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Abstract

We present a new methodology that constructs a family of positive definite kernels
from any given dissimilarity measure on structured inputs whose elements are
either real-valued time series or discrete structures such as strings, histograms,
and graphs. Our approach, which we call D2KE (from Distance to Kernel and
Embedding), draws from the literature of Random Features. However, instead of
deriving random feature maps from a user-defined kernel to approximate kernel
machines, we build a kernel from a random feature map, that we specify given
the distance measure. We further propose use of a finite number of random ob-
jects to produce a random feature embedding of each instance. We provide a
theoretical analysis showing that D2KE enjoys better generalizability than univer-
sal Nearest-Neighbor estimates. On one hand, D2KE subsumes the widely-used
representative-set method as a special case, and relates to the well-known dis-
tance substitution kernel in a limiting case. On the other hand, D2KE generalizes
existing Random Features methods applicable only to vector input representa-
tions to complex structured inputs of variable sizes. We conduct classification
experiments over such disparate domains as time series, strings, and histograms
(for texts and images), for which our proposed framework compares favorably to
existing distance-based learning methods in terms of both testing accuracy and
computational time.

1 Introduction

In many problem domains, it is easier to specify a reasonable dissimilarity (or similarity) function
between instances than to construct a feature representation. This is particularly the case with
structured inputs whose elements are either real-valued time series or discrete structures such as
strings, histograms, and graphs, where it is typically less than clear how to construct the representation
of entire structured inputs with potentially widely varying sizes, even when given a good feature
representation of each individual component. Moreover, even for complex structured inputs, there are
many well-developed dissimilarity measures, such as the Dynamic Time Warping measure between
time series, Edit Distance between strings, Hausdorff distance between sets, andWasserstein distance
between distributions.

However, standard machine learning methods are designed for vector representations, and classically
there has been far less work on distance-based methods for either classification or regression on
structured inputs. The most common distance-based method is Nearest-Neighbor Estimation (NNE),
which predicts the outcome for an instance using an average of its nearest neighbors in the input space,
with nearness measured by the given dissimilarity measure. Estimation from nearest neighbors,
however, is unreliable, specifically having high variance when the neighbors are far apart, which is
typically the case when the intrinsic dimension implied by the distance is large.

To address this issue, a line of research has focused on developing global distance-based (or similarity-
based) machine learning methods (Pkkalska & Duin, 2005; Duin & Pękalska, 2012; Balcan et al.,
2008a; Cortes et al., 2012), in large part by drawing upon connections to kernel methods (Scholkopf
et al., 1999) or directly learning with similarity functions (Balcan et al., 2008a; Cortes et al., 2012;
Balcan et al., 2008b; Loosli et al., 2016); we refer the reader in particular to the survey in (Chen et al.,
2009a). Among these, the most direct approach treats the data similarity matrix (or transformed
dissimilarity matrix) as a kernel Gram matrix, and then uses standard kernel-based methods such as
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Support Vector Machines (SVM) or kernel ridge regression with this Gram matrix. A key caveat
with this approach however is that most similarity (or dissimilarity) measures do not provide a
positive-definite (PD) kernel, so that the empirical risk minimization problem is not well-defined,
and moreover becomes non-convex (Ong et al., 2004; Lin & Lin, 2003).

A line of work has therefore focused on estimating a positive-definite (PD) Gram matrix that merely
approximates the similarity matrix. This could be achieved for instance by clipping, or flipping,
or shifting eigenvalues of the similarity matrix (Pekalska et al., 2001), or explicitly learning a PD
approximation of the similarity matrix (Chen &Ye, 2008; Chen et al., 2009b). Such modifications of
the similaritymatrix however often leads to a loss of information; moreover, the enforced PD property
is typically guaranteed to hold only on the training data, resulting in an inconsistency between the
set of testing and training samples (Chen et al., 2009a) 1.

Another common approach is to select a subset of training samples as a held-out representative set,
and use distances or similarities to structured inputs in the set as the feature function (Graepel et al.,
1999; Pekalska et al., 2001). As we will show, with proper scaling, this approach can be interpreted
as a special instance of our framework. Furthermore, our framework provides a more general and
richer family of kernels, many of which significantly outperform the representative-set method in a
variety of application domains.

To address the aforementioned issues, in this paper, we propose a novel general framework that
constructs a family of PD kernels from a dissimilarity measure on structured inputs. Our approach,
which we call D2KE (fromDistance to Kernel and Embedding), draws from the literature of Random
Features (Rahimi & Recht, 2008), but instead of deriving feature maps from an existing kernel for
approximating kernel machines, we build novel kernels from a random feature map specifically
designed for a given distance measure. The kernel satisfies the property that functions in the
corresponding Reproducing Kernel Hilbert Space (RKHS) are Lipschitz-continuous w.r.t. the given
distance measure. We also provide a tractable estimator for a function from this RKHS which
enjoys much better generalization properties than nearest-neighbor estimation. Our framework
produces a feature embedding and consequently a vector representation of each instance that can
be employed by any classification and regression models. In classification experiments in such
disparate domains as strings, time series, and histograms (for texts and images), our proposed
framework compares favorably to existing distance-based learning methods in terms of both testing
accuracy and computational time, especially when the number of data samples is large and/or the
size of structured inputs is large.

We highlight our main contributions as follows:

• From the perspective of distance kernel learning, we propose for the first time amethodology
that constructs a family of PD kernels via Random Features from a given distance measure
for structured inputs, and provide theoretical and empirical justifications for this framework.

• From the perspective of Random Features (RF) methods, we generalize existing Random
Features methods applied only to vector input representations to complex structured inputs
of variable sizes. To the best of our knowledge, this is the first time that a generic RFmethod
has been used to accelerate kernel machines on structured inputs across a broad range of
domains such as time-series, strings, and the histograms.

2 Related Work

Distance-Based Kernel Learning. Existing approaches either require strict conditions on the dis-
tance function (e.g. that the distance be isometric to the square of the Euclidean distance) (Haasdonk
& Bahlmann, 2004; Schölkopf, 2001), or construct empirical PD Gram matrices that do not nec-
essarily generalize to the test samples (Pekalska et al., 2001; Pkkalska & Duin, 2005; Pekalska &
Duin, 2006; 2008; Duin & Pękalska, 2012). Haasdonk & Bahlmann (2004) and Schölkopf (2001)
provide conditions under which one can obtain a PD kernel through simple transformations of the
distance measure, but which are not satisfied for many commonly used dissimilarity measures such
as Dynamic TimeWarping, Hausdorff distance, and EarthMover’s distance (Haasdonk &Bahlmann,

1A generalization error bound was provided for the similarity-as-kernel approach in (Chen et al., 2009a),
but only for a positive-definite similarity function.
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Table 1: Comparison between D2KE and different random features methods.
Methods Inputs format Distance Metric Random Feature Build new kernel
D2KE Time-series, strings, sets DTW, EditDist, HD From any distribution Yes

Rahimi’s RF and its variants Vector-form Euclidean User defined No

2004). Equivalently, one could also find a Euclidean embedding (also known as dissimilarity rep-
resentation) approximating the dissimilarity matrix as in Multidimensional Scaling (Pekalska et al.,
2001; Pkkalska & Duin, 2005; Pekalska & Duin, 2006; 2008; Duin & Pękalska, 2012) 2. Differently,
Loosli et al. (2016) presented a theoretical foundation for an SVM solver in Krein spaces and directly
evaluated a solution that uses the original (indefinite) similarity measure.

There are also some specific approaches dedicated to building a PD kernel on some structured inputs
such as text and time-series (Collins & Duffy, 2002; Cuturi, 2011), that modify a distance function
over sequences to a kernel by replacing the minimization over possible alignments into a summation
over all possible alignments. This type of kernel, however, results in a diagonal-dominance problem,
where the diagonal entries of the kernel Gram matrix are orders of magnitude larger than the
off-diagonal entries, due to the summation over a huge number of alignments with a sample itself.

Random Features Methods. Interest in approximating non-linear kernel machines using random-
ized feature maps has surged in recent years due to a significant reduction in training and testing
times for kernel based learning algorithms (Dai et al., 2014). There are numerous explicit nonlinear
random feature maps that have been constructed for various types of kernels, including Gaussian
and Laplacian Kernels (Rahimi & Recht, 2008; Wu et al., 2016), intersection kernels (Maji & Berg,
2009), additive kernels Vedaldi & Zisserman (2012), dot product kernels (Kar & Karnick, 2012;
Pennington et al., 2015), and semigroup kernels (Mukuta et al., 2018). Among them, the Random
Fourier Features (RFF) method, which approximates a Gaussian Kernel function by means of mul-
tiplying the input with a Gaussian random matrix, and its fruitful variants have been extensively
studied both theoretically and empirically (Sriperumbudur & Szabó, 2015; Felix et al., 2016; Rudi &
Rosasco, 2017; Bach, 2017; Choromanski et al., 2018). To accelerate the RFF on input data matrix
with high dimensions, a number of methods have been proposed to leverage structured matrices to
allow faster matrix computation and less memory consumption (Le et al., 2013; Hamid et al., 2014;
Choromanski & Sindhwani, 2016).

However, all the aforementioned RFmethods merely consider inputs with vector representations, and
compute the RF by a linear transformation that is either a matrix multiplication or an inner product
under Euclidean distance metric. In contrast, D2KE takes structured inputs of potentially different
sizes and computes the RF with a structured distance metric (typically with dynamic programming
or optimal transportation). Another important difference between D2KE and existing RF methods
lies in the fact that existing RF work assumes a user-defined kernel and then derives a random-
feature map, while D2KE constructs a new PD kernel through a random feature map and makes it
computationally feasible via RF. The table 1 lists the differences between D2KE and existing RF
methods.

A very recent piece of work (Wu et al., 2018) has developed a kernel and a specific algorithm
for computing embeddings of single-variable real-valued time-series. However, despite promising
results, this method cannot be applied on discrete structured inputs such as strings, histograms,
and graphs. In contrast, we have an unified framework for various structured inputs beyond the
limits of (Wu et al., 2018) and provide a general theoretical analysis w.r.t KNN and other generic
distance-based kernel methods.

3 Problem Setup

We consider the estimation of a target function f : X → R from a collection of samples {(xi, yi)}
n
i=1,

where xi ∈ X is the structured input object, and yi ∈ Y is the output observation associated with the
target function f (xi). For instance, in a regression problem, yi ∼ f (xi) + ωi ∈ R for some random
noise ωi , and in binary classification, we have yi ∈ {0, 1} with P(yi = 1|xi) = f (xi). We are given a
dissimilarity measure d : X ×X → R between input objects instead of a feature representation of x.

2A proof of the equivalence between PD of similarity matrix and Euclidean of dissimilarity matrix can be
found in (Borg & Groenen, 1997).
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Note that the size structured inputs xi may vary widely, e.g. strings with variable lengths or graphs
with different sizes. For some of the analyses, we require the dissimilarity measure to be a metric as
follows.
Assumption 1 (Distance Metric). d : X × X → R is a distance metric, that is, it satisfies (i)
d(x1,x2) ≥ 0, (ii) d(x1,x2) = 0 ⇐⇒ x1 = x2, (iii) d(x1,x2) = d(x2,x1), and (iv) d(x1,x2) ≤
d(x1,x3) + d(x3,x2).

3.1 Function Continuity and Space Covering

An ideal feature representation for the learning task is (i) compact and (ii) such that the target function
f (x) is a simple (e.g. linear) function of the resulting representation. Similarly, an ideal dissimilarity
measure d(x1,x2) for learning a target function f (x) should satisfy certain properties. On one hand,
a small dissimilarity d(x1,x2) between two objects should imply small difference in the function
values | f (x1) − f (x2)|. On the other hand, we want a small expected distance among samples, so
that the data lies in a compact space of small intrinsic dimension. We next build up some definitions
to formalize these properties.
Assumption 2 (Lipschitz Continuity). For any x1,x2 ∈ X, there exists some constant L > 0 such
that

| f (x1) − f (x2)| ≤ L d(x1,x2), (1)

We would prefer the target function to have a small Lipschitz-continuity constant L with respect to
the dissimilarity measure d(., .). Such Lipschitz-continuity alone however might not suffice. For
example, one can simply set d(x1,x2) = ∞ for any x1 , x2 to satisfy Eq. equation 1. We thus need
the following quantity that measures the size of the space implied by a given dissimilarity measure.
Definition 1 (Covering Number). Assuming d is a metric. A δ-cover of X w.r.t. d(., .) is a set E s.t.

∀x ∈ X, ∃xi ∈ E, d(x,xi) ≤ δ.

Then the covering number N(δ;X, d) is the size of the smallest δ-cover for Xwith respect to d.

Assuming the input domain X is compact, the covering number N(δ;X, d) measures its size w.r.t.
the distance measure d. We show how the two quantities defined above affect the estimation error of
a Nearest-Neighbor Estimator.

3.2 Effective Dimension and Nearest Neighbor Estimation

We extend the standard analysis of the estimation error of k-nearest-neighbor from finite-dimensional
vector spaces to any structured input space X, with an associated distance measure d, and a finite
covering number N(δ;X, d), by defining the effective dimension as follows.
Assumption 3 (Effective Dimension). Let the effective dimension pX,d > 0 be the minimum p
satisfying

∃c > 0, ∀δ : 0 < δ < 1, N(δ;X, d) ≤ c
(
1
δ

)p
.

Here we provide an example of effective dimension in case of measuring the space of Multiset.

Multiset with Hausdorff Distance. A multiset is a set that allows duplicate elements. Consider
two multisets x1 = {ui}

M
i=1, x2 = {vj}

N
j=1. Let ∆(ui, vj) be a ground distance that measures the

distance between two elements ui, vj ∈ V in a set. The (modified) Hausdorff Distance (Dubuisson
& Jain, 1994) can be defined as d(x1,x2) :=

max{
1
N

N∑
i=1

min
j∈[M]

∆(ui, vj),
1
M

M∑
j=1

min
i∈[N ]

∆(vj,ui)} (2)

Let N(δ;V,∆) be the covering number of V under the ground distance ∆. Let X denote the set of
all sets of size bounded by L. By constructing a covering of X containing any set of size less or
equal than L with its elements taken from the covering of V, we have N(δ;X, d) ≤ N(δ;V;∆)L .
Therefore, pX,d ≤ L log N(δ;V,∆). For example, ifV := {v ∈ Rp | ‖v‖2 ≤ 1} and ∆ is Euclidean
distance, we have N(δ;V,∆) = (1 + 2

δ )
p and pX,d ≤ Lp.
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Equippedwith the concept of effective dimension, we can obtain the following bound on the estimation
error of the k-Nearest-Neighbor estimate of f (x).
Theorem 1. LetVar(y | f (x)) ≤ σ2, and f̂n be the k-Nearest Neighbor estimate of the target function
f constructed from a training set of size n. Denote p := pX,d . We have

Ex

[(
f̂n(x) − f (x)

)2
]
≤
σ2

k
+ cL2

(
k
n

)2/p

for some constant c > 0. For σ > 0, minimizing RHS w.r.t. the parameter k, we have

Ex

[(
f̂n(x) − f (x)

)2
]
≤ c2σ

4
p+2 L

2p
2+p

(
1
n

) 2
2+p

(3)

for some constant c2 > 0.

Proof. The proof is almost the same to a standard analysis of k-NN’s estimation error in, for example,
(Györfi et al., 2006), with the space partition number replaced by the covering number, and dimension
replaced by the effective dimension in Assumption 3. �

When pX,d is reasonably large, the estimation error of k-NN decreases quite slowly with n. Thus,
for the estimation error to be bounded by ε , requires the number of samples to scale exponentially
in pX,d . In the following sections, we develop an estimator f̂ based on a RKHS derived from the
distance measure, with a considerably better sample complexity for problems with higher effective
dimension.

4 From Distance to Kernel for Structured Inputs

We aim to address the long-standing problem of how to convert a distance measure into a positive-
definite kernel. Here we introduce a simple but effective approach D2KE that constructs a family of
positive-definite kernels from a given distance measure. Given an structured input domain X and a
distance measure d(., .), we construct a family of kernels as

k(x, y) :=
∫

p(ω)φω(x)φω(y)dω,where φω(x) := exp(−γd(x,ω)), (4)

whereω ∈ Ω is a random structured object whose elements could be real-valued time-series, strings,
and histograms, p(ω) is a distribution over Ω, and φω(x) is a feature map derived from the distance
of x to all random objects ω ∈ Ω. The kernel is parameterized by both p(ω) and γ.

Relationship toDistance SubstitutionKernel. An insightful interpretation of the kernel in Equation
(4) can be obtained by expressing the kernel in Equation (4) as

exp
(
−γsoftminp(ω){d(x,ω) + d(ω, y)}

)
(5)

where the soft minimum function, parameterized by p(ω) and γ, is defined as

softminp(ω) f (ω) := −
1
γ

log
∫

p(ω)e−γ f (ω)dω. (6)

Therefore, the kernel k(x, y) can be interpreted as a soft version of the distance substitution kernel
(Haasdonk & Bahlmann, 2004), where instead of substituting d(x, y) into the exponent, it substitutes
a soft version of the form

softminp(ω){d(x,ω) + d(ω, y)}. (7)
Note when γ → ∞, the value of Equation (7) is determined by minω∈Ω d(x,ω) + d(ω, y), which
equals d(x, y) if X ⊆ Ω, since it cannot be smaller than d(x, y) by the triangle inequality. In other
words, when X ⊆ Ω,

k(x, y) → exp(−γd(x, y)) as γ →∞.

On the other hand, unlike the distance-substituion kernel, our kernel in Equation (5) is always PD by
construction.
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Algorithm 1 Random Feature Approximation of function in RKHS with the kernel in Equation 4

1: Draw R samples from p(ω) to get {ωj}
R
j=1.

2: Set the R-dimensional feature embedding as

φ̂j(x) =
1
√

R
exp(−γd(x,ωj)), ∀ j ∈ [R]

3: Solve the following problem for some µ > 0:

ŵ := argmin
w∈RR

1
n

n∑
i=1

`(wT φ̂(xi), yi) +
µ

2
‖w‖2

4: Output the estimated function f̃R(x) := ŵT φ̂(x).

Random Feature Approximation. The reader might have noticed that the kernel in Equation (4)
cannot be evaluated analytically in general. However, this does not prohibit its use in practice, so
long as we can approximate it via Random Features (RF) (Rahimi & Recht, 2008), which in our
case is particularly natural as the kernel itself is defined via a random feature map. Thus, our kernel
with the RF approximation can not only be used in small problems but also in large-scale settings
with a large number of samples, where standard kernel methods with O(n2) complexity are no longer
efficient enough and approximation methods, such as Random Features, must be employed (Rahimi
& Recht, 2008). Given the RF approximation, one can then directly learn a target function as a linear
function of the RF feature map, by minimizing a domain-specific empirical risk. It is worth noting
that a recent work (Sinha & Duchi, 2016) that learns to select a set of random features by solving
an optimization problem in an supervised setting is orthogonal to our D2KE approach and could be
extended to develop a supervised D2KE method. We outline this overall RF based empirical risk
minimization for our class of D2KE kernels in Algorithm 1. It is worth pointing out that in line 2 of
Algorithm 1 the random feature embeddings are computed by a structured distance measure between
the original structured inputs and the generated random structured inputs, followed by the application
of the exponent function parameterized by γ. This is in contrast with traditional RF methods that
translate the input data matrix into the embedding matrix via a matrix multiplication with random
Gaussian matrix followed by a non-linearity. We will provide a detailed analysis of our estimator in
Algorithm 1 in Section 5, and contrast its statistical performance to that of K-nearest-neighbor.

Relationship to Representative-Set Method. A naive choice of p(ω) relates our approach to the
representative-set method (RSM): setting Ω = X, with p(ω) = p(x). This gives us a kernel Equation
(4) that depends on the data distribution. One can then obtain a Random-Feature approximation to
the kernel in Equation (4) by holding out a part of the training data {x̂j}

R
j=1 as samples from p(ω),

and creating an R-dimensional feature embedding of the form:

φ̂ j(x) :=
1
√

R
exp

(
−γd(x, x̂j)

)
, j ∈ [R], (8)

as in Algorithm 1. This is equivalent to a 1/
√

R-scaled version of the embedding function in
the representative-set method (or similarity-as-features method) (Graepel et al., 1999; Pekalska
et al., 2001; Pkkalska & Duin, 2005; Pekalska & Duin, 2006; 2008; Chen et al., 2009a; Duin &
Pękalska, 2012), where one computes each sample’s similarity to a set of representatives as its feature
representation. However, here by interpreting Equation (8) as a random-feature approximation to the
kernel in Equation (4), we obtain a much nicer generalization error bound even in the case R→ ∞.
This is in contrast to the analysis of RSM in (Chen et al., 2009a), where one has to keep the size of the
representative set small (of the order O(n)) in order to have reasonable generalization performance.

Effect of p(ω). The choice of p(ω) plays an important role in our kernel. Surprisingly, we found that
many “close to uniform” choices of p(ω) in a variety of domains give better performance than for
instance the choice of the data distribution p(ω) = p(x) (as in the representative-setmethod). Here are
some examples from our experiments: i) In the time-series domain with dissimilarity computed via
Dynamic Time Warping (DTW), a distribution p(ω) corresponding to random time series of length
uniform in ∈ [2, 10], and with Gaussian-distributed elements, yields much better performance than
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the Representative-Set Method (RSM); ii) In string classification, with edit distance, a distribution
p(ω) corresponding to random strings with elements uniformly drawn from the alphabet Σ yields
much better performance than RSM; iii) When classifying sets of vectors with the Hausdorff distance
in Equation (2), a distribution p(ω) corresponding to random sets of size uniform in ∈ [3, 15] with
elements drawn uniformly from a unit sphere yields significantly better performance than RSM.

We conjecture two potential reasons for the better performance of the chosen distributions p(ω) in
these cases, though a formal theoretical treatment is an interesting subject we defer to future work.
Firstly, as p(ω) is synthetic, one can generate unlimited number of random features, which results in
a much better approximation to the exact kernel in Equation (4). In contrast, RSM requires held-out
samples from the data, which could be quite limited for a small data set. Second, in some cases,
even with a small or similar number of random features to RSM, the performance of the selected
distribution still leads to significantly better results. For those cases we conjecture that the selected
p(ω) generates objects that capture semantic information more relevant to the estimation of f (x),
when coupled with our feature map under the dissimilarity measure d(x,ω).

5 Analysis

In this section, we analyze the proposed framework from the perspectives of error decomposition.
LetH be the RKHS corresponding to the kernel in Equation (4). Let

fC := argmin
f ∈H

E[`( f (x), y)] s.t .‖ f ‖H ≤ C (9)

be the population risk minimizer subject to the RKHS norm constraint ‖ f ‖H ≤ C. And let

f̂n := argmin
f ∈H

1
n

n∑
i=1

`( f (xi), yi) s.t .‖ f ‖H ≤ C (10)

be the corresponding empirical risk minimizer. In addition, let f̃R be the estimated function from
our random feature approximation (Algorithm 1). Then denote the population and empirical risks
as L( f ) and L̂( f ) respectively. We have the following risk decomposition L( f̃R) − L( f ) =

(L( f̃R) − L( f̂n))︸              ︷︷              ︸
randomf eature

+ (L( f̂n) − L( fC))︸              ︷︷              ︸
estimation

+ (L( fC) − L( f ))︸             ︷︷             ︸
approximation

In the following, we will discuss the three terms from the rightmost to the leftmost.

Function Approximation Error. The RKHS implied by the kernel in Equation (4) is

H :=
 f

������ f (x) =
m∑
j=1

αj k(xj,x), xj ∈ X, ∀ j ∈ [m], m ∈ N
 ,

which is a smaller function space than the space of Lipschitz-continuous function w.r.t. the distance
d(x1,x2). As we show, any function f ∈ H is Lipschitz-continous w.r.t. the distance d(., .).
Proposition 1. LetH be the RKHS corresponding to the kernel in Equation (4) derived from some
metric d(., .). For any f ∈ H ,

| f (x1) − f (x2)| ≤ L f d(x1,x2)

where L f = γC.

We refer readers to the detailed proof in Appendix A.1. While any f in the RKHS is Lipschitz-
continuous w.r.t. the given distance d(., .), we are interested in imposing additional smoothness via
the RKHS norm constraint ‖ f ‖H ≤ C, and by the kernel parameter γ. The hope is that the best
function fC within this class approximates the true function f well in terms of the approximation
error L( fC) − L( f ). The stronger assumption made by the RKHS gives us a qualitatively better
estimation error, as discussed below.

Estimation Error. Define Dλ as

Dλ :=
∞∑
j=1

1
1 + λ/µj
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where {µj}∞j=1 is the eigenvalues of the kernel in Equation (5) and λ is a tuning parameter. It holds
that for any λ ≥ Dλ/n, with probability at least 1 − δ, L( f̂n) − L( fC) ≤ c(log 1

δ )
2C2λ for some

universal constant c (Zhang, 2005). Here we would like to set λ as small as possible (as a function
of n). By using the following kernel-independent bound: Dλ ≤ 1/λ, we have λ = 1/

√
n and thus a

bound on the estimation error

L( f̂n) − L( fC) ≤ c(log
1
δ
)2C2

√
1
n
. (11)

The estimation error is quite standard for a RKHS estimator. It has a much better dependency w.r.t.
n (i.e. n−1/2) compared to that of k-nearest-neighbor method (i.e. n−2/(2+pX,d )) especially for higher
effective dimension. A more careful analysis might lead to tighter bound on Dλ and also a better rate
w.r.t. n. However, the analysis of Dλ for our kernel in Equation (4) is much more difficult than that
of typical cases as we do not have an analytic form of the kernel.

Random Feature Approximation. Denote L̂(.) as the empirical risk function. The error from RF
approximation L( f̃R) − L( f̂n) can be further decomposed as

(L( f̃R) − L̂( f̃R)) + (L̂( f̃R) − L̂( f̂n)) + (L̂( f̂n) − L( f̂n))

where the first and third terms can be bounded via the same estimation error bound in Equation
(11), as both f̃R and f̂n have RKHS norm bounded by C. Therefore, in the following, we focus only
on the second term of empirical risk. We start by analyzing the approximation error of the kernel
∆R(x1,x2) = k̃R(x1,x2) − k(x1,x2) where

k̃R(x1,x2) :=
1
R

R∑
j=1

φ j(x1)φ j(x2). (12)

Proposition 2. Let ∆R(x1,x2) = k(x1,x2) − k̃(x1,x2), we have uniform convergence of the form

P
{

max
x1,x2∈X

|∆R(x1,x2)| > 2t
}
≤ 2

(
12γ

t

)2pX,d
e−Rt

2/2,

where pX,d is the effective dimension of X under metric d(., .). In other words, to guarantee
|∆R(x1,x2)| ≤ ε with probability at least 1 − δ, it suffices to have

R = Ω
(

pX,d
ε2 log(

γ

ε
) +

1
ε2 log(

1
δ
)

)
.

We refer readers to the detailed proof in Appendix A.2. Proposition 2 gives an approximation
error in terms of kernel evaluation. To get a bound on the empirical risk L̂( f̃R) − L̂( f̂n), consider
the optimal solution of the empirical risk minimization. By the Representer theorem we have
f̂n(x) = 1

n

∑
i αik(xi,x) and f̃R(x) = 1

n

∑
i α̃i k̃(xi,x). Therefore, we have the following corollary.

Corollary 1. To guarantee L̂( f̃R) − L̂( f̂n) ≤ ε, with probability 1 − δ, it suffices to have

R = Ω
(

pX,dM2 A2

ε2 log(
γ

ε
) +

M2 A2

ε2 log(
1
δ
)

)
.

where M is the Lipschitz-continuous constant of the loss function `(., y), and A is a bound on ‖α‖1/n.

We refer readers to the detailed proof in Appendix A.3. For most of loss functions, A and M are
typically small constants. Therefore, Corollary 1 states that it suffices to have number of Random
Features proportional to the effective dimension O(pX,d/ε2) to achieve an ε approximation error.

Combining the three error terms, we can show that the proposed framework can achieve ε-suboptimal
performance.
Claim 1. Let f̃R be the estimated function from our random feature approximation based ERM
estimator in Algorithm 1, and let f ∗ denote the desired target function. Suppose further that for some
absolute constants c1, c2 > 0 (up to some logarithmic factor of 1/ε and 1/δ):
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1. The target function f ∗ lies close to the population risk minimizer fC lying in the RKHS
spanned by the D2KE kernel: L( fC) − L( f ) ≤ ε/2.

2. The number of training samples n ≥ c1 C4/ε2.

3. The number of random features R ≥ c2pX,d/ε2.

We then have that: L( f̃R) − L( f ∗) ≤ ε with probability 1 − δ.

6 Experiments

We evaluate the proposed method in four different domains involving time-series, strings, texts,
and images. First, we discuss the dissimilarity measures and data characteristics for each set of
experiments. Then we introduce comparison among different distance-based methods and report
corresponding results.

Distance Measures. We have chosen three well-known dissimilarity measures: 1) Dynamic Time
Warping (DTW), for time-series (Berndt & Clifford, 1994); 2) Edit Distance (Levenshtein distance),
for strings (Navarro, 2001); 3) EarthMover’s distance (Rubner et al., 2000) formeasuring the semantic
distance between two Bags of Words (using pretrained word vectors), for representing documents.
4) (Modified) Hausdorff distance (Huttenlocher et al., 1993; Dubuisson & Jain, 1994) for measuring
the semantic closeness of two Bags of Visual Words (using SIFT vectors), for representing images.
Note that Bag of (Visual)Words in 3) and 4) can also be regarded as a histogram. Since most distance
measures are computationally demanding, having quadratic complexity, we adapted or implemented
C-MEX programs for them; other codes were written in Matlab.

Datasets. For each domain, we selected 4 datasets for our experiments. For time-series data, all are
multivariate time-series and the length of each time-series varies from 2 to 205 observations; three are
from the UCI Machine Learning repository (Frank & Asuncion, 2010), the other is generated from
the IQ (In-phase and Quadrature components) samples from a wireless line-of-sight communication
system from GMU. For string data, the size of alphabet is between 4 and 8 and the length of each
string ranges from 34 to 198; two of them are from the UCI Machine Learning repository and the
other two from the LibSVM Data Collection (Chang & Lin, 2011). For text data, all are chosen
partially overlapped with these in (Kusner et al., 2015). The length of each document varies from
9.9 to 117. For image data, all of datasets were derived from Kaggle; we computed a set of SIFT-
descriptors to represent each image and the size of SIFT feature vectors of each image varies from 1
to 914. We divided each dataset into 70/30 train and test subsets (if there was no predefined train/test
split). Properties of these datasets are summarized in Table 6 in Appendix B.

Table 2: Classification performance comparison on multi-variate Time-series with variable lengths
Methods D2KE KNN DSK_RBF DSK_ND KSVM RSM
Datasets Accu Time Accu Time Accu Time Accu Time Accu Time Accu Time
Auslan 92.60 42.4s 70.26 52.1s 92.47 43.4s 89.74 44.6s 85.58 95.6s 88.96 68.6s
pentip 99.88 4.5s 98.37 27.3s 98.02 125.4s 70.40 126.6s 98.37 125.3s 98.48 13.6s

ActRecog 64.72 43.4s 53.43 85.5s 55.58 64.9s 45.31 68.0s 51.65 75.2s 62.44 64.5s
IQ_radio 86.87 469.3s 60.25 3734s 77.41 13381s 47.31 12251s 80.52 10084s 70.84 1275.9s

Table 3: Classification performance comparison on Strings with variable lengths.
Methods D2KE KNN DSK_RBF DSK_ND KSVM RSM
Datasets Accu Time Accu Time Accu Time Accu Time Accu Time Accu Time
bit-str4 90.00 2.3s 80.00 3.2s 88.33 3.9s 86.67 3.5s 83.33 2.8s 86.67 2.6s
splice 90.03 46.9s 79.41 164.2s 87.88 204.9s 85.89 208.2s 67.29 169.9s 86.10 87.3s
dna3 89.65 125.1s 85.79 859.6s 86.75 1005.2s 87.15 1025.2s 46.10 991.8s 87.04 213.5s

mnist-str8 98.49 2196s 96.58 13207s 97.5 18666s 92.66 18604s 96.80 84684s 97.31 4608.6s

Table 4: Classification performance comparison on Bag of Words Vectors for Documents.
Methods D2KE KNN DSK_RBF DSK_ND KSVM RSM
Datasets Accu Time Accu Time Accu Time Accu Time Accu Time Accu Time
Bbcsport 98.11 90.0s 95.4 157.2s 97.15 514.5s 96.52 512.5s 96.27 511.0s 97.0 263.2s
Twitter 74.2 15.1s 71.3 65.4s 72.05 73.5s 71.93 73.0s 70.60 73.0s 71.84 17.9s
Recipe 61.5 257s 57.4 478.1s 58.51 1508.5s 57.53 1502.2s 52.63 2364.1s 58.55 480.2s

Ohsumed 64.4 532.3s 55.5 3650.5s 59.89 6236.1s 58.51 6229.2s 46.50 6108.1s 59.91 841.5s
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Table 5: Classification performance comparison on Bag of Visual Words for images.
Methods D2KE KNN DSK_RBF DSK_ND KSVM RSM
Datasets Accu Time Accu Time Accu Time Accu Time Accu Time Accu Time
flower 46.03 22.0s 33.33 96.4s 36.51 103.5s 36.51 102.4s 38.10 85.1s 33.33 38.6s
letters2 55.45 64.5s 42.52 90.9s 54.55 101.9s 53.27 99.7s 42.45 205.2s 53.34 89.8s
decor 70.06 150.3s 61.81 1017.3s 70.83 1225.1s 70.14 1221.9s 52.78 987.1s 67.25 425.2s
style 40.29 20.5s 36.57 348.0s 38.06 450.3s 30.59 449.2s 25.74 443.1s 37.68 352.6s

Baselines. We compare D2KE against 5 state-of-the-art baselines, including 1) KNN: a simple yet
universal method to apply any distance measure to classification tasks; 2) DSK_RBF (Haasdonk
& Bahlmann, 2004): distance substitution kernels, a general framework for kernel construction by
substituting a problem specific distance measure in ordinary kernel functions. We use a Gaussian
RBF kernel; 3) DSK_ND (Haasdonk & Bahlmann, 2004): another class of distance substitution
kernels with negative distance; 4) KSVM (Loosli et al., 2016): learning directly from the similarity
(indefinite) matrix followed in the original Krein Space; 5) RSM (Pekalska et al., 2001): building an
embedding by computing distances from randomly selected representative samples.

Among these baselines, KNN, DSK_RBF, DSK_ND, and KSVM have quadratic complexity
O(N2L2) in both the number of data samples and the length of the sequences, while RSM has
computational complexity O(NRL2), linear in the number of data samples but still quadratic in the
length of the sequence. These compare to our method, D2KE, which has complexity O(NRL), linear
in both the number of data samples and the length of the sequence. For each method, we search for
the best parameters on the training set by performing 10-fold cross validation. For our new method
D2KE, since we generate random samples from the distribution, we can use as many as needed to
achieve performance close to an exact kernel. We report the best number in the range R = [4, 4096]
(typically the larger R is, the better the accuracy). We employ a linear SVM implemented using
LIBLINEAR (Fan et al., 2008) for all embedding-basedmethods (RSM andD2KE) and use LIBSVM
(Chang & Lin, 2011) for precomputed dissimilairty kernels (DSK_RBF, DSK_ND, and KSVM).
More details of experimental setup are provided in Appendix B.

Results. As shown in Tables 2, 3, 4, and 5, D2KE can consistently outperform or match the
baseline methods in terms of classification accuracy while requiring far less computation time.
There are several observations worth making here. First, D2KE performs much better than KNN,
supporting our claim that D2KE can be a strong alternative to KNN across applications. Second,
compared to the two distance substitution kernels DSK_RBF and DSK_ND and the KSVM method
operating directly on indefinite similarity matrix, our method can achieve much better performance,
suggesting that a representation induced from a truly PD kernel makes significantly better use of
the data than indefinite kernels. Among all methods, RSM is closest to our method in terms of
practical construction of the feature matrix. However, the random objects (time-series, strings, or
sets) sampled by D2KE perform significantly better, as we discussed in section 4. More detailed
discussions of the experimental results for each domain are given in Appendix C.

7 Conclusion and Future Work

In thiswork, we have proposed a general framework for deriving a positive-definite kernel and a feature
embedding function from a given dissimilarity measure between input objects. The framework is
especially useful for structured input domains such as sequences, time-series, and sets, where many
well-established dissimilarity measures have been developed. Our framework subsumes at least two
existing approaches as special or limiting cases, and opens up what we believe will be a useful
new direction for creating embeddings of structured objects based on distance to random objects.
A promising direction for extension is to develop such distance-based embeddings within a deep
architecture to support use of structured inputs in an end-to-end learning system.
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A Proof of Theorem 1 and Theorem 2

A.1 Proof of Theorem 1

Proof. Note the function g(t) = exp(−γt) is Lipschitz-continuous with Lipschitz constant γ. There-
fore,

| f (x1) − f (x2)| = |〈 f , φ(x1) − φ(x2)〉|

≤ ‖ f ‖H ‖φ(x1) − φ(x2)‖H

= ‖ f ‖H

√∫
ω

p(ω)(φω(x1) − φω(x2))2dω

≤ ‖ f ‖H

√∫
ω

p(ω)γ2 |d(x1,ω) − d(x2,ω)|2dω

≤ γ‖ f ‖H

√∫
ω

p(ω)d(x1,x2)2dω

≤ γ‖ f ‖Hd(x1,x2) ≤ γCd(x1,x2)

�

A.2 Proof of Theorem 2

Proof. Our goal is to bound the magnitude of ∆R(x1,x2) = k̃R(x1,x2) − k(x1,x2). Since
E[∆R(x1,x2)] = 0 and |∆R(x1,x2)| ≤ 1, from Hoefding’s inequality, we have

P {|∆R(x1,x2)| ≥ t} ≤ 2 exp(−Rt2/2)

a given input pair (x1,x2). To get a unim bound that holds ∀(x1,x2) ∈ X ×X, we find an ε-covering
E of X w.r.t. d(., .) of size N(ε,X, d). Applying union bound over the ε-covering E for x1 and x2,
we have

P
{

max
x′1∈E,x

′
2∈E
|∆R(x

′
1,x
′
2)| > t

}
≤ 2|E |2 exp(−Rt2/2). (13)

Then by the definition of E we have |d(x1,ω) − d(x′1,ω)| ≤ d(x1,x
′
1) ≤ ε . Together with the fact

that exp(−γt) is Lipschitz-continuous with parameter γ for t ≥ 0, we have

|φω(x1) − φω(x
′
1)| ≤ γε

and thus
| k̃R(x1,x2) − k̃R(x′1,x

′
2)| ≤ 3γε,

|k(x1,x2) − k(x′1,x
′
2)| ≤ 3γε

for γε chosen to be ≤ 1. This gives us

|∆R(x1,x2) − ∆R(x
′
1,x
′
2)| ≤ 6γε (14)

Combining equation 13 and equation 14, we have

P
{

max
x′1∈E,x

′
2∈E
|∆R(x

′
1,x
′
2)| > t + 6γε

}
≤ 2

(
2
ε

)2pX,d
exp(−Rt2/2).

(15)

Choosing ε = t/6γ yields the result. �
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A.3 Proof for Corollary 1

Proof. First of all, we have

1
n

n∑
i=1

`(
1
n

n∑
j=1

α̃j k̃(xj,xi), yi)

≤
1
n

n∑
i=1

`(
1
n

n∑
j=1

αj k̃(xj,xi), yi)

by the optimality of {α̃j}
n
j=1 w.r.t. the objective using the approximate kernel. Then we have

L̂( f̃R) − L̂( f̂n)

≤
1
n

n∑
i=1

`(
1
n

n∑
j=1

αj k̃(xj,xi), yi) − `(
1
n

n∑
j=1

αj k(xj,xi), yi)

≤ M
‖α‖1

n

(
max

x1,x2∈X
| k̃(x1,x2) − k(x1,x2)|

)
≤ M A

(
max

x1,x2∈X
| k̃(x1,x2) − k(x1,x2)|

)
where A is a bound on ‖α‖1/n. Therefore to guarantee

L̂( f̃R) − L̂( f̂n) ≤ ε

we would need
(
maxi, j∈[n] |∆R(x1,x2)|

)
≤ ε̂ := ε/M A. Then applying Theorem 2 leads to the

result. �

B General Experimental Settings

Table 6: Properties of the datasets. TS, Str, Text, and Img stand for Time-Series, String, text, and
Image respectively. Var stands for the number of variables for time-series, word embeddings, and
image SIFT-descriptors while Alpb stands for the size of the alphabet for strings. Note that all data
samples have quite different range of lengths in different datasets.

Domain Name Var/Alpb Classes Train Test length
TS Auslan 22 95 1795 770 45-136
TS pentip 3 20 2000 858 109-205
TS ActRecog 3 7 1837 788 2-151
TS IQ_radio 4 5 6715 6715 512
Str bit-str4 4 10 140 60 44/158
Str splice 4 3 2233 957 60
Str dna3 4 2 3620 1555 147
Str mnist-str8 8 10 60000 10000 17/99
Text Bbcsport 300 5 517 220 43-469
Text Twitter 300 3 2176 932 1-26
Text Recipe 300 15 3059 1311 1-340
Text Ohsumed 300 10 3999 5153 11-166
Img flower 128 10 147 63 66/429
Img decor 128 7 340 144 35/914
Img style 128 7 625 268 6/530
Img letters2 128 33 3277 1404 1/22

General Setup. For each method, we search for the best parameters on the training set by performing
10-fold cross validation. Following (Haasdonk & Bahlmann, 2004), we use an exact RBF kernel
for DSK_RBF while choosing squared distance for DSK_ND. We use the Matlab implementation
provided by Loosli et al. (2016) to run experiments for KSVM. Similarly, we adopted a simple
method – random selection – to obtain R = [4, 512] data samples as the representative set for RSM
(Pekalska et al., 2001). For our new method D2KE, since we generate random samples from the
distribution, we can use as many as needed to achieve performance close to an exact kernel. We

15



Under review as a conference paper at ICLR 2019

report the best number in the range R = [4, 4096] (typically the larger R is, the better the accuracy).
We employ a linear SVM implemented using LIBLINEAR (Fan et al., 2008) for all embedding-based
methods (RSM, and D2KE) and use LIBSVM (Chang & Lin, 2011) for precomputed dissimilairty
kernels (DSK_RBF, DSK_ND, and KSVM).

All datasets are collected from popular public websites for Machine Learning and Data Science
research, including the UCI Machine Learning repository (Frank & Asuncion, 2010), the LibSVM
Data Collection (Chang & Lin, 2011), and the Kaggle Datasets, except one time-series dataset IQ
that is shared from researchers fromGeorgeMason University. Table 6 lists the detailed properties of
the datasets from four different domains. All computations were carried out on a DELL dual-socket
system with Intel Xeon processors at 2.93GHz for a total of 16 cores and 250 GB of memory,
running the SUSE Linux operating system. To accelerate the computation of all methods, we used
multithreading with 12 threads total for various distance computations in all experiments.

C Detailed Experimental Results on Time-Series, Strings, and Images

C.1 Results on multivariate time-series

Setup. For time-series data, we employed the most successful distance measure - DTW - for all
methods. For all datasets, a Gaussian distribution was found to be applicable, parameterized by its
bandwidth σ. The best values for σ and for the length of random time series were searched in the
ranges [1e-3 1e3] and [2 50], respectively.

Results. As shown in Table 2, D2KE can consistently outperform or match all other baselines in
terms of classification accuracywhile requiring far less computation time formultivariate time-series.
The first interesting observation is that our method performs substantially better than KNN, often
by a large margin, i.e., D2KE achieves 26.62% higher performance than KNN on IQ_radio. This
is because KNN is sensitive to the data noise common in real-world applications like IQ_radio, and
has notoriously poor performance for high-dimensional data sets like Auslan. Moreover, compared
to the two distance substitution kernels DSK_RBF and DSK_ND, and KSVM operating directly
on indefinite similarity matrix, our method can achieve much better performance, suggesting that a
representation induced from a truly p.d. kernel makes significantly better use of the data than indef-
inite kernels. Among all methods, RSM is closest to our method in terms of practical construction
of the feature matrix. However, the random time series sampled by D2KE performs significantly
better, as we discussed in section 4. First, RSM simply chooses a subset of the original data points
and computes the distances between the whole dataset and this representative set; this may suffer
significantly from noise or redundant information in the time-series. In contrast, our method samples
a short random sequence that could both denoise and find the patterns in the data. Second, the
number of data points that can be sampled is limited by the total size of the data while the number of
possible random sequences drawn from the distribution is unlimited, making the feature space much
more abundant. Third, RSMmay incur significant computational cost for long time-series, due to its
quadratic complexity in length.

C.2 Results on strings

Setup. For string data, there are various well-known edit distances. Here, we choose Levenshtein
distance as our distance measure since it can capture global alignments of the underlying strings.
We first compute the alphabet from the original data and then uniformly sample characters from this
alphabet to generate random strings. We search for the best parameters for γ in the range [1e-5 1],
and for the length of random strings in the range [2 50], respectively.

Results. As shown in Table 3, D2KE consistently performs better than or similarly to other distance-
based baselines. Unlike the previous experiments where DTW is not a distance metric, Levenshtein
distance is indeed a distance metric; this helps improve the performance of our baselines. However,
D2KE still offers a clear advantage over baseline. It is interesting to note that the performance of
DSK_RBF is quite close to our method’s, which may be due to DKS_RBF with Levenshtein distance
producing a c.p.d. kernel which can essentially be converted into a p.d. kernel. Notice that on
relatively large datasets, our method, D2KE, can achieve better performance, and often with far
less computation than other baselines with quadratic complexity in both number and length of data
samples. For instance, on mnist-str8 D2KE obtains higher accuracy with an order of magnitude less
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runtime compared to DSK_RBF and DSK_ND, and two orders of magnitude less than KSVM, due
to higher computational costs both for kernel matrix construction and for eigendecomposition.

C.3 Results on sets of Word Vectors for text

Setup. For text data, following (Kusner et al., 2015) we use the earth mover’s distance as our distance
measure between two documents, since this distance has recently demonstrated a strong performance
when combining with KNN for document classifications. We first compute the Bag of Words for
each document and represent each document as a histogram of word vectors, where google pretrained
word vectors with dimension size 300 is used. We generate random documents consisting of each
random word vectors uniformly sampled from the unit sphere of the embedding vector space R300.
We search for the best parameters for γ in the range [1e-2 1e1], and for length of random document
in the range [3 21].

Results. As shown in Table 4, D2KE outperforms other baselines on all four datasets. First of all,
all distance based kernel methods perform better than KNN, illustrating the effectiveness of SVM
over KNN on text data. Interestingly, D2KE also performs significantly better than other baselines
by a notiably margin, in large part because document classification mainly associates with "topic"
learning where our random documents of short length may fit this task particularly well. For the
datasets with large number of documents and longer length of document, D2KE achieves about one
order of magnitude speedup compared with other exact kernel/similarity methods, thanks to the use
of random features in D2KE.

C.4 Results on sets of SIFT-descriptors for images

Setup. For image data, following (Pekalska et al., 2001; Haasdonk & Bahlmann, 2004) we use the
modified Hausdorff distance (MHD) (Dubuisson & Jain, 1994) as our distance measure between
images, since this distance has shown excellent performance in the literature (Sezgin & Sankur,
2004; Gao et al., 2012). We first applied the open-source OpenCV library to generate a sequence
of SIFT-descriptors with dimension 128, then MHD to compute the distance between sets of SIFT-
descriptors. We generate random images of each SIFT-descriptor uniformly sampled from the unit
sphere of the embedding vector space R128. We search for the best parameters for γ in the range
[1e-3 1e1], and for length of random SIFT-descriptor sequence in the range [3 15].

Results. As shown in Table 5, D2KE performance outperforms or matches other baselines in all
cases. First, D2KE performs best in three cases while DSK_RBF is the best on dataset decor. This
may be because the underlying SIFT features are not good enough and thus random features is not
effective to find the good patterns quickly in images. Nevertheless, the quadratic complexity of
DSK_RBF, DSK_ND, and KSVM in terms of both the number of images and the length of SIFT
descriptor sequences makes it hard to scale to large data. Interestingly, D2KE still performs much
better than KNN and RSM, which again supports our claim that D2KE can be a strong alternative to
KNN and RSM across applications.
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