidimensional space where

some concepts are closer to each other while

others are further apart. Widespread success of

neural word embeddings (Mikolov et al., 2013)

further cemented this distributional view about

the nature of the concepts while also implicitly

revealing the compositional structure of the

embedding space with word analogies like King-

Man+Woman≈Queen. Sparse non-negative

embeddings (Subramanian et al., 2018) allow

disentangling the semantic dimensions (core

concepts) of the word embedding space at the

cost of slightly increasing the number of the

embedding dimensions. Unlike indirect

compositionality evidence from the word

analogies, the sparse non-negative embedding

disentanglement provides an explicit word

meaning decomposition into the core concepts

represented by the semantically clear embedding

dimensions. This disentangling success was a

direct stimulus for this paper; we also observed

that the semantic clarity of the dimensions greatly

improves after the normalization of the

embedding vectors. The non-negative aspect of

this embedding disentanglement is reused also in

our DDF approach.

Moving beyond words towards whole sentence

embeddings has been more challenging for

disentanglement (Conneau et al., 2018). Despite

the early success of seq2seq embedding models

for neural machine translation (Bahdanau et al.,

2014), only the recent BERT embeddings (Devlin

et al., 2019) have enabled partial sentence level

embedding disentanglement (Hewitt et al., 2019).

Disentanglement of the BERT sentence level

embeddings with the linear transformation

(learned in the supervised manner) revealed the

full dependency parsing tree encoded by part of

the dimensions. This result shows that the

disentangled dimensions might have vastly

different functions (what we observe also in our

results in Section 4) with only a small fraction of

the dimensions involved with the encoding of the

parsing tree graph. However, contrary to the post-

processing and supervised approach to

disentanglement used in (Hewitt et al., 2019), our

DDF approach performs disentanglement in

completely unsupervised manner during the

training of the host deep neural network.

Other examples of successful semantic

dimension disentanglement in the visual domain

are Dupont, (2018), Shabo (2018) and Locatello

et al., 2019.

3 Differentiable Disentanglement Filter

We propose a novel semi-transparent and

differentiable neural network nonlinearity called

Differentiable Disentanglement Filter (DDF). Due

to its multiple inputs and outputs the DDF

externally resembles the popular Softmax

nonlinearity, but internally DFF is organized like

a small neural network (Fig. 2). The DDF consists

of two fully connected linear neuron layers and a

ReLU nonlinearity layer between them. What

makes DDF to act as a regular nonlinearity

function is that it is differentiable during

backpropagation just like any regular neural

network, but the weights within the fully

connected layers of DDF are never updated

during the training; thus the DDF as a function is

defined by the initial random initialization of its

weights.

 The reason why such DDF nonlinearity is able

to disentangle the semantic dimensions is

explained by the hyper-dimensional computing

theory (Kanerva, 2009). This theory builds upon

the fact that high-dimensional vectors randomly

initialized with uniform bipolar weights are

mutually nearly orthogonal in the sense that their

dot product is nearly 0. The dot product can

deviate from 0 only if the two involved vectors

correlate. If one of the involved random vectors A

is unknown, it is impossible to build another

vector B which would correlate with A.

Meanwhile the sum of random vectors A+B

Figure 2: Differentiable Disentanglement Filter

(DDF).

3

correlates with both vectors A and B allowing to

encode their compositionality within a single

vector.

 This hyper-dimensional computing theory

suggests two easy to implement constraints on the

weight initialization within the DDF to make it an

orthogonal vector disentangling bottleneck: the

random initialization of the weights must be

bipolar (roughly the same number of weights

must be positive and negative) and the bias weight

must be negative. The first constraint is fulfilled

by the popular normalized Gaussian, Xavier or

Kaiming (Glorot, and Bengio, 2010; He et al.,

2015) random initializations. Meanwhile the

negative bias weights effectively regulate the

ReLU nonlinearity cut-off point and should be set

above the noise level to recognize only the true

correlation between the DDF input activations

and input weights. In practice we set the bias

weight to small negative random values.

 The randomly initialized output layer of the

DDF again linearly entangles the orthogonal

features detected by the DDF hidden layer and

changes the output dimensionality to match the

input dimensionality.

 The DDF nonlinearity is fully differentiable and

semi-transparent (it has equal number D of input

and output neurons) and thus can be inserted

between any layers within the existing DNN as a

probe. DDF nonlinearity has one hyperparameter

N – the number of hidden ReLU neurons. In our

experiments we set N = D = 256 (the size of the

representation layer within the host GQN

network). To avoid disentangled feature

duplication, ideally N would need to be adjusted

to the lowest possible value with which the host

network is still retrainable to its original quality.

 Kanerva (2009) in his seminal paper also

proposed a way to encode an arbitrary graph

inside a high-dimensional vector. The scalar

multiplication C=A*B of random vectors A and B

is orthogonal to both A and B thus allowing to

conceal the “entanglement” of vectors A and B

inside C. Scalar multiplication of C with any of its

components untangles the other component

allowing to encode a key-value pair in a high-

dimensional vector. By combining sum and scalar

multiplication operations a set of graph vertex

pairs (graph) can be encoded in a single high-

dimensional vector. We did not include this graph-

encoding option in the current incarnation of the

DDF, but mention it as an interesting exploration

path in the future.

4 GQN and DDF Implementation

For the proof-of-concept test of DDF we rely on

the Generative Query Network (GQN) introduced

by Eslami et al. (2018). This model learns 3D

scene representation from 2D input views (images

and information about the viewpoint angle and

location) and predicts views from previously

unobserved viewpoints (Fig. 1).

 In their seminal paper Eslami et al. (2018)

experimented with several architectures for

representation part of the model. In this paper we

use Pool architecture – convolutional network

with Global Average Pooling layer at the end (Fig.

3). Even though Eslami et al. noted that this

architecture was not the fastest to learn across

datasets, it was more likely to exhibit view-

invariant. Moreover, Pool architecture provides a

more convenient shape (1x1x256) for the initial

DDF implementation testing.

 To get the final representation tensor, the

observed view goes through the chosen

representation network and is concatenated with a

reshaped vector of viewpoint parameters (Fig. 4).

If multiple views are given, the final

representation tensor is a sum of all single

representation tensors.

For the generative part of the GQN Eslami et

al. (2018) suggest employing a state-of-the-art

deep, iterative, latent variable density model –

Convolutional DRAW (Gregor et al., 2016). With

Figure 3: Representation network (Pool

architecture).

Figure 4: GQN-DDF architecture.

4

this model, it is possible to generate views

accounting for objects, background, lighting,

shadows etc. Since Convolution DRAW model is

probabilistic, GQN can handle uncertainty and

produce images even in case of occlusion or

partial observability. Our implementation of GQN

model (Eslami 2018 provided only the training

data, not the actual code) is written within the

PyTorch framework and is available at

https://github.com/esidorovics/gqn-pytorch.git.

Eslami et al. noted that “The values of all

hyper-parameters were selected by performing

informal search. We did not perform a systematic

grid search owing to the high computational cost”.

Hence, we deviated from the original hyper-

parameters and used ones recommended in the

author’s later publications on GQN (Kumar et al.,

2018).

One of the key hyper-parameters for the

Convolution DRAW is the number of generative

steps. Gregor et al. (2016) showed that more

generative steps produce sharper images and

Eslami et al. (2018) suggest using 12 generative

steps to train GQN model. However in our

experiments we have used 8 steps because: (1)

training takes less time, (2) produced results are

still of reasonable quality. 8 generative steps is a

good balance between the training speed and

quality.

In our experiments we are interested in

disentangling representation of the 3D space

generated by the GQN model, hence DDF layer

was integrated between the representation and

generative parts of the model. General

architecture can be observed in Figure 4. DDF

layers were initialized by Kaiming (Kaiming et

al., 2015) random initialization. Due to high

computational costs we have experimented only

with N=256 (size of the hidden bottleneck layer

of the DDF) which is equal to the GQN

representation layer size 1x1x256 as shown in

Figure 3.

5 Experimental Results

5.1 Training process

We have trained GQN-original and GQN-DDF

networks for 400,000 iterations with the same

hyper-parameters (the only difference being DDF

inserted after the representation calculation into

one of them). Such training takes about one week

Figure 5: KL Divergence at training GQN-original

(left) and GQN-DDF (right). DDF layer presence has

negligible effect on the training speed and quality.

Figure 6: The 3D scene in the GQN-original is

represented by the non-disentangled 256 neuron

vector (middle image). Increasing (right) or

decreasing (left) the value of individual neurons

distorts all features of the image.

Figure 7: The 3D scene in the GQN-DDF is

represented by the disentangled 256 neuron vector

(middle image). Increasing (right) or decreasing (left)

the value of individual neurons changes individual

features (floor, wall, shaped object, two objects).

https://github.com/esidorovics/gqn-pytorch.git

5

on the Intel i7-5820K 6-core CPU workstation

with 64GB DRAM and Nvidia GeForce GTX

TITAN X, 12GB GPU. GQN end-to-end training

loss consists of two terms: reconstruction loss and

KL divergence. Reconstruction loss behaved

identically, while KL divergence initially was

slower to pick up (Figure 5) for GQN-DDF.

Nevertheless, DDF effect on the training process

was negligible.

5.2 GQN-DDF and GQN-original

comparison

Results of image reconstructions from both GQN-

original and GQN-DDF were of similar quality.

Differences in the produced details can be

attributed to the probabilistic nature of the

generative model. Hence the DDF insertion did

not affect the eventual GQN results.

 The main purpose of this paper is to test if the

DDF layer can disentangle the concepts from the

complex 3D representation vector and if the DDF

disentanglement is superior to the original GQN

representation. To test these hypotheses, we went

through all 256 neurons of the hidden layer in

DDF and manually changed individual neuron

value by [-0.3, -0.2, -0.1, 0, +0.1, +0.2, +0.3] and

observed how the generated image differed from

the image without any alterations (Fig. 7). To test

disentanglement level of GQN-original and to

compare it with GQN-DDF we performed the

same manipulations with the GQN-original

representation layer neurons as well (Fig. 6)

Figures 6 and 7 summarize the results of such

manipulations with the representation layers of

GQN-original and GQN-DDF respectively. We

will discuss differences and similarities from the

two viewpoints – the image quality and the level

of disentanglement.

Image quality: middle images in Figures 6 and

7 are quite similar; difference in quality can be

attributed to the probabilistic nature of the model.

However, the farther we go away from the “true”

value of the neuron the higher the distortions are

in the GQN-original model. In the GQN-DDF

model quality also decreases, but to a much lesser

extent. One of the obvious reasons is ReLU

presence in the GQN-DDF model; however it

explains only the lack of distortion on the left side

suggesting the positive impact of the DDF layer.

Disentanglement: In Figure 6 we can observe

that change in the single neuron of GQN-original

representation triggers multiple feature changes in

the generated image - size, color, shadows, wall

texture etc. This identifies correlation between

neurons, hence no disentanglement. In case of

GQN-DDF, changes in some neurons also trigger

multiple feature changes, however to much lesser

extent (Figure 7). We have observed that the

number of single feature neurons (change of

single neuron value affects only one feature in the

generated image) have been increasing over

training, which makes us conclude that DDF will

continue learning to improve disentanglement of

the complex 3D representations.

5.3 Disentanglement results

Observation of produced DDF disentanglement

results (Figure 7) makes us distinguish 3 types of

disentanglement: (1) continuous, (2) discrete and

(3) redundant.

1. Continuous: In the first two rows the value

of the neurons affects the output. In the

first row, ball is absent if neuron value is

decreased. ReLU blocks us from observing

what the negative value would have done

with the output image. But increasing the

value changes color, adds an additional

object and modifies the shape of the object.

Similar behavior is observed in the second

row – increase in value adds a new object

and changes the color. Even though it

cannot be called a clear disentanglement

because multiple features are affected by

the single neuron, it seems to be limited to

just a few features and to decrease with

more training.

2. Discrete: Next four layers represent clear

disentanglement. A certain neuron from a

specific threshold value represents a

specific feature: yellow floor, orange walls,

purple color of the object. Also, interesting

to note that the neuron in the 6
th
 row

represents the object itself, since

decreasing value will make the object

disappear. If we increase the value – the

object stays the same. Disentanglement can

be called discrete as a certain value serves

as a “switch” for a specific feature, but the

value of the neuron (after the specific

threshold value) has no effect whatsoever.

3. Redundant: Last row in Figure 7 shows

that changing a specific neuron has no

effect in the generated image. This result

indicates that the current neuron represents

6

no feature and is uncorrelated with other

neurons, hence the number of dimensions

in the hidden layer of DDF could be

reduced or with more training some feature

might disentangle and “move” to this

neuron.

6 Conclusions

The DDF layer design described in this paper

might seem counter-intuitive and therefore more

rigorous testing of the DDF properties has to

continue, especially in other domains like NLP.

But the ReLU nonlinearity or dropout

regularization were also counter-intuitive before

they were proved to actually work well and

become the staple of the modern deep neural

networks.

 Successful disentanglement of the core concepts

in each layer is only the first step towards

understanding the internal logic of the deep neural

network. Nevertheless, it is a vital first step

towards such deciphering. It shall also be noted

that the disentangled semantic dimensions appear

to be somewhat arbitrary as observed already in

Subramanian et al. (2018) – although we typically

see individual objects, their color, size and shape

getting disentangled, there remain other

dimensions with less clear semantics which are

either affected by the specifics of the domain

(training data set) or the representation techniques

beyond our current understanding.

References

Ananya Kumar, SM Eslami, Danilo J Rezende, Marta

Garnelo, Fabio Viola, Edward Lockhart, Murray

Shanahan. 2018. Consistent generative query

networks. arXiv preprint arXiv:1807.02033.

https://arxiv.org/pdf/1807.02033.pdf

Bahdanau, D., Cho, K., Bengio, Y. 2014. Neural

machine translation by jointly learning to align

and translate. arXiv preprint arXiv:1409.0473.

Barzdins Guntis, Liepins Renars, Barzdins F. Paulis,

Gosko Didzis. 2017. dBaby: Grounded Language

Teaching through Games and Efficient

Reinforcement Learning. NIPS 2017 Workshop on

Visually-Grounded Interaction and Language

(ViGIL-2017)

Barzdins Guntis. 2018. High-Dimensional

Representation and Computing: Pixels, Objects,

Language. ERC-2018-ADG Grant proposal

833482. https://tinyurl.com/y6kwongo

Alexis Conneau, Germ´an Kruszewski, Guillaume

Lample, Loic Barrault, and Marco Baroni. 2018.

What you can cram into a single n$&!#* vector:

Probing sentence embeddings for linguistic

properties. In Proceedings of the 56th Annual

Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 2126–

2136. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language

understanding. In Proceedings of the 2019

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, Volume 2 (Short Papers).

Association for Computational Linguistics.

Dupont E. 2018. Learning Disentangled Joint

Continuous and Discrete Representations. arXiv,

abs/1804.00104.

Glorot X., and Bengio Y. 2010. Understanding the

difficulty of training deep feed forward neural

networks. AISTATS, volume 9 of JMLR

Proceedings, page 249-256. JMLR.org.

Karl Moritz Hermann, Felix Hill, Simon Green,

Fumin Wang, Ryan Faulkner, Hubert Soyer, David

Szepesvari, Wojciech Czarnecki, Max Jaderberg,

Denis Teplyashin, Marcus Wainwright, Chris Apps,

Demis Hassabis, and Phil Blunsom. 2017.

Grounded language learning in a simulated 3D

world. arXiv, abs/1706.06551.

Hewitt, John and Manning, Christopher D. 2019. A

Structural Probe for Finding Syntax in Word

Representations. In Proceedings of the Conference

of the North American Chapter of the Association

for Computational Linguistics: Human Language

Technologies. Minneapolis. June 2019.

G. E. Hinton, J. L. McClelland, and D. E. Rumelhart.

1986. Distributed representations. In Parallel

distributed processing: explorations in the

microstructure of cognition, vol. 1, David E.

Rumelhart, James L. McClelland, and

CORPORATE PDP Research Group (Eds.). MIT

Press, Cambridge, MA, USA 77-109.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian

Sun. 2015. Delving deep into rectifiers: Surpassing

human-level performance on imagenet

classification. IEEE International Conference on

Computer Vision (ICCV 2015). 1502.

10.1109/ICCV.2015.123.

https://arxiv.org/pdf/1502.01852.pdf

S. M. Ali Eslami, Danilo J. Rezende, Frederic Besse,

Fabio Viola, Ari S. Morcos, Marta Garnelo,

Avraham Ruderman, Andrei A. Rusu, Ivo

Danihelka, Karol Gregor, David P. Reichert,

Lars Buesing, Theophane Weber, Oriol Vinyals,

https://arxiv.org/pdf/1807.02033.pdf
https://tinyurl.com/y6kwongo
https://arxiv.org/pdf/1502.01852.pdf

7

Dan Rosenbaum, Neil Rabinowitz, Helen King,

Chloe Hillier, Matt Botvinick, Daan Wierstra,

Koray Kavukcuoglu, Demis Hassabis. 2018.

Neural scene representation and rendering.

Science, Vol. 360, Issue 6394, pp. 1204-1210,

2018

Karol Gregor, Frederic Besse, Danilo. J. Rezende, Ivo

Danihelka, Daan Wierstra. 2016. Towards

conceptual compression. Neural Information

Processing Systems 29, pp. 3549– 3557.

https://papers.nips.cc/paper/6542-towards-

conceptual-compression.pdf

Francesco Locatello, Stefan Bauer, Mario Lucic,

Gunnar Rätsch, Sylvain Gelly, Bernhard

Schölkopf, Olivier Bachem. 2019. Challenging

Common Assumptions in the Unsupervised

Learning of Disentangled Representations. ICML

2019. https://arxiv.org/abs/1811.12359

Guan Shaobo. 2018. TL-GAN: transparent latent-

space GAN.

https://github.com/SummitKwan/transparent_latent

_gan

Pentti Kanerva. 2009. Hyperdimensional Computing:

An Introduction to Computing in Distributed

Representation with High-Dimensional Random

Vectors. Cognitive Computation 1(2) June 2009,

DOI: 10.1007/s12559-009-9009-8

http://www.rctn.org/vs265/kanerva09-

hyperdimensional.pdf

T. Mikolov, W.T. Yih, G. Zweig. 2013. Linguistic

Regularities in Continuous Space Word

Representations. NAACL HLT 2013.

Subramanian, A., Pruthi, D., Jhamtani, H., Berg-

Kirkpatrick, T., & Hovy, E.H. 2018. SPINE:

SParse Interpretable Neural Embeddings. AAAI.

https://papers.nips.cc/paper/6542-towards-conceptual-compression.pdf
https://papers.nips.cc/paper/6542-towards-conceptual-compression.pdf
https://arxiv.org/abs/1811.12359
https://github.com/SummitKwan/transparent_latent_gan
https://github.com/SummitKwan/transparent_latent_gan
http://www.rctn.org/vs265/kanerva09-hyperdimensional.pdf
http://www.rctn.org/vs265/kanerva09-hyperdimensional.pdf

