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Abstract

In this paper we consider the problem of autonomous lane changing for self
driving cars in a multi-lane, multi-agent setting. We present a framework that
demonstrates a more structured and data efficient alternative to end-to-end complete
policy learning on problems where the high-level policy is hard to formulate
using traditional optimization or rule based methods but well designed low-level
controllers are available. The framework uses deep reinforcement learning solely
to obtain a high-level policy for tactical decision making, while still maintaining a
tight integration with the low-level controller, thus getting the best of both worlds.
This is possible with Q-masking, a technique with which we are able to incorporate
prior knowledge, constraints and information from a low-level controller, directly
in to the learning process thereby simplifying the reward function and making
learning faster and efficient. We provide preliminary results in a simulator and
show our approach to be more efficient than a greedy baseline, and more successful
and safer than human driving.

1 Introduction and Related Work

In recent years there has been a growing interest in self driving cars. Building such autonomous
systems has been an active area of research [1, 2, 3] due to a high potential in leading to more efficient
road networks that are much safer for the passengers. One of the fundamental skills a self driving
car must possess is an ability to perform efficient lane change maneuvers in a safe manner. This is
especially critical in a multi-lane highway setting in the presence fast moving traffic (as shown in
Figure 1a), since if anything goes wrong, at best it leads to congestion and at worst to accidents [4].
Reasoning about interactions with other agents and forming an efficient long term strategy while
maintaining safety makes this problem challenging and complex.

Prior work on lane changing consists of a diverse set of approaches with early work considering vision
based control [5]. Other methods track trajectories [6, 7], use fuzzy control [8], model predictive
control [9], generate a steering command with adaptive control [10], consider planning [1, 11], and
mixed logic programming [12]. However majority of the prior work considers the problem only
from a local perspective, i.e. changing between adjacent lanes while avoiding the few neighboring
cars. There is no notion of a goal, like reaching an exit, which would require reasoning about long
term decisions on a strategic level when present on a multi-lane highway among traffic. Formulating
a control or optimization based problem to handle such a scenario is not straight forward, would
require a lot of hand design and tuning, may work only on a subset of cases, and would generally
be intractable. The primary roadblock is that there is no abstraction of what the overall ideal policy
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Figure 1: (a) Typical multi-lane highway (California, USA). (b) 5 lane highway in the simulator with traffic
(red), where the ego car (green) is tasked with reaching the exit 1.5km away in the least amount of time. (c) Ego
car’s visibility in the simulator (left) and the corresponding occupancy grid (right) with the ego car at its center.

should look like, only the ideal outcome is know: reaching the exit safely and efficiently (in least
amount of time).

Reinforcement learning provides a way to learn arbitrary policies giving specific goals. In recent years
learning based methods have been used to address similar or related problems, like learning from
human driving [13], inverse reinforcement learning [14], end-to-end methods that map perception
inputs (mainly images) directly to control commands [15, 16, 17, 18], and methods that understand
the scene via learning to make driving decisions [19, 20].

With the recent success of deep reinforcement learning [21], in this work we investigate its use and
place in solving the autonomous lane changing problem. In general learning a full policy than can
reason about tactical decisions while at same time address continuous control and collision avoidance
can be exceedingly difficult with large notorious to train networks. An ideal approach to provide
the right balance would be to learn the hard to define high-level tactical policy while relying on
established optimization or rule based method for low-level control. Along these lines we propose
a framework that tightly integrates the two paradigms using Q-masking that essentially forces the
agent to explore only the required states and learns a subset of the space of Q-values. Within this
framework we focus the raw deep learning power to only obtain a high-level decision making policy
for tactical lane changing. By incorporating prior knowledge about the system, constraints of the
problem and information from the low-level controller using Q-masking, we can heavily simplify the
reward function and make the overall learning faster and efficient. Basing low-level decisions on a
controller we are able to completely eliminate collisions during training or testing, which makes it
possible to perform training directly on real systems. We present preliminary benchmarks and show
our framework can outperform a greedy baseline in efficiency and humans driving in the simulator in
safety and success.

2 Problem Setup

We consider the problem of autonomous lane changing in a multi-lane-multi-agent setting and set up
the problem environment in the commonly used traffic simulator, SUMO [22].

Environment: The simulation environment consists of a L lane highway as shown in Figure 1b
with minimum and maximum speed limits of vmin m/s and vmax m/s respectively that all cars must
obey.

Traffic: The traffic density is generated using SUMO, where each lane can be assigned a probability
Plane of emitting a car at the start position every second, with a random start speed and a random
target speed that it will stay near. These cars use a car follow model [23] and are controlled by SUMO
to avoid collisions with each other. For the sake of simplicity we do not allow any traffic cars to
change lanes.
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Ego car: The ego car is tasked with reaching the exit at the right most lane, D km from the start
position, in minimum amount of time (i.e. maximum average speed), while respecting the speed
limits and avoiding collisions with traffic. Missing the exit would be considered a failure. Our aim
is to learn a high-level tactical decision making strategy such that the ego car makes efficient lane
change maneuvers while relying on the low-level controller for collision free lane changing between
adjacent lanes. The ego car’s performance is evaluated on success rate and average speed (i.e. time to
reach the exit) and is compared to a greedy baseline and humans driving in the simulator. We set up
the ego car in SUMO such that the simulator has no control over it, and the other cars do not avoid
any collisions with the ego car. This allows our approach to fully govern the behavior of the ego car.

3 Deep RL for Tactical Decision Making

We train the ego car using deep reinforcement learning to learn a high-level policy that can make
tactical decisions. For lane change maneuvers, we break down the high level decisions in to the
following 5 actions that can be taken at any time step: (1) N: no-op i.e. take no action and maintain
current speed, (2) A: accelerate for a constant amount this time step, (3) D: decelerate for a constant
amount this time step, (4) L: make a left lane change, and (5) R: make a right lane change. The
network learns to map state inputs to Q-values [21] for these actions, as shown in Figure 2a.

The inputs to the network is the state of the ego car, which consists of internal and external information.
Scalar inputs, velocity v, lane l, and distance to goal d2g, are chosen to represent internal information
all of which are scaled between 0 and 1. Velocity can varied between 0 and 1 i.e. vmin and vmax

respectively, lanes are numbered 0 to 1 from right to left, and distance to goal decreases from the start
position of the car at 1 to the exit at 0. A binary occupancy grid around a chosen visibility region
of the ego car (with the ego car in the center) is used to input external information. An example
occupancy grid of size 42×5 is shown in Figure 1c where the visibility of the car is 50m in front and
back with a longitudinal discretization of 2.5m per cell (all cars are 5m in length), and 2 lanes to the
left and right with a one cell per lane discretization in the lateral direction. To capture relative motion
of the traffic we also input a history of the occupancy grid from previous time steps, as separate
channels.

The network architecture we use is shown in Figure 2a. The occupancy grid with history is passed
though a single convolution layer, flattened out and then concatenated with the output of a fully
connected layer with the scalar inputs. The concatenation is passed through a fully connected layer to
give the final output of 5 Q-values associated with the 5 tactical actions. A common practice is to
use a max or soft-max operation on the Q-values to choose an action [21]. In this work we introduce
a technique called Q-masking, which is injected between the Q-values and the max operation (see
Section 4). Using this technique we are able to incorporate prior information about the problem that
the agent does not need to learn from scratch through exploration. We can incorporate low-level
optimization, control or rule based information, like generating trajectories to make an adjacent
certain lane change happen while avoiding collisions. The combined effect is that learning becomes
faster and more efficient while the reward function is massively simplified. We use the following
sparse reward function,

rT =

{
+10 l = 0; exit reached
−10× l l 6= 0; exit missed

(1)

where l is the lane in which the ego car is when it reaches the target distance D from the start position.
A positive terminal reward is given for success (reaching the exit) and an increasingly negative
terminal reward the further the ego car ends up away from the exit lane. Note the simplicity of the
reward and the absence of competing components like maintaining speed limits or avoid collisions. A
discount factor along with this reward encourages the agent to reach the exit in the smallest number
of time steps i.e. maintaining a higher average speed.

During training, actions are taken in an ε-greedy manner and ε is annealed. To train the network we
simulate full trajectories until the terminal state. Two experience buffers are maintained: good and
bad. All transitions i.e. state, action and reward tuples from successful trajectories are saved in the
good buffer while transition from failed trajectories are saved in the bad buffer. For any transition the
expected reward is back calculated from the terminal reward,

yt =

{
rt t = T ; terminal
rt + γyt+1 otherwise

(2)
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Figure 2: (a) Our framework consisting of the deep Q network and the low-level module that interface together
using Q-masking. (b) A GUI displaying ego car’s location and speed, and available actions.

where γ is the discount factor. While any trajectory is being simulated at each time step the network
is optimized with the following loss function,

L(θ) =
(
yt −Q(st, at, θ)

)2
(3)

using a mini batch of transitions equally sampled from the good and the bad buffer. The two
separate buffers help maintain a decent exposure to successful executions when the exploration might
constantly lead to failed trajectories thus avoiding the network getting stuck in a local minima.

4 Q-masking

We use deep Q-learning to learn a policy to make decisions on a tactical level. In a typical Q-learning
network, a mapping between states and Q-values associated to each action is learned. Then a max (or
soft max) operator can be applied on the output layer of Q-values to pick the best action. In this work
we propose a technique, Q-masking, in the form of a mask that is applied on the output Q-values
before taking the max operation as shown in Figure 2a. The direct effect of this is that when taking
the max operation to choose the best action, we consider the Q-values associated with only a subset
of actions, which are dictated by a lower-level module.

Given a state the lower-level module can restrict (or mask off) any set of actions that the agent does
not need to explore or learn from their outcomes. For example, in the lane changing problem if the
ego car is say in the left most lane, then taking a left action will result in getting off the highway.
Therefore, it can put a mask on the Q-value associated with the left action such that it is never
selected in such a state. This allows us to incorporate prior knowledge about the system (i.e. highway
shoulders) directly in to the learning process, meaning that we do not need to set up a negative reward
for getting off the highway, thus simplifying the reward function. Also, since the agent does not
explore these states learning itself becomes faster and more efficient. What the agent ends up learning
is a subset of the actual space of Q-values that are necessary. We can also incorporate constraints on
the system in a similar manner that provides similar benefits. For example, if the ego car is driving
at the maximum speed then the accelerate action is masked or if it is at the minimum speed then
decelerate action is masked. Then the agent never needs to spend time learning the speed limits of
the highway.

As discussed in Section 1 many optimization or rule based methods are available to generate a
sequence of low-level actions that can make a car change between adjacent lanes while avoiding
collisions. However, these methods are generally not designed to handle long term decision making
and reasoning about lane change maneuvers in a multi-lane multi-agent setting. In turn modeling and
training an end-to-end system to learn a complete policy that can generate collision free trajectories
while reasoning about tactical level decisions is hard. We use Q-masking as a interface between the
two ideologies and leverage deep learning to exclusively learn a high-level decision making policy
and relying on the low-level module to provide control policies to change between adjacent lanes in a
collision free manner. We can incorporate any optimization or rule based method in the low-level
module such that given a state it masks off actions that can result in impossible to perform lane
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Table 1: Benchmark results of our approach against a greedy baseline and human driving.
Ours Baseline Human

vislat=1 vislat=2

Avg Speed (m/s) 26.50 26.27 22.34 29.16
Success (%) 84 91 100 70

Collision (%) 0 0 0 24

changes or in collisions. Then the learning process truly focuses on learning only the high level
strategy. Since collisions are never allowed during training or testing the reward function does not
need to account for it.

In our implementation we incorporate the highway shoulders information and the speed limits in the
lower-level module. We also include a rule based time to collision (TTC) method [24] (we set the
threshold as 10s) that checks for collisions given the state against all actions and masks off those
actions that lead to collision.

5 Results

To evaluate the performance of our framework we compare the network against a greedy baseline
policy and humans driving in the simulator. For this benchmark we set the problem parameters as
follows: L = 5, D = 1.5km, vmin = 20m/s and vmax = 30m/s. The traffic density is set to Plane =
{0.3, 0.2, 0.2, 0.15, 0.1} for lane 1 to 5 (from right to left) with {20, 22, 25, 27, 29} m/s as the target
speed in those lanes. These settings give faster sparse traffic in the left most lanes, and slower dense
traffic in the right most lanes. Such traffic conditions ensured that non-trivial lane change maneuvers,
like merging and overtaking would be necessary to remain efficient. For any method we restrict
the action space to the tactical decisions described in Section 3 with a constant acceleration and
deceleration rate of 2m/s2. We aggregate the results across 100 trials for each method and record the
success rate of reaching the exit, and the average speed of the ego car.

Ours: The network is trained for 10k episodes, with time step of 0.4s, discount factor γ = 0.99 and
ε-greedy exploration, where ε is annealed from 1.0 to 0.1 for 80% of the episodes. For each episode
the ego car is started from the zero position in a random lane with a random speed between the speed
limits. To investigate the effects of visibility of the ego car we train and benchmark two networks
with lateral visibility vislat of 1 and 2 lanes to the right and to the left while the longitudinal visibility
is fixed at 50m in front and back. For the occupancy grid we use a 2.5m per cell resolution in the
longitudinal direction and a history of 3 previous time steps to give the grid input sizes of 42×3×4
and 42×5×4 for the two networks.

Baseline: A greedy baseline tactical policy for the ego car prioritizes making a right lane change
until it is in the correct lane. Then it tries to go as fast as possible while staying within the speed limits
and not colliding with any car in the front. Same time step of 0.4s is set and to keep comparisons fair
the high-level baseline policy is allowed to access the low-level module (see Section 4) as an oracle,
to reason about speed limits, highway shoulders and collisions.

Human: We aggregated data on 10 human subjects that drove the ego car in the simulator for
10 trials each. As shown in Figure 2b a GUI was set up to indicate the location of the ego car on
the highway relative to the start and exit, its speed and the available actions. The time step of the
simulator was reduced to 0.1s for smoother control. The subjects were asked to drive naturally and
were told that the primary and secondary objectives were to reach the exit and get there as fast as
possible respectively. They were allowed to learn to use the simulator for a few trials before the
data was recorded. Originally, we found that the subjects did not feel comfortable driving with the
low-level module on (specifically the TTC component used for collision avoidance, see Section 4)
and felt like they had to fight against the simulator or weren’t being allowed to take actions that they
considered were safe and possible. So we conducted the experiments with the TTC component of the
low-level module turned off, however regaining what felt like relinquished control actually resulted in
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Figure 3: Examples of overtaking (top row) and merging (bottom row) behaviors, from left to right.

many collision as shown in Table 1. This warrants further study and is beyond the scope of this paper.
We collected the success rate, average speed and also collision rate (since collision could happen).

The benchmark results are summarized in Table 1. By design the baseline policy is always successful
in reaching the exit but is very inefficient since it never tries to apply any lane change maneuvers
when stuck behind slow moving traffic. On the other hand the humans inclined to drive faster were
overall much less successful, however majority of the failures were due to collisions and not missing
the exit. Our approach is able to achieve a much higher average speed than the baseline, is more
successful than the humans, and never results in collisions. An improvement in success rate is seen
with increased visibility. The better performance is attained by the network having learned to make
interesting and human-like lane change decision, which result in emergent behaviors like merging
and overtaking (see Figure 3).

These preliminary results show the applicability of deep reinforcement learning in addressing tactical
decision making problems. Our approach is able to strike the right synergy between learning a high-
level policy and using a low-level controller. It hold promise for further investigation in improving
performance with different (deeper) network architectures or applying it on other problem domains
with a similar construction, and on real systems. Further improvements can be made to make the
set up more realistic by considering occlusions and also introducing uncertainty with a probabilistic
occupancy grid.

6 Conclusion

We proposed a framework that leverages the strengths of deep reinforcement learning for high-level
tactical decision making, and traditional optimization or rule-based methods for low-level control, by
striking the right balance between both domains. At the heart of this framework lies, Q-masking, that
provides an interface between the two levels. Using Q-masking we can incorporate prior knowledge,
constraints about the system and information from the lower-level controller, directly in to the training
of the network, simplifying the reward function and making learning faster and more efficient, while
completely eliminating collisions during training or testing. We applied our framework on the
problem of autonomous lane changing for self driving cars, where the network learned a high-level
tactical decision making policy. We presented preliminary results and benchmarked our approach
against a greedy baseline and humans driving in the simulator and showed that our approach is able
to outperform them both on different metrics with a more efficient and much safer policy.
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