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GENERATIVE INPAINTING NETWORK APPLICATIONS ON SEISMIC 

IMAGE COMPRESSION AND NON-UNIFORM SAMPLING 
 

ABSTRACT 

The use of deep learning models as priors for compressive sensing tasks presents new potential for 

inexpensive seismic data acquisition. An appropriately designed Wasserstein generative adversarial 

network is designed based on a generative adversarial network architecture trained on several historical 

surveys, capable of learning the statistical properties of the seismic wavelets. The usage of validating and 

performance testing of compressive sensing are three steps. First, the existence of a sparse representation 

with different compression rates for seismic surveys is studied. Then, non-uniform samplings are studied, 

using the proposed methodology. Finally, recommendations for non-uniform seismic survey grid, based on 

the evaluation of reconstructed seismic images and metrics, is proposed. The primary goal of the proposed 

deep learning model is to provide the foundations of an optimal design for seismic acquisition, with less 

loss in imaging quality. Along these lines, a compressive sensing design of a non-uniform grid over an asset 

in Gulf of Mexico, versus a traditional seismic survey grid which collects data uniformly at every few feet, 

is suggested, leveraging the proposed method. 

1 Introduction 

Conventional computational recovery is suffered from undesired artifacts such as over-smoothing, 

image size limitations and high computational cost. The use of deep generative network (GAN) models 

offers a very promising alternative approach for inexpensive seismic data acquisition, which improved 

quality and revealing finer details when compared to conventional approaches or pixel-wise deep learning 

models. As one of the pioneers to apply a pixel inpainting GAN on large, real seismic compressed image 

recovery, we contributes the following points: 

1) Introduction of a GAN based inpainting model for compressed image recovery, under uniform or non-

uniform sampling, capable to recover the heavily sampled data efficiently and reliably.  

2) Superior model for compressive sensing on uniform sampling, that performs better than the originial 

network and the state-of-the-art interpolation method for uniform sampling. 

3) Introduction of an effective, non-uniform, sampling survey recommendation, leveraging the GIN 

uniform sampling reconstructions and a hierarchical selection scheme.  

2 Problem Statements  

Compressed image recovery can be stated as a missing pixel inpainting problem: given an incomplete 

image, filling the missing trace values. Using historical images of the uncompressed dataset, we train a 

data-driven deep learning model, utilizing the raw image as ground truth and the binary mask to indicate 

the locations of the missing pixels. Once trained, one can test the model’s performance on any incomplete 

image  from a different dataset. We used Compression Rate (CR) to define the proportion between 

uncompressed data size and compressed data size.  

The main challenges in using an inpainting model to solve the seismic image sampling problems are: 

1) seismic images have significantly different statistical characteristics, such as texture-based patterns and 

wide range of frequencies, compared to natural images; 2) the largest number of unknown pixels is only ¼ 

of the full image in the original network, whereas in our task covers at least ½ of the image (i.e.CR=2); 3) 

the known regions in the compressed image are sparsely distributed, contrary to the compact ones in the 

general inpainting problems. To address these problems, we will modify the original network and employ 

it on different experiments. 

 

3 Methodology  
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The Generative Inpainting Network with Contextual Attention (GIN) [1] is a feed-forward GAN, 

combining and outperforming several state-of-the-art approaches including context encoders [2],  dilated 

convolutions of inpainting [3], Wasserstein GAN [4] and its improvement WGAN-GP [5]. The architecture 

of GIN is composed by a coarse network recovering the general features for the missing traces, and a 

refinement network which further reconstructs the detail. Especially, the Contextual Attention in the latter, 

does not only learn from the known pixels surrounding the masked image area, but it also looks for useful 

patches from other known image locations.  

In our Generative Inpainting Network for Compressive Sensing (named as GIN-CS), we replace the 

single bounding boxes, used in the incomplete image generation, by predefined binary masks. On the one 

hand, a binary mask could be regarded as the combination of non-adjacent bounding boxes, so that the 

multiple edges lose the continuity of original spatial relations. On the other hand, the maximum width of 

connected missing traces is generally small, so the edge effect would be ignored over the global image size.  

4 Experiments on Uniform Sampling  

We used a small portion of an internal offshore dataset to train the network, where 5000 of the 

processed offshore seismic images are cropped into 256×256 and mix the in-line and cross-line cases. There 

are two ways to arrange the training masks: random single bounding boxes, as in the original GIN or 

predefined binary sampling masks, as in our modified GIN-CS. For testing, both methods use binary masks. 

The testing seismic dataset was collected from the Gulf of Mexico (GoM), on the courtesy of TGS.  

By comparing the performance of our modified GIN-CS with the original GIN and the conventional 

biharmonic method [6] in the same CR, our model demonstrates the overall superior performance in terms 

of Mea Square Error (MSE) and Structural Similarity (SSIM) index [7] in all CR cases (Table 1). Also, the 

GIN related methods are much faster than the traditional method and hardly influenced by the value of CR. 

Focusing on one trace from the testing image, our model’s prediction aligns better with the ground truth 

relatively to the GIN (Figure 1.1).  

Although for CR=8,16, our method does not get better performance in terms of PSNR (Table 1.3), it 

still generates closer-to-real seismic images without adding additional artificial noise(GIN) or creating 

blurry fillings (biharmonic), as seen in Figure 1.2. 

 

 

Figure 1. (1)Trace comparison of CR8 (the first column) and CR16 (the second column). (2) 

Reconstruction comparisons of CR8 (the first row) and CR16 (the second row). The third row shows 

the close-up of CR16 figures in yellow framed regions.  

(1) (2) 
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Table 1. MSE, SSIM, PSNR and Run Time Performance Comparison of Uniform Sampling by different 

methods. GIN-CS* is our method. The highest values of each testing compression rates are bolded.  

 

1) MSE GIN-CS* GIN Biharmonic 

CR2 21 32.6 27.5 
CR4 35.9 43.7 51.3 

CR8 46.1 52.6 68.4 
CR16 56.2 64.5 81.9 

2) SSIM GIN-CS* GIN Biharmonic 

CR2 0.9 0.61 0.84 
CR4 0.7 0.52 0.59 
CR8 0.44 0.32 0.34 

CR16 0.22 0.14 0.19 

3) PSNR GIN-CS* GIN Biharmonic 

CR2 19.5dB 13.8dB 18.1dB 
CR4 14.1dB 12.4dB 13.9dB 
CR8 10.4dB 10.4dB 11.2dB 

CR16 8.0dB 7.7dB 9.6dB 

4) RunTime(s) GIN-CS* GIN Biharmonic 

CR2 2.9 2.1 162.0 
CR4 1.7 1.9 354.7 
CR8 1.8 1.9 465.8 

CR16 2.0 1.7 506.2 

5 Non-Uniform Sampling Survey Recommendation 

In order to construct a non-uniform optimal sampling survey set-up, we propose a sampling 

recommendation approach that leverages the fast implementation of image reconstruction with GIN. This 

is an efficient non-uniform sampling recommendation method based on hierarchical uniform sampling, 

which requires only a small number of sampling test cases. Noted that our recommended sampling method 

does not consider the connected sampling crossing section width, and the effectiveness highly relies on the 

performance of GIN. 

1) Mask Generation. For a given uncompressed seismic image, we designed a set of binary masks that 

complementary to the whole masks with equal bin width b∈{1,2,4,8} of each groups 

2) Difference map generation. The image 𝑥 is tested with all the designed compression cases. Then, we 

create the corresponding error matrix by calculating the pixel-wise square error of the reconstructions 

compared with ground truth. Then, summing them up to form a complete image difference map and 

calculate its trace-wise mean vector. We further split the vector into individual difference values 𝑑𝑤 

for each trace 𝑤. Smaller 𝑑𝑊
𝑏  value indicates better reconstruction at trace 𝑊. 

3) Initial candidate traces generation. In order to compare 𝑑𝑤
𝑏  for each trace 𝑤 without breaking the 

unknown connected traces, we introduce the observed interval 𝑣 ∈ {2,4,8} to distinguish from bin 

width 𝑏. The step mean difference is then defined by simply replacing the actual difference value 𝑑𝑤 

as its mean value over every 𝑣 interval 

𝑠𝑑𝑤
𝑏,𝑣 =

1

𝑣
 ∑ 𝑑𝑤

𝑏
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For an observed interval 𝑣, the initial recommend candidate traces 𝑤′ are the first trace indexes that 

reach the smallest step mean difference, when 𝑏 = 𝑣, i.e. 

𝑤′(𝑣)
=  𝑎𝑟𝑔𝑚𝑖𝑛𝑤,𝑣(𝑠𝑑𝑤

𝑏,𝑣)  ∧ (𝑏 = 𝑣) , 𝑏 ∈ {2,4,8}                         (2) 

All candidate traces over the interval 𝑣 form 𝑐𝑎𝑛𝑑(𝑣) = {𝑤′(𝑣)
} as a subset of all traces. One trace 

might be a candidate for selection from several intervals, or might never become a candidate for 

selection. 

4) Top-to-bottom hierarchical sorting. To avoid repetitive trace selection, a two-order sorting on all the 

candidate traces is implemented with the descending order of interval followed by ascending order of 

step mean. The traces in the higher orders are selected firstly and all the adjacent traces within all the 

intervals has been removed corresponding until the total missing trace reaching the limitation of CR  or 

empty traces remains. The elements in the final set of are the prospective missing traces, which are easy 

to be recovered by GIN.  
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6 Performance of Recommended Sampling 

We have compared the reconstruction performance result of our recommended sampling survey with 

an average of 100 random samplings, and report the improvement in Table 2. 

Table 2. Performance Comparison of Recommended Sampling and Random Sampling 

PSNR/SSIM Recommended Random 

CR2 21.1dB/0.79 15.2dB/0.66 

CR3 15.2dB/0.59 12.2dB/0.47 
CR4 13dB/0.46 10dB/0.37 

Moreover, we compared the uniform sampling and sampling recommendation separately on the same 

GoM dataset as the Figure 2 2D depth view in shown. The results of cross-line and in-line is combined by 

taking the average of the overlapped regions, in order to mimic the actual sampling in both dimensions at 

the same time. All the cross-line and in-line sampled images are stacked together to form a 3D 

reconstruction of the whole block, showing its 2D depth view in the figure. The recommend sampling points 

are densely distributed in regions with lithologic features and sparsely distributed in channelized regions. 

This successfully captures the heterogenetic of the seismic image. 

 

7 Conclusion 

We designed and implemented a modification of the GIN model, the GIN-CS, and successfully tested 

its performance on uniform samplings with compression rates ×2, ×4, ×8, ×16. GIN-CS demonstrates 

superior reconstruction performance relatively to both the original GIN and the conventional biharmonic 

method. More precisely, we show that seismic imaging can be successfully recovered by filling the missing 

traces, revealing finer details, even in high compression rate cases. In addition, the proposed method runs 

approximately 300 times faster than the conventional method. Finally, a strategy for constructing a 

recommendation of non-uniform survey is proposed for a field dataset from Gulf of Mexico, based on our 

results from a combination of limited amount of uniform sampling experiments.  

(2) (1) 

Figure 2. Stacked depth view comparing of uniform and recommended sampling on a 512×512 crop 

region of the GoM dataset. (1) The binary masks, input images, output images and the variance map by 

uniform sampling (CR=2,4,8). (2) The ones by recommended non-uniform sampling(CR=2,3,4).  
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