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ABSTRACT

In this paper, we first identify angle bias, a simple but remarkable phenomenon
that causes the vanishing gradient problem in a multilayer perceptron (MLP)
with sigmoid activation functions. We then propose linearly constrained weights
(LCW) to reduce the angle bias in a neural network, so as to train the network
under the constraints that the sum of the elements of each weight vector is zero. A
reparameterization technique is presented to efficiently train a model with LCW
by embedding the constraints on weight vectors into the structure of the network.
Interestingly, batch normalization (Ioffe & Szegedy, 2015) can be viewed as a
mechanism to correct angle bias. Preliminary experiments show that LCW helps
train a 100-layered MLP more efficiently than does batch normalization.

1 INTRODUCTION

Neural networks with a single hidden layer have been shown to be universal approximators (Hornik
et al., 1989; Irie & Miyake, 1988). However, an exponential number of neurons may be necessary
to approximate complex functions. A solution to this problem is to use more hidden layers. The
representation power of a network increases exponentially with the addition of layers (Telgarsky,
2016; Eldan & Shamir, 2016). A major obstacle in training deep nets, that is, neural networks with
many hidden layers, is the vanishing gradient problem. Various techniques have been proposed for
training deep nets, such as layer-wise pretraining (Hinton & Salakhutdinov, 2006), rectified linear
units (Nair & Hinton, 2010; Jarrett et al., 2009), variance-preserving initialization (Glorot & Bengio,
2010), and normalization layers (Ioffe & Szegedy, 2015; Gülçehre & Bengio, 2016).

In this paper, we first identify the angle bias that arises in the dot product of a nonzero vector and
a random vector. The mean of the dot product depends on the angle between the nonzero vector
and the mean vector of the random vector. We show that this simple phenomenon is a key cause of
the vanishing gradient in a multilayer perceptron (MLP) with sigmoid activation functions. We then
propose the use of so-called linearly constrained weights (LCW) to reduce the angle bias in a neural
network. LCW is a weight vector subject to the constraint that the sum of its elements is zero. A
reparameterization technique is presented to embed the constraints on weight vectors into the struc-
ture of a neural network. This enables us to train a neural network with LCW by using optimization
solvers for unconstrained problems, such as stochastic gradient descent. Preliminary experiments
show that we can train a 100-layered MLP with sigmoid activation functions by reducing the angle
bias in the network. Interestingly, batch normalization (Ioffe & Szegedy, 2015) can be viewed as a
mechanism to correct angle bias in a neural network, although it was originally developed to over-
come another problem, that is, the internal covariate shift problem. Preliminary experiments suggest
that LCW helps train deep MLPs more efficiently than does batch normalization.

In Section 2, we define angle bias and discuss its relation to the vanishing gradient problem. In
Section 3, we propose LCW as an approach to reduce angle bias in a neural network. We also
present a reparameterization technique to efficiently train a model with LCW and an initialization
method for LCW. In Section 4, we review related work; mainly, we examine existing normalization
techniques from the viewpoint of reducing the angle bias. In Section 5, we present empirical results
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Figure 1: Angle bias causes a horizontal stripe pattern in WA. (Best viewed in color)

that show that it is possible to efficiently train a 100-layered MLP by reducing the angle bias using
LCW. Finally, we conclude with a discussion of future works.

2 ANGLE BIAS

We introduce angle bias by using the simple example shown in Figure 1. Figure 1(a) is a heat map
representation of matrix W ∈ R100×100, each of whose elements is independently drawn from a
uniform random distribution in the range (−1, 1). Matrix A ∈ R100×100 is also generated randomly,
and its elements range from 0 to 1, as shown in Figure 1(b). We multiply W and A to obtain the
matrix shown in Figure 1(c). Unexpectedly, a horizontal stripe pattern appears in the heat map
of WA although both W and A are random matrices. This pattern is attributed to the angle bias
that is defined as follows:

Definition 1. Pγ is an m dimensional probability distribution whose expected value is γ1m,
where γ ∈ R and 1m is an m dimensional vector whose elements are all one.

Proposition 1. Let a be a random vector in Rm that followsPγ . Given w ∈ Rm such that ‖w‖ > 0,
the expected value of w · a is |γ|

√
m‖w‖ cos θw, where θw is the angle between w and 1m.

Proof. It follows from E(w · a) = w · E(a) = w · (γ1m) = ‖w‖ ‖γ1m‖ cos θw =
|γ|
√
m‖w‖ cos θw, where E(x) denotes the expected value of random variable x.

Definition 2. From Proposition 1, the expected value of w ·a depends on θw as long as γ 6= 0. The
distribution of w · a is then biased depending on θw; this is called angle bias.

In Figure 1, if we denote the i-th row vector of W and the j-th column vector of A by wi and aj ,
respectively, aj follows Pγ with γ = 0.5. The i-th row of WA is biased according to the angle
between wi and 1m, because the (i, j)-th element of WA is the dot product of wi and aj . Note that
if the random matrix A has both positive and negative elements, WA also shows a stripe pattern as
long as each column vector of A follows Pγ with γ 6= 0.

We can generalize Proposition 1 for any m dimensional distribution P̂ , instead of Pγ , as follows:

Proposition 2. Let â be a random vector that follows an m dimensional probability distribution P̂
whose expected value is µ̂ ∈ Rm. Given w ∈ Rm such that ‖w‖ > 0, it follows that

E(w · â) =
{
‖w‖ ‖µ̂‖ cos θ̂w if ‖µ̂‖ > 0,
0 otherwise,

where θ̂w is the angle between w and µ̂.

Proof. The proof is the same as that of Proposition 1.

Proposition 2 states that the distribution of w · â is biased according to θ̂w unless ‖µ̂‖ = 0.
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Figure 2: Activations in layers 1, 3, 5, 7, and 9 of the 10 layered MLP with sigmoid activation
functions. Inputs are randomly sampled from CIFAR-10.

2.1 ANGLE BIAS IN A MULTILAYER PERCEPTRON

We consider a standard MLP. For simplicity, the number of neurons m is assumed to be the same in
all layers. The activation vector in layer l is denoted by al =

(
al1, . . . , a

l
m

)> ∈ Rm. The weight
vector of the i-th neuron in layer l is denoted by wl

i ∈ Rm. It is generally assumed that ‖wl
i‖ > 0.

The activation of the i-th neuron in layer l is given by

ali = f
(
zli
)
, (1)

zli = wl
i · al−1 + bli (2)

= ‖wl
i‖ ‖al−1‖ cos θli + bli, (3)

where f is a nonlinear activation function, bli ∈ R is the bias term, zli ∈ R denotes the preactivation
value, and θli ∈ R means the angle between wl

i and al−1. We assume that a0 corresponds to
the input vector to the MLP. In Equations (1), (2), and (3), variables zli, a

l
i, and θli are regarded as

random variables whose distributions are determined by the distribution of the input vector a0, given
the weight vectors and the bias terms.

From Proposition 2 and Equation (2), if al−1 follows P̂ with the mean vector µ̂l−1 such
that ‖µ̂l−1‖ > 0, the preactivation zli is biased according to the angle between wl

i and µ̂l−1. If f is
assumed to be the sigmoid activation function, al is then biased toward a specific region in (0, 1)m,
because each element of al have a different mean value from Equation (1). In the next layer, the
variance of θl+1

i will shrink compared to that of θli, because al is biased in (0, 1)m. The variance
of al+1

i shrinks as the variance of θl+1
i shrinks from Equations (1) and (3). Repeating the operations

through multiple layers, the variance of θli and ali will shrink to small values.

2.2 VISUALIZING EFFECT OF ANGLE BIAS USING CIFAR-10 DATASET

We illustrate the effect of angle bias in an MLP by using the CIFAR-10 dataset (Krizhevsky &
Hinton, 2009) that includes a set of 32 × 32 color (RGB) images. Each sample in CIFAR-10 is
considered an input vector with 32 × 32 × 3 = 3072 real values, in which each variable is scaled
into the range [−1, 1].

2.2.1 WITH SIGMOID ACTIVATION FUNCTIONS

We consider an MLP with sigmoid activation functions that has 10 hidden layers with m = 128
neurons in each layer. The weights of the MLP are initialized according to Glorot & Bengio (2010).
We randomly took 100 samples from the dataset and input them into the MLP. Figure 2 shows the
activation pattern in layers 1, 3, 5, 7, and 9 on the selected samples. Please note that the activation in
Layer 1 corresponds to a1i in Equation (1), that is, Layer 1 is the layer after the input layer. We see
stripe patterns in the layers other than Layers 1 in Figure 2 that are caused by angle bias. In Layer 9,
the activation value of each neuron is almost constant regardless of the input. In contrast, no stripe
pattern appears in Layer 1, because each element of the input vector is scaled into the range [−1, 1]
and its mean value is near zero; this corresponds to the case in which ‖µ̂‖ ≈ 0 in Proposition 2.
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Figure 3: Boxplot summaries of θli in the MLP with sigmoid activation functions. Results for only
the first ten neurons in layers 1,3,5,7, and 9 are displayed. Samples shown in Figure 2 are used to
evaluate θli.

Figure 4: Activations in layers 1, 10, 20, 30, and 40 of the 50 layered MLP with ReLU activation
functions. Inputs are randomly sampled from CIFAR-10.

We calculated the angle between wl
i and al−1, that is, θli in Equation (3), for each sample1. Figure 3

shows boxplot summaries of θli on the first ten neurons in layers 1, 3, 5, 7, and 9, in which the 1%,
25%, 50%, 75%, and 99% quantiles are displayed as whiskers or boxes. We see the mean of θli are
biased according to the neurons in the layers other than Layer 1. We also see that the variance of θli
shrink through layers.

2.2.2 WITH RELU ACTIVATION FUNCTIONS

Next, we consider an MLP with ReLU activation functions that has 50 hidden layers with m = 128
neurons in each layer. The weights are initialized according to Glorot & Bengio (2010). Figure 4
shows the activation pattern in layers 1, 10, 20, 30, and 40 on the randomly selected samples. We
see stripe patterns in the layers other than Layer 1 that are caused by the angle bias.

Figure 5 shows boxplot summaries of θli on the first ten neurons in layers 1, 10, 20, 30, and 40.
We see that the mean of θli are biased according the neurons in the layers other than Layer 1. We
also see that the variance of θli shrink through layers, but the shrinking rate is much moderate com-
pared to that in Figure 3. This is because ReLU projects a preactivation vector into the unbounded
region [0,+∞)m and the activation vector is less likely to concentrate on a specific region.

2.3 RELATION TO VANISHING GRADIENT PROBLEM

Under the effect of angle bias, the activation of neurons in deeper layers are almost constant regard-
less of the input in an MLP with sigmoid activation functions, as shown in Figure 2. It indicates
that∇a0L = 0, where L is a loss function that is defined based on the output of the MLP and∇a0L
means the gradient with respect to the input vector a0. From Equation (2), we have

∇al−1L =
m∑
i=1

wl
i∇zl

i
L, (4)

∇wl
i
L = al−1∇zl

i
L (i = 1, . . . ,m) . (5)

Assuming that w1
i (i = 1, . . . ,m) are linearly independent, it follows that ∇z1

i
= 0 (i = 1, . . . ,m)

from Equation (4), with l = 1, and ∇a0L = 0. Then, it holds that ∇w1
i
L = 0 (i = 1, . . . ,m) from

1The angle is given by arccos
((
wl

i · al−1
)
/
(
‖wl

i‖ ‖al−1‖
))
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Figure 5: Boxplot summaries of θli in the MLP with ReLU activation functions. Results for only the
first ten neurons in layers 1, 10, 20, 30, and 40 are displayed. Samples shown in Figure 4 are used
to evaluate θli.

Equation (5), with l = 1, indicating that the gradients of weights in the first layer are vanished. From
Equation (1), with l = 1, we have ∇z1

i
L = f ′(z1i )∇a1

i
L. If f ′(z1i ) 6= 0, it follows that ∇a1

i
L = 0

from ∇z1
i
L = 0. This leads to ∇w2

i
L = 0 from Equations (4) and (5), with l = 2, under the

assumption that w2
i (i = 1, . . . ,m) are linearly independent. Consequently, we can derive∇wl

i
L =

0 from ∇a0L = 0 so far as f ′(zli) 6= 0 and wl
i (i = 1, . . . ,m) being linearly independent.

If we use rectified linear activation instead of sigmoid activation, the gradients of weights are less
likely to vanish, because∇a0L will seldom be exactly zero. However, the rate of each neuron being
active2 is biased, because the distribution of preactivation zli is biased. If a neuron is always active,
it behaves as an identity mapping. If a neuron is always inactive, it is worthless because its output is
always zero. Such a phenomenon is observed in deep layers in Figure 4. As discussed in Balduzzi
et al. (2017), the efficiency of the network decreases in this case. In this sense, angle bias may reduce
the efficiency of a network with rectified linear activation.

3 LINEARLY CONSTRAINED WEIGHTS

There are two approaches to reduce angle bias in a neural network. The first one is to somehow make
the expected value of the activation of each neuron near zero, because angle bias does not occur
if ‖µ̂‖ = 0 from Proposition 2. The second one is to somehow regularize the angle between wl

i

and E
(
al−1

)
. In this section, we propose a method to reduce angle bias in a neural network by

using the latter approach. We introduceWLC as follows:

Definition 3. WLC is a subspace in Rm defined by

WLC :=
{
w = (w1, . . . , wm)

> ∈ Rm
∣∣∣ w1 + . . .+ wm = 0

}
. (6)

The following holds for w ∈ WLC:

Proposition 3. Let a be an m dimensional random variable that follows Pγ . Given w ∈ WLC such
that ‖w‖ > 0, the expected value of w · a is zero.

Proof. E(w · a) = w · E(a) = γ (w · 1m) = γ (w1 + . . .+ wm) = 0.

From Proposition 3, if wl
i ∈ WLC and al−1 follows Pγ , we can resolve angle bias in zli in Equa-

tion (2). If we initialize bli = 0, the distribution of each of zli (i = 1, . . . ,m) will likely be more sim-
ilar to each other. The activation vector in layer l, each of whose elements is given by Equation (1),
is then expected to follow Pγ . Therefore, if the input vector a0 follows Pγ , we can inductively
reduce the angle bias in each layer of an MLP by using weight vectors that are included inWLC. We
call weight vector wl

i inWLC linearly constrained weights (LCWs).

2A neuron with rectified linear activation is said to be active if its output value is positive.
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Figure 6: Activations in layers 1, 3, 5, 7, and 9 of the MLP with sigmoid activation functions with
LCW. The input samples are the same as those used in Figure 2.

Figure 7: Boxplot summaries of θli on the first ten neurons in layers 1,3,5,7, and 9 of the MLP with
sigmoid activation functions with LCW.

3.1 VISUALIZING THE EFFECT OF LCW

3.1.1 WITH SIGMOID ACTIVATION FUNCTIONS

We built an MLP with sigmoid activation functions of the same size as that used in Section 2.2.1,
but whose weight vectors are replaced with LCWs. We applied the minibatch-based initialization
described in Section 3.3. Figure 6 shows the activation pattern in layers 1, 3, 5, 7, and 9 of the
MLP with LCW on the randomly selected samples that are used in Figure 2. When compared with
Figure 2, we see no stripe pattern in Figure 6. The neurons in Layer 9 respond differently to each
input sample; this means that a change in the input leads to a different output. Therefore, the network
output changes if we adjust the weight vectors in Layer 1, that is, the gradients of weights in Layer 1
do not vanish in Figure 6.

Figure 7 shows boxplot summaries of θli on the first ten neurons in layers 1, 3, 5, 7, and 9 of the
MLP with LCW. We see that the angle distributes around 90◦ on each neuron in each layer. This
indicates that the angle bias is resolved in the calculation of zli by using LCW.

After 10 epochs training Figure 8 shows the activation pattern in layers of the MLP with LCW
after 10 epochs training. A slight stripe pattern is visible in Figure 8, but neurons in each layer
react differently to each input. Figure 9 shows boxplot summaries of θli of the MLP after 10 epochs
training. We see that the mean of θli is slightly biased according to the neurons. However, the
variance of θli do not shrink even in deeper layers.

3.1.2 WITH RELU ACTIVATION FUNCTIONS

We built an MLP with ReLU activation functions of the same size as that used in Section 2.2.2,
whose weight vectors are replaced with LCWs. We applied the minibatch-based initialization de-
scribed in Section 3.3. Figure 10 shows the activation pattern in layers 1, 10, 20, 30, and 40 of the
MLP with LCW. When compared with Figure 4, we see no stripe pattern in Figure 10. Figure 11
shows boxplot summaries of θli on the first ten neurons in layers 1, 10, 20, 30, and 40 of the MLP
with LCW. We can observe that the angle bias is resolved by using LCW in the MLP with ReLU
activation functions.
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Figure 8: Activations in layers of the MLP with sigmoid activation functions with LCW after 10
epochs training.

Figure 9: Boxplot summaries of θli of the MLP with sigmoid activation functions with LCW after
10 epochs training.

3.2 LEARNING LCW VIA REPARAMETERIZATION

A straightforward way to train a neural network with LCW is to solve a constrained optimization
problem, in which a loss function is minimized under the condition that each weight vector is in-
cluded in WLC. Although several methods are available to solve such constrained problems, for
example, the gradient projection method (Luenberger & Ye, 2015), it might be less efficient to solve
a constrained optimization problem than to solve an unconstrained one. We propose a reparam-
eterization technique that enables us to train a neural network with LCW by using a solver for
unconstrained optimization. We can embed the constraints on the weight vectors into the structure
of the neural network by reparameterization.

Reparameterization Let wl
i ∈ Rm be a weight vector in a neural network. We reparametrize wl

i

by using vector vl
i ∈ Rm−1 as wl

i = Bmvl
i, where Bm ∈ Rm×(m−1) is a basis ofWLC, written as

a matrix of column vectors. For example, Bm is given by

Bm =

(
Im−1

−1>
m−1

)
∈ Rm×(m−1), (7)

where Im−1 is the identity matrix of order (m− 1)× (m− 1).

It is obvious that wl
i = Bmvl

i ∈ WLC. We then solve the optimization problem in which vl
i

is considered as a new variable in place of wl
i. This optimization problem is unconstrained be-

cause vl
i ∈ Rm−1. We can search for wl

i ∈ WLC by exploring vl
i ∈ Rm−1. In the experiments in

Section 5, we used Bm in Equation (7). We also tried an orthonormal basis ofWLC as Bm; however,
there was little difference in accuracy. It is worth noting that the proposed reparameterization can
be implemented easily and efficiently by using modern frameworks for deep learning using GPUs.

3.3 INITIALIZATION USING MINIBATCH STATISTICS

By introducing LCW, we can reduce the angle bias in zli in Equation (2), which mainly affects the
expected value of zli. It is also important to regularize the variance of zli, especially when the sigmoid
activation is used, because the output of the activation will likely saturate when the variance of zli is
too large. We apply an initialization method by which the variance of zli is regularized based on a
minibatch of samples. This type of initialization has also been used in previous studies Mishkin &
Matas (2016) and Salimans & Kingma (2016).
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Figure 10: Activations in layers 1, 10, 20, 30, and 40 of the MLP with ReLU activation functions
with LCW. The input samples are the same as those used in Figure 4.

Figure 11: Boxplot summaries of θli on the first ten neurons in layers 1, 10, 20, 30, and 40 of the
MLP with ReLU activation functions with LCW.

First, we randomly generate a seed vector ŵl
i ∈ WLC1, where WLC1 :=

{
w ∈ WLC

∣∣ ‖w‖ ≤ 1
}

.
Section A in the appendix describes the approach for sampling uniformly fromWLC1. The scholar
variable ηl is then calculated in a layer-wise manner with the property that the standard deviation
of

(
ηlŵl

i

)
· al−1 equals the target value σz , in which al−1 is evaluated using a minibatch. Finally,

we use ηlŵl
i as the initial value of wl

i. If we apply the reparameterization method described in the
previous section, the first m − 1 elements of ηlŵl

i are used as the initial value of vl
i. We initialize

bias terms bli in Equation (2) to zero.

4 RELATED WORK

Ioffe & Szegedy (2015) proposed the batch normalization (BN) approach for accelerating the train-
ing of deep nets. BN was developed to address the problem of internal covariate shift, that is,
training deep nets is difficult because the distribution of the input of a layer changes as the weights
of the preceding layers change during training. The computation of the mean and standard deviation
of zli based on a minibatch is incorporated into the structure of the network, and zli is normalized by
using these statistics. Gülçehre & Bengio (2016) proposed the standardization layer (SL) approach,
which is similar to BN. The main difference is that SL normalizes ali, whereas BN normalizes zli.
Interestingly, both BN and SL can be considered mechanisms for reducing the angle bias. SL re-
duces the angle bias by forcing ‖µ̂‖ = 0 in Proposition 2. On the other hand, BN reduces the angle
bias by normalizing zli for each neuron. A drawback of both BN and SL is that the model has to be
switched during inference to ensure that its output depends only on the input but not the minibatch.
By contrast, LCW proposed in this paper does not require any change in the model during inference.
Moreover, the computational overhead for training the LCW is lower than that of BN and SL, be-
cause LCW only requires the addition of layers that multiply Bm to vl

i, as described in Section 3.2,
whereas BN and SL need to compute both the mean and the standard deviation of zli or ali.

Salimans & Kingma (2016) proposed weight normalization (WN) to overcome the drawbacks of
BN, in which a weight vector wl

i ∈ Rm is reparametrized as wl
i = (gli/‖vl

i‖)vl
i, where gli ∈ R

and vl
i ∈ Rm are new parameters. By definition, WN does not have the property of reducing

the angle bias, because the degrees of freedom of wl
i are unchanged by the reparameterization.

Salimans & Kingma (2016) also proposed a minibatch-based initialization by which weight vectors
are initialized so that zli has zero mean and unit variance, indicating that the angle bias is reduced
immediately after the initialization.

8



Ba et al. (2016) proposed layer normalization (LN) as a variant of BN. LN normalizes zli over the
neurons in a layer on a sample in the minibatch, whereas BN normalizes zli over the minibatch on
a neuron. From the viewpoint of reducing the angle bias, LN is not as direct as BN. Although LN
does not resolve the angle bias, it is expected to normalize the degree of bias in each layer.

5 EXPERIMENTS

We conducted preliminary experiments using the CIFAR-10 dataset, the CIFAR-100
dataset (Krizhevsky & Hinton, 2009), and the SVHN dataset (Netzer et al., 2011). These experi-
ments are aimed not at achieving state-of-the-art results but at investigating whether we can train
a deep model by reducing the angle bias and empirically evaluating the performance of LCW in
comparison to that of BN and WN.

Network structure We used MLPs with the cross-entropy loss function. Each network has 32 ×
32× 3 = 3072 input neurons and 10 output neurons, and it is followed by a softmax layer. We refer
to an MLP that has L hidden layers and M neurons in each hidden layer as MLP(L,M). Either
a sigmoid activation function or a rectified linear activation function was used. MLPLCW denotes
an MLP in which each weight vector is replaced by LCW. MLPBN denotes an MLP in which the
preactivation of each neuron is normalized by BN. MLPWN denotes an MLP whose weight vectors
are reparametrized by WN.

Initialization Plain MLP and MLPBN were initialized using the method proposed in Glorot &
Bengio (2010). MLPLCW was initialized using the minibatch-based method described in Section 3.3
with σz = 0.5. MLPWN was initialized according to Salimans & Kingma (2016).

Optimization MLPs were trained using a stochastic gradient descent with a minibatch size of 128
for 100 epochs. The learning rate starts from 0.1 and is multiplied by 0.95 after every two epochs.

Environment and implementation The experiments were performed on a system running Ubuntu
16.04 LTS with NVIDIA R© Tesla R© K80 GPUs. We implemented LCW using PyTorch version
0.1.12. We implemented BN using the torch.nn.BatchNorm1d module in PyTorch. We im-
plemented WN by ourselves using PyTorch3.

5.1 EXPERIMENTAL RESULTS: MLPS WITH SIGMOID ACTIVATION FUNCTIONS

We first consider MLPs with sigmoid activation functions. Figure 12 shows the convergence
and computation time for training MLPs with CIFAR-10 dataset. Figure 12(a)-(c) shows results
for MLP(100, 128), Figure 12(d)-(f) for MLP(50, 256), and Figure 12(g)-(i) for MLP(5, 512). Fig-
ure 12(a) shows that the training accuracy of the plain MLP(100, 128) is 10% throughout the train-
ing, because the MLP output is insensible to the input because of the angle bias, as mentioned in
Section 2.24. By contrast, MLPLCW or MLPBN is successfully trained, as shown in Figure 12(a),
indicating that the angle bias is a crucial obstacle to training deep MLPs with sigmoid activation
functions. MLPLCW achieves a higher rate of increase in the training accuracy compared to MLPBN
in Figure 12(a), (d), and (g). As described in Section 4, WN itself cannot reduce the angle bias, but
the bias is reduced immediately after the initialization of WN. From Figure 12(a) and (d), we see that
deep MLPs with WN are not trainable. These results suggest that starting with weight vectors that
do not incur angle bias is not sufficient to train deep nets. It is important to incorporate a mechanism
that reduces the angle bias during training, such as LCW or BN.

The computational overhead of training of MLPLCW(100, 128) is approximately 55% compared to
plain MLP(100, 128), as shown in Figure 12(b); this is much lower than that of MLPBN(100, 128).
The overhead of MLPWN is large compared to that of MLPBN, although it contradicts the claim of
Salimans & Kingma (2016). We think this is due to the implementation of these methods. The BN

3Although a module for WN is available in PyTorch version 0.2.0, we did not use it because the minibatch-
based initialization (Salimans & Kingma, 2016) is not implemented for this module.

4CIFAR-10 includes samples from 10 classes equally. The prediction accuracy is therefore 10% if we
predict all samples as the same class.
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(a) Training accuracy. (b) Elapsed time (s). (c) Test accuracy.

(d) Training accuracy. (e) Elapsed time (s). (f) Test accuracy.

(g) Training accuracy. (h) Elapsed time (s). (i) Test accuracy.

Figure 12: Training accuracy, elapsed time, and test accuracy for CIFAR-10 dataset: (a-c) results
of MLP(100, 128), (d-f) results of MLP(50, 256), (g-i) results of MLP(5, 512). Sigmoid activation
functions are used in each model.

module we used in the experiments consists of a specialized function developed by GPU vendors,
whereas the WN module was developed by ourselves. In this sense, the overhead of LCW may be
improved by a more sophisticated implementation.

In terms of the test accuracy, MLPLCW has peaks around 20 epochs, as shown in Figure 12(c), (f),
and (i). We have no clear explanation for this finding, and further studies are needed to investigate
the generalizability of neural networks.

Experimental results with SVHN and CIFAR-100 datasets are reported in Section B in the appendix.

5.2 EXPERIMENTAL RESULTS: MLPS WITH RECTIFIED LINEAR ACTIVATION FUNCTIONS

We have experimented with MLPs with rectified linear activation functions. In our experiments,
we observed that the plain MLP with 20 layers and 256 neurons per layer was successfully trained.
However, the training of MLPLCW of the same size did not proceed at all, regardless of the dataset
used in our experiment; in fact, the output values of the network exploded after a few minibatch
updates. We have investigated the weight gradients of the plain MLP and MLPLCW. Figure 13 shows
boxplot summaries of the weight gradients in each layer of both models, in which the gradients are
evaluated by using a minibatch of CIFAR-10 immediately after the initialization. By comparing
Figure 13(a) and Figure 13(b), we find an exponential increase in the distributions of the weight
gradients of MLPLCW in contrast to the plain MLP. Because the learning rate was the same for every
layer in our experiments, this exponential increase of the gradients might hamper the learning of
MLPLCW. The gradients in a rectifier network are sums of path-weights over active paths (Balduzzi
et al., 2017). The exponential increase of the gradients therefore implies an exponential increase
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(a) MLP(20, 256). (b) MLPLCW(20, 256).

Figure 13: Distributions of weight gradients in each layer of MLP(20, 256) or MLPLCW(20, 256)
with rectified linear activation functions.

of active paths. As discussed in Section 2.3, we can prevent neurons from being always inactive
by reducing the angle bias, which we think caused the exponential increase in active paths. We
need further studies to make MLPLCW with rectified linear activation functions trainable. Possible
directions are to apply layer-wise learning rates or to somehow regularize the distribution of the
weight gradients in each layer of MLPLCW, which we leave as future work.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have first identified the angle bias that arises in the dot product of a nonzero vector
and a random vector. The mean of the dot product depends on the angle between the nonzero vector
and the mean vector of the random vector. In a neural network, the preactivation value of a neuron is
biased depending on the angle between the weight vector of the neuron and the mean of the activation
vector in the previous layer. We have shown that such biases cause a vanishing gradient in a neural
network with sigmoid activation functions. To overcome this problem, we have proposed linearly
constrained weights to reduce the angle bias in a neural network; these can be learned efficiently by
the reparameterization technique. Preliminary experiments suggest that reducing the angle bias is
essential to train deep MLPs with sigmoid activation functions.

We have observed that reducing the angle bias causes an unfavorable side effect in the training of
MLPs with rectified linear activation functions, in which the gradient exploding problem occurs.
We need further studies to make LCW applicable to rectifier networks. Future work also includes
investigating the applicability of LCW for other neural network structures, such as convolutional or
recurrent structures. The use of LCW in recurrent networks is of particular interest, for which batch
normalization is not straightforwardly applicable.
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A SAMPLING UNIFORMLY FROMWLC1

We can generate a sample w that is uniformly distributed inWLC1 as follows:

1. w ∼ N (0, Im): Generate a sample w from m-dimensional normal distribution N (0, Im).

2. w ← w −E(w): Subtract the mean of elements of w, which corresponds to the projection
of w ontoWLC.

3. w ← w/‖w‖: Normalize w to a unit vector.

4. ξ ∼ U(0, 1): Generate a sample ξ from a uniform distribution in (0, 1).

5. w ← ξ
1

m−2w: Shrink w in proportion to the hypersurface area of the m − 1 dimensional
hypersphere of radius ξ.
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(a) Training accuracy. (b) Elapsed time (s). (c) Test accuracy.

(d) Training accuracy. (e) Elapsed time (s). (f) Test accuracy.

(g) Training accuracy. (h) Elapsed time (s). (i) Test accuracy.

Figure 14: Training accuracy, elapsed time, and test accuracy for SVHN dataset: (a-c) results of
MLP(100, 128), (d-f) results of MLP(50, 256), (g-i) results of MLP(5, 512). Sigmoid activation
functions are used in each model.

B ADDITIONAL GRAPHS

The convergence and computation time for training MLPs with SVHN and CIFAR-100 datasets
are shown in Figure 14 and Figure 15, respectively. In each figure, (a)-(c) shows results
for MLP(100, 128), (d)-(f) for MLP(50, 256), and (g)-(i) for MLP(5, 512). We see that both LCW
and BN enable training deep models, such as MLP(100, 128) and MLP(50, 256). LCW achieves
faster convergence with respect to the training accuracy in most cases.
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(a) Training accuracy. (b) Elapsed time (s). (c) Test accuracy.

(d) Training accuracy. (e) Elapsed time (s). (f) Test accuracy.

(g) Training accuracy. (h) Elapsed time (s). (i) Test accuracy.

Figure 15: Training accuracy, elapsed time, and test accuracy for CIFAR-100 dataset: (a-c) results
of MLP(100, 128), (d-f) results of MLP(50, 256), (g-i) results of MLP(5, 512). Sigmoid activation
functions are used in each model.
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