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Abstract

In this paper, we present a compression approach based on the combination of
low-rank matrix factorization and quantization training, to reduce complexity for
neural network based acoustic event detection (AED) models. Our experimental
results show this combined compression approach is very effective. For a three-
layer long short-term memory (LSTM) based AED model, the original model size
can be reduced to 1% with negligible loss of accuracy. Our approach enables the
feasibility of deploying AED for resource-constraint applications.

1 Introduction

Acoustic event detection (AED), the task of detecting whether certain events occur in an audio clip,
can be applied in many industry applications [1,2,3,23]. The accuracy of AED models have been
increased in a large scale in recent years based on deep learning approaches. However, to ensure high
performance, those models are of large scale computation and memory intense, which makes it a
challenge to deploy for real industrial applications with limited computation resources and memory.
Our paper is focused on increasing the computation efficiency for AED models while maintaining
their accuracies, so that AED deployment for resource-constraint industrial applications is feasible.

Compression of neural networks has been explored in broad context. We focus on two widely used and
effective methods for deep models: low-rank matrix factorization and and quantization. Singular value
decomposition (SVD) is a common factorization technique and has been explored in feedforward
networks [9,10,21,22] and recurrent neural networks (RNN) [11]. Neural network quantization refers
to compressing the original network by reducing number of bits required to represent weight matrices,
and it has been studied for different model architectures [12,13,14,15,16,19,20]. By reducing the
bit-width of weights, model size is reduced, and it also brings considerable acceleration via efficient
low bit-width arithmetic operations supports available on hardware. For the quantization approach, It
is important to fine-tune models with quantized weights to reduce the performance loss with quantized
networks. Here we refer quantization with fine-turning as quantization training.
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2 Methods

We start by formulating the multi-class audio event detection problem. Given an audio signal I (e.g.

log mel-filter bank energies (LFBESs)), the task is to train a model f to predict a multi-hot vector

y € {0,1}¢, with C being the size of event set £ and y.. being a binary indicator whether event ¢

is present in I. We denote D;, = {(I,y)} as the labeled training dataset. Model f is trained using
c

cross-entropy loss: L = — Z z:{wcyc log fe(I) + (1 —yc) log(1 — f.(I))}, where w, is the
(I,y)€Dyr c=1

penalty of positive mis-classification of class c. Specifically we focus on the RNN-based model in

this paper. Compared to CNNS, it is more memory efficient and easier to deploy on devices with

constrained resources.

Low-rank matrix factorization The factorization of weight matrices is based on the SVD compres-
sion of LSTM [11]. Let W/ and W,ll denote the input and recurrent matrix of layer [, respectively.
We first run SVD on W,ll to retain the top-r singular values and singular vectors, and its top-r right
singular vectors V}f" are shared with input weight matrix (see equation

~ T -~ o~
Wi =ULS VT ~ ZLV  where ZL = Ulrsilr 0

~ T ~ T
Wk~ ZLVir where ZL = argminy ||[Y V" — W]

Quantization training Quantization refers to representing floating-point values with n-bit integers
(n < 32). as formulated in 2] Note the scaling factor & and minimum value /3 in equation [2|are not
quantized.

V = u’ Qn(\A/') = %7 Qn(V) = a@n(v) + B )

with = maxV; —minV;, f = minV;
2 3 3

As the quantization function (Qn) is discrete, its gradient is almost zero everywhere. To solve this
problem, we apply straight-through estimator [18] to approximate the gradient of full-precision
parameter (86—\1,) with gradient of quantized value ( 8%) in the fine-tuning.

To combine low-rank matrix factorization and quantization training, the quantization operator Qn is

applied to Z é, Z! and V", We quantize both model parameters and inputs. The original RNN is
first trained in full-precision until convergence. After the low-rank matrix factorization is applied
(equation [T}, the model is quantized and fine-tuned with quantization training. We find the fine-tuning
step is important to maintain performance with quantization.

3 Experiments

The dataset used in our experiments is a subset of Audioset [17], which includes a large collection of
10-second audio segments for 632 categories of events. In particular, we select sounds of dog, baby
crying and gunshots as our target events. They include both human and non-human vocals, as well
as different sound event durations. The three events included in Audioset amount to 13,460, 2,313
and 4,083 audio segments, respectively. We also randomly select 36,036 examples from all other
audio clips in Audioset as negative samples. The whole selected dataset is randomly split for training
(70%), validation (10%) and test (20%) for each target events. 64 dimensional LFBE features are
extracted for each audio clip, with window size of 25 ms and hop size of 10 ms, which are further
normalized by global cepstral mean and variance normalization (CMVN).

Our baseline model is a three-layer LSTM with 256 hidden units in each layer. Dropout is added
between layers at rate of 0.2. Adam optimizer is used with learning rate fixed at 0.001. The evaluation
is based on detection error tradeoff (DET) curve (false negative rate vs. false positive rate). We
compute area under curve (AUC) and equal error rate (EER) as the two quantitative measures.

As the distribution of weight matrices’ eigenvalues can be different across different LSTM layers,
we follow the practice of [11] to set the same threshold 7 across layers as the fraction of retained

r N
ingular values, defined as 7 = 3 ot/ S ot% 0l > ol > ... > o
singular values, defined as 7 = oy 05,01 205> ... > 0p.
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Table [I| summarizes the results of low-rank matrix factorization compared to our baseline 3-layer
LSTM. There is no accuracy degradation when 7 is reduced to 0.6, which we hypothesize to be
related to the regularizing effects. Table[2] summarizes the results with quantization compared to our
baseline. Post-mortem (PM) refers to the case that quantization is only applied during inference, while
quantization training (QT) refers to the case model fine-tuning is further performed on quantized
weights. Our quantization training approach outperforms PM significantly for the 4-bit quantization
case. We also note the simple PM quantization preserves the accuracy well (3.0% drop in AUC and
2.7% drop in EER) with 8-bit quantization.

Table 1: AUCs and EERs on test set with different 7 on full-precision low-rank matrix factorization
of three-layer LSTM. Lower AUC and EER indicate better performance.

Low-rank, Full-precision AUC (%) EER (%)

T Params (MB) Dog Baby Gunshot Avg | Dog Baby Gunshot Avg
1.0 5.273 749 634 510 6.31(15.19 1358 11.79 13.52
0.9 2.396 722 7.08 478 6.36 |14.54 1523 1096 13.54
0.8 1.069 7.61 636 4.88 6.28 |15.26 13.52 11.05 13.27
0.6 0.316 774 6.71 507 6.51 (1554 138 11.29 13.54
0.4 0.132 10.79 10.58 10.87 10.75|19.39 18.72 18.74 18.95

Table 2: AUCs and EERs on test set w/ different quantization bits on three-layer LSTM without
low-rank factorization. Lower AUC and EER indicate better performance.

Full-rank, Quantization AUC (%) EER (%)
# bits, type Params (MB)|| Dog Baby Gunshot Avg | Dog Baby Gunshot Avg
Full-precision 5.273 749 634 510 6.31(15.19 13.58 11.79 13.52

8-bit PM 1.318 773 6.52 5.18 6.48(15.43 13.64 1239 13.89
8-bit QT 1.318 791 642 517 6.50(15.88 13.55 1239 13.94
4-bit PM 0.659 10.14 9.51 1221 10.62{18.67 17.69 2137 19.24
4-bit QT 0.659 815 8.08 6.05 7.43|1591 1545 13.08 14.81

Finally, we combine both low-rank matrix factorization and quantization training. Its results are
summarized in table [3] The attained singular value ratio is fixed to be 0.6, as parameter size and
accuracy is well balanced at this point according to table[I] When the model is quantized to 8-bit
QT (= 1.5% of original size), AUC is only increased by 0.2% and EER is even improved by a small
margin (1.9%). Performance is significantly degraded for 8-bit PM, which is related to the relatively
highly compactness and unbounded intermediate outputs in the low-rank setting. Fine-tuning the
quantized model is an essential step to reduce this effect. Though the performance is decreased for
the 4-bit QT (less than 1% of original model size), its relative degradation is much smaller compared
to the 4-bit PM.

Table 3: AUCs and EERs on test set with different quantization bits on low-rank factorized three-layer
LSTM, 7 = 0.6. Lower AUC and EER indicate better performance.

Low-rank, Quantization AUC (%) EER (%)

# bits, type Params (MB)|| Dog Baby Gunshot Avg | Dog Baby Gunshot Avg
Baseline 5.273 749 634 510 6.31(15.19 13.58 11.79 13.52
8-bit PM 0.079 9.74 828 6.61 821 |18.18 1555 12.89 15.54
8-bit QT 0.079 7.37 638 524 6.33|15.11 13.34 11.31 13.26
4-bit PM 0.040 15.26 20.89 1298 16.38|23.55 26.38 20.53 23.48
4-bit QT 0.040 9.10 8.13 7.29 8.17 |17.05 14.82 1297 1494

4 Conclusion

In this paper we present a simple yet effective compression technique combining low-rank matrix
factorization and quantization training. The proposed technique is applied to a multi-layer LSTM for
AED. It compresses the AED model size to less than 1% of the original, with AUC and EER perfor-
mance well maintained. Model fine-tuning with quantization (QT) outperforms a naive quantization
scheme (PM), which shows its consistent advantage with different number of quantization bits.
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