
Under review as a conference paper at ICLR 2020

LEARNING LATENT REPRESENTATIONS FOR INVERSE
DYNAMICS USING GENERALIZED EXPERIENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Many practical robot locomotion tasks require agents to use control policies that
can be parameterized by goals. Popular deep reinforcement learning approaches
in this direction involve learning goal-conditioned policies or value functions, or
Inverse Dynamics Models (IDMs). IDMs map an agent’s current state and desired
goal to the required actions. We show that the key to achieving good performance
with IDMs lies in learning the information shared between equivalent experiences,
so that they can be generalized to unseen scenarios. We design a training process
that guides the learning of latent representations to encode this shared information.
Using a limited number of environment interactions, our agent is able to efficiently
navigate to arbitrary points in the goal space. We demonstrate the effectiveness of
our approach in high-dimensional locomotion environments such as the Mujoco
Ant, PyBullet Humanoid, and PyBullet Minitaur. We provide quantitative and
qualitative results to show that our method clearly outperforms competing baseline
approaches.

1 INTRODUCTION

In reinforcement learning (RL), an agent optimizes its behaviour to maximize a specific reward
function that encodes tasks such as moving forward or reaching a target. After training, the agent
simply executes the learned policy from its initial state until termination. In practical settings in
robotics, however, control policies are invoked at the lowest level of a larger system by higher-level
components such as perception and planning units. In such systems, agents have to follow a dynamic
sequence of intermediate waypoints, instead of following a single policy until the goal is achieved.
A typical approach to achieving goal-directed motion using RL involves learning goal-conditioned
policies or value functions (Schaul et al. (2015)). The key idea is to learn a function conditioned on
a combination of the state and goal by sampling goals during the training process. However, this
approach requires a large number of training samples, and does not leverage waypoints provided
by efficient planning algorithms. Thus, it is desirable to learn models that can compute actions to
transition effectively between waypoints. A popular class of such models is called Inverse Dynamics
Model (IDM) (Christiano et al. (2016); Pathak et al. (2017)). IDMs typically map the current state
(or a history of states and actions) and the goal state, to the action.

In this paper, we address the need of an efficient control module by learning a generalized IDM that
can achieve goal-direction motion by leveraging data collected while training a state-of-the-art RL
algorithm. We do not require full information of the goal state, or a history of previous states to learn
the IDM. We learn on a reduced goal space, such as 3-D positions to which the agent must learn
to navigate. Thus, given just the intermediate 3-D positions, or waypoints, our agent can navigate
to the goal, without requiring any additional information about the intermediate states. The basic
framework of the IDM is shown in Fig. 1.

The unique aspect of our algorithm is that we eliminate the need to randomly sample goals dur-
ing training. Instead, we exploit the known symmetries/equivalences of the system (as is common
in many robotics settings) to guide the collection of generalized experiences during training. We
propose a class of algorithms that utilize the property of equivalence between transitions modulo
the difference in a fixed set of attributes. In the locomotion setting, the agent’s transitions are sym-
metric under translations and rotations. We capture this symmetry by defining equivalence modulo
orientation among experiences. We use this notion of equivalence to guide the training of latent

1

Under review as a conference paper at ICLR 2020

πst at

ot (st	,	ot	,	at	,	st+1	,	ot+1)
Ф at

Env

Policy

ExperienceData Collection

Training

st,	ot

ot+1

Env

Waypoint
Ф at

Inference

Figure 1: Basic framework of the Inverse Dynamics Model. Experiences are collected in normal
training under single-goal reward function and used to train the IDM to produce actions for the
agent to move from ot to ot+1. At inference time, the current state st and position ot are passed to
the IDM, along with immediate next goal/waypoint ot+1 to get the required action at.

representations shared by these experiences and provide them as input to the IDM to produce the
desired actions, as shown in Fig. 4. A common challenge faced by agents trained using RL tech-
niques is lack of generalization capability. The standard way of training produces policies that work
very well on the states encountered by the agent during training, but often fail on unseen states.
Achieving good performance using IDMs requires both these components: collecting generalized
experiences, and learning these latent representations, as we demonstrate in Section 6. Our model
exhibits high sample efficiency and superior performance, in comparison to other methods involving
sampling goals during training.

We demonstrate the effectiveness of our approach in the Mujoco Ant environment (Todorov et al.
(2012)) in OpenAI Gym (Brockman et al. (2016)), and the Minitaur and Humanoid environments in
PyBullet (Coumans & Bai (2016)). From a limited number of experiences collected during training
under a single reward function of going in one direction, our generalized IDM succeeds at navigating
to arbitrary goal positions in the 3-D space. We measure performance by calculating the closest
distance to the goal an agent achieves. We perform ablation experiments to show that (1) collecting
generalized experience in the form of equivalent input pairs boosts performance over all baselines,
(2) these equivalent input pairs can be condensed into a latent representation that encodes relevant
information, and (3) learning this latent representation is in fact critical to success of our algorithm.
Details of experiments and analysis of results can be found in Sections 5 and 6.

2 RELATED WORK

Several recent works learn policies and value functions that are conditioned over not just the state
space, but also the goal space (Andrychowicz et al. (2017); Schaul et al. (2015); Kulkarni et al.
(2016)) and then generalize those functions to unseen goals. Goal-conditioned value functions are
also largely used in hierarchical reinforcement learning algorithms (Kulkarni et al. (2016)), where
the higher level module learns over intrinsic goals and the lower level control modules learn sub-
policies to reach those goals, or the lower level control modules can efficiently execute goals pro-
posed by the higher-level policy (Nachum et al. (2018)). Ghosh et al. (2018) use trained goal-
conditioned policies to learn actionable latent representations that extract relevant information from
the state, and use these pretrained representations to train the agent to excel at other tasks. Pong*
et al. (2018) learn goal-conditioned value functions, and use them in a model-based control setting.

IDMs are functions that typically map the current state of the agent and the goal state that the agent
aims to achieve, to the desired action. They have been used in a wide variety of contexts in existing
literature. Christiano et al. (2016) train IDMs using a history of states and actions and full goal state
information for transferring models trained in simulation to real robots. Pathak et al. (2017) and
Agrawal et al. (2016) use IDMs in combination with Forward Dynamics Models (FDMs) to predict
actions from compressed representations of high-dimensional inputs like RGB images generated by
the FDM. Specifically, Pathak et al. (2017) use IDMs to provide a curiosity-based reward signal

2

Under review as a conference paper at ICLR 2020

Figure 2: We report the results of our algorithm and baselines on the three locomotion environments
shown above: Humanoid, Minitaur, and Ant. The red sphere indicates the goal in each environment.

in the general RL framework to encourage exploration; Agrawal et al. (2016) use IDMs to provide
supervision for the learning of visual features relevant to the task assigned to the robot.

We circumvent the need to learn goal-conditioned policies or value functions by combining IDMs
with known symmetric properties of the robot. We train an IDM conditioned on the state space and
a reduced goal space, using data collected while training any state-of-the-art RL algorithm. Our
data collection is unique in that we exploit equivalences in experiences observed during training and
learn a latent representation space shared between such equivalent experiences. Our IDM produces
the action given this latent representation as an input, leading to generalization over parts of the state
and goal spaces unobserved during training.

3 PRELIMINARIES

In the general RL framework (Sutton et al. (1998)), a learning agent interacts with an environment
modeled as a Markov Decision Process consisting of: 1) a state space S, 2) an action space A,
3) a probability distribution P : S × S × A → [0, 1], where P (s′|s, a) is the probability of tran-
sitioning into state s′ by taking action a in state s, 4) a reward function R : S × A × S → R
that gives the reward for this transition, and 5) a discount factor Γ. The agent learns a pol-
icy πθ : S → A, parameterized by θ while trying to maximize the discounted expected return
J(θ) = Es0,a0,... [

∑∞
t=0 ΓtR(st, at, st+1)]. Goal-conditioned RL optimizes for learning a policy

that maximizes the return under a goal-specific reward function Rg . On-policy RL algorithms,
such as Policy Gradient methods (Williams (1992); Mnih et al. (2016)) and Trust Region methods
(Schulman et al. (2015); Wu et al. (2017)) use deep neural networks to estimate policy gradients,
or maximize a surrogate objective function subject to certain constraints. Off-policy RL algorithms
(Lillicrap et al. (2016); Haarnoja et al. (2018)) incorporate elements of deep Q-learning (Mnih et al.
(2013)) into the actor-critic formulation. Hindsight Experience Replay (HER) (Andrychowicz et al.
(2017)) is a popular technique used in conjunction with an off-policy RL algorithm to learn policies
in a sample-efficient way from sparse rewards in goal-based environments.

4 LEARNING GENERALIZED INVERSE DYNAMICS

Our method leverages samples collected while training a state-of-the-art RL algorithm to train an
IDM that maps the current state and desired goal position to the action required to reach the goal.
There are four major components involved in this process: 1) collecting data while training the RL
algorithm, 2) learning a basic IDM that maps the current state and the desired goal to the required
action, 3) collecting experiences that are equivalent to those observed, and using them to train the
IDM, and 4) learning a latent representation that generalizes this model to unseen parts of the state
space by utilizing the equivalent experiences collected in step 3. We elaborate on each of these in
the following sections.

4.1 INITIAL TRAINING AND COLLECTING EXPERIENCE

Our goal in this steps is to collect data for our IDM in the process of learning a policy under a
single reward function. Recall the motivation for learning IDMs: we want a model that can take in
the current state of the agent and the next command, in the form of a location in the space that the

3

Under review as a conference paper at ICLR 2020

Figure 3: Example of trajectories that are equivalent modulo orientation (e.m.o.). The red sphere
represents the goal. Here, we see that successively applying the same action to two Ants in different
initial orientations results in trajectories that are e.m.o.

agent should travel to. Thus, we collect state, action, and position data from the transitions observed
during the training process.

We emphasize the difference between the state space S and the goal space O. The state space S is
high-dimensional, consisting of information related to joint angles, velocities, torques, etc. The goal
space, O, is low-dimensional, consisting, in this case, of the 3-D coordinates of the goal position
that the agent is supposed to navigate to.
Definition 1 (Experiences). We define experiences as tuples (s, o, o′, a), where s is the current state
of the agent, o is its current 3-D position, and a is the action that the agent performed to move
from the state s and position o to the next position, or intermediate goal, o′. We write Eτ =
{(s, o, o′, a)i}i=1,...,T to denote all the experience tuples collected from a trajectory τ of length T .

4.2 LEARNING THE INVERSE DYNAMICS MODEL

Given a set of experiences E, we can train the IDM using supervised learning techniques.
Definition 2 (Inverse Dynamics Model). We define the Inverse Dynamics Model (IDM) as

φ : S ×O ×O → A, φ(s, o, o′)→ a (1)
where s, o, o′ and a represent the current state, current position, desired goal, and action respectively.

The IDM can reproduce seen actions on state and observation tuples that have appeared in the
training data. However, it can not generalize good behaviour to states and observations that have not
appeared in the initial training (see Fig. 6 for qualitative evidence). Our aim in the next steps is to
generalize the observed experiences so that they can be used over previously unseen inputs from the
S ×O ×O space.

4.3 COLLECTING GENERALIZED EXPERIENCES

One issue with the current hypothesis of collecting data for a single reward is: the samples we
obtain are highly biased in that they predominantly contain samples for motion in one direction. As
a result, there are certain parts of the input space that our agent is unlikely to ever visit. So it is
unreasonable to expect it to generalize its behaviour in those parts. We can see qualitative evidence
in Fig. 6, where the Humanoid can navigate to goals seen during training time (6a) using the basic
IDM (corresponding method in the plots is RL), but fails when the goal lies outside the training
distribution (6b).

In order to mitigate this bias in the state space introduced by single reward function, we collect
generalized experience comprising experience tuples that are equivalent modulo orientation (e.m.o.)
with respect to actions. We use Θ to represent the orientation space.
Definition 3 (Equivalence modulo Orientation). For e1, e2 ∈ E, e1 and e2 are e.m.o. with respect
to A =⇒ A(e1) = A(e2). This defines an equivalence mod Θ with respect to A over S ×O ×O

(s, o, o′) ∼A (ŝ, ô, ô′),where ∀a ∈ A, p(o′ | s, o, a) = p(ô′ | ŝ, ô, a) (2)
A qualitative example of e.m.o. experiences is shown in Fig. 3.

4

Under review as a conference paper at ICLR 2020

Figure 4: Learning latent representations using generalized experience: The LFM generates the
latent representations for two e.m.o. samples. We minimize the distance between them to enforce
equivalence, and also fit the IDM to predict the action correctly, given these latent representations.

Definition 4 (Generalized Experience). We collect unseen experiences equivalent to the observed
experiences by taking a trajectory τ ⊆ E, changing the initial orientation of the agent, leading to
a different s0, and repeating the same set of actions observed in τ . We denote this operation by G,
so G(τ) is a new trajectory. The full generalized experience set obtained in this way is written as
G = E ∪ G(E). s0 is an unseen state that has not appeared while training the agent.

4.4 LEARNING LATENT REPRESENTATIONS

Despite using generalized experiences during training, the IDM does not always show great im-
provements in tasks like navigating to the desired goal position in an arbitrary direction, as seen in
Table 1. We hypothesize that this is due to the agent failing to recognize e.m.o. experiences, and
instead learning actions from irrelevant attributes of the state space. We use the e.m.o. experiences
from the generalized experience set G to train a Latent Feature Model ψ that discards irrelevant in-
formation from the state, and learns only shared information relevant to the IDM to produce actions.
Definition 5 (Latent Feature Model). Our Latent Feature Model (LFM) aims to learn the equivalence
between e.m.o. experiences from the generalized experience set G. We define the LFM ψ as

ψ : G→ Rk, ψ(s, o, o′) = γ (3)

where γ is a k-dimensional latent representation of the experience sample. We then modify the IDM
φ to produce the action from this latent representation as

φ : Rk → A, φ(ψ(s, o, o′)) = a,∀(s, o, o′) ∈ G (4)

In order to learn these two models: LFM and IDM, we need our objective function to incorporate
the property of equivalence modulo actions in the latent representations, and learn a good mapping
from these representations to actions.

Since the LFM is used to generate latent representations for two e.m.o. experience samples simul-
taneously, and then optimize their distance, we use a Siamese framework (Koch et al. (2015)) to
model ψ. Our objective L1 minimizes the distance between the latent representations generated for
e.m.o. experience samples.

L1 = ‖ψ(s, o, o′)− ψ(ŝ, ô, ô′)‖22,where (s, o, o′), (ŝ, ô, ô′) ∈ G, and (s, o, o′) ∼A (ŝ, ô, ô′) (5)

Next, we use a simple regression loss such as the L2 distance to fit the output of the IDM to the
action. Here, the input to the IDM is the mean of the latent representations generated for the e.m.o.
experiences.

L2 = ‖φ(µ(γ, γ̂))− a‖22,where γ = ψ(s, o, o′), γ̂ = ψ(ŝ, ô, ô′), and (s, o, o′) ∼A (ŝ, ô, ô′) (6)

5

Under review as a conference paper at ICLR 2020

We jointly learn these two models by minimizing a weighted loss function:

L = λL1 + (1− λ)L2,where λ ∈ (0, 1) (7)

Fig. 4 shows the training procedure we use for our IDM. Each e.m.o. sample pair from equivalent
trajectories is passed as input to the LFM, which generates the latent representations for the pair. The
mean of these latent representations is then passed as input to the IDM, which predicts the action to
be taken. These two models are trained simultaneously, resulting in rich latent representations that
can achieve goal-directed motion, generalizable to any arbitrary location.

Remark 1. It is important to note that at test time, only the current state and goal are passed to the
LFM to generate the latent representation, which is used by the IDM to predict the required action.

5 EXPERIMENTS

We demonstrate the effectiveness of our overall approach by performing a series of ablation ex-
periments, successively including each major component of our algorithm. In addition to a random
baseline, we use Vanilla Goal-Conditioned Policy, and Hindsight Experience Replay as baselines for
comparison with our algorithm. We demonstrate superior results using our algorithm on three loco-
motion environments: Mujoco (Todorov et al. (2012)) Ant environment in OpenAI Gym (Brockman
et al. (2016)), and Humanoid and Minitaur environments in PyBullet (Coumans & Bai (2016)). In
order to fairly evaluate performance, we train each baseline using the same number of environment
interactions as our algorithm. We also maintain uniform seeds, initial states and goals across all
methods. The details of the test setting, along with network architectures, learning rates, and other
hyperparameters, are discussed in the Appendix.

5.1 BASELINES

Since our method aims at achieving goal-directed motion, we compare it with other on-policy and
off-policy RL algorithms that are trained for this specific purpose.

Random Sampling (RS): In this baseline experiment, we collect (s, o, o′, a) samples by taking
random actions at each step. We use these samples to train the IDM.

Vanilla Goal-Conditioned Policy (VGCP): The second baseline algorithm we consider is VGCP,
which takes as input the state and desired goal, and learns a policy on this input space using any
state-of-the-art RL algorithm. The policy is given by πVGCP : S,O → A and is learnt using a state-
of-the-art model-free RL technique. We use Proximal Policy Optimization (PPO) ((Schulman et al.,
2017)) for Ant and Minitaur, and Soft Actor-Critic (SAC) ((Haarnoja et al., 2018)) for Humanoid.

Hindsight Experience Replay (HER): We select Soft Actor Critic (SAC) (Haarnoja et al. (2018))
and Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. (2016)) as the off-policy algorithms
used in conjunction with HER for our algorithms. We report results on HER with both sparse and
dense rewards. Sparse rewards indicate whether the target was successfully reached, and dense
rewards include this information, in addition to control and contact costs. Throughout the paper,
HER-Sp refers to HER with sparse rewards, and HER-De refers to HER with dense rewards.

5.2 ABLATION EXPERIMENTS

Collecting Experience using standard RL algorithm (RL): We collect samples while training
state-of-the-art RL algorithms (Schulman et al. (2017); Haarnoja et al. (2018)) rewarding them for
going to the right (as is common in locomotion environments), and use them as the training data for
our IDM. More details are listed in the Appendix.

Collecting Generalized Experience (GE): We collect generalized experiences in the following
manner: we save the trajectories followed by the agent while it learns a policy for locomotion. For
some/all of these trajectories (details in A.1.2), we rotate the initial state of the agent by a random
angle, and repeat the actions taken in the original trajectory. The samples collected in this modified
trajectory are e.m.o. to those in the original trajectory. All of these samples constitute generalized
experiences, which we use to train the IDM.

6

Under review as a conference paper at ICLR 2020

Model Distance to target
Mean Std. dev.

RS 3.159 0.579
RL 2.777 0.841
VGCP 2.160 0.955
HER-Sp 2.902 1.138
HER-De 2.891 1.135
GE 1.936 0.977
LR 1.779 0.986

Model Distance to target
Mean Std. dev.

RS 1.598 0.282
RL 1.403 0.438
VGCP 1.358 0.326
HER-Sp 1.440 0.237
HER-De 1.380 0.251
GE 1.212 0.485
LR 0.904 0.482

Model Distance to target
Mean Std. dev.

RS 3.166 0.569
RL 2.155 1.054
VGCP 2.608 0.607
HER-Sp 2.602 0.953
HER-De 2.475 0.693
GE 1.721 0.978
LR 1.105 0.866

Table 1: Quantitative results of our methods and all baselines on the three environments: Humanoid,
Minitaur, and Ant respectively. In each environment, LR emerges as clearly the best performer,
enabling the agent to navigate closest to the goal.

Learning an IDM from Latent Representations (LR): We use the generalized experiences col-
lected in the previous step to extend the learned behaviour of the agent to unseen parts of the state
space. We use the dual network architecture shown in Fig. 4 in this experiment. We jointly train the
LFM and IDM using a weighted loss function that minimizes the distance between the latent repre-
sentations generated for e.m.o. experiences, and fits the output of the IDM to the desired actions.

Remark 2. We preprocess (s, o, o′) to (s, d) where d is the unit vector in the direction o→ o′, and
provide it as input to the models.

5.3 NAVIGATING THROUGH A SERIES OF WAYPOINTS

We also show results on a task in which the agent has to navigate through a series of waypoints,
to see if our IDM has indeed learnt the right actions. There are three questions we wish to answer
through this experiment: 1) How much does the agent deviate from the intended optimal trajectory
through the intermediate goals/waypoints? 2) How fast is the agent able to accomplish each goal?
3) What is the agent’s style/gait of walking?

For this qualitative comparison, we found that neither HER nor VGCP with the current setting was
able to generate good trajectories. Thus, we trained VGCP on 20 million samples (our method uses
15 million environment samples). We use this trained policy to generate the VGCP trajectories in
Fig. 7, and our LR model (trained using 15 million samples) for the LR trajectories. For all trajec-
tories, the agents are given the same initial orientation and goal position to ensure fair comparison.

6 RESULTS

In this section, we analyze the performances of our algorithm and baselines qualitatively and quan-
titatively. In particular, we discuss the following: 1) overall performances of all methods, 2) distri-
bution of distances to the goal observed at test time for all methods, 3) comparison between perfor-
mance of best baseline and LR on the waypoint navigation task, and 4) analysis of speed, trajectory,
and walking style observed in LR and the best baseline on Humanoid.

The first two points are addressed in the following two subsections. The next two questions are
discussed in detail in Fig. 7.

6.1 ANALYZING OVERALL PERFORMANCE

We report the closest distance from the target that the agent is able to reach, as the evaluation metric
for all our experiments. The mean and standard deviation of closest distance are reported in Table
1. It is clear that for each of the three environments, GE and LR outperform all other baselines.
In particular, LR is observed to be the best performing algorithm for each environment. This lends
validation to our claim that learning latent representations shared between equivalent experiences
indeed boosts performance, instead of treating the equivalent experiences as independent training
samples.

7

Under review as a conference paper at ICLR 2020

Figure 5: Violin plots showing the distribution of test data i.e. closest distance from the goal for
each episode for the 3 environments: (a) Humanoid (b) Minitaur (c) Ant.

Figure 6: Qualitative comparison between different algorithms at test time for Humanoid.

The results in table 1 show that for the Minitaur and Humanoid environments, the performance of
VGCP is better than most baselines, and nearly comparable to GE. However, it shows poor per-
formance on the Ant environment. This anomaly arises from the fact that 2 million samples are
not enough to train a goal-conditioned policy for the Ant. The Minitaur and Humanoid, on the
other hand, are trained for 4 million and 15 million time steps respectively, thus enabling better
goal-conditioned policies to be learnt, leading to much superior performance. For each of the envi-
ronments, we observe that HER-Sp and HER-De both show poor performance, compared to that of
GE, LR, and even VGCP.

6.2 DISTRIBUTION OF TEST SAMPLES

In this section, we analyze the violin plots in Fig. 5. These plots show the distributions of the closest
distances from targets observed over 10,000 episodes for each algorithm. For each environment,
we see that for RL, and in some cases, VGCP, HER, and GE, there is a small peak away from the
mean, which gives a much lower distance than the mean distance. This suggests that there is a
significant number of episodes in which the Humanoid reaches very close to the target. We analyze
this discrepancy in performance qualitatively in 6, and conclude that the small peak consists of
episodes in which the initial state and goal position have been observed during training, and thus,
the goal-conditioned policy has already learnt the optimal actions for this scenario.

Across all environments, Ant and Minitaur in particular, the peak of the LR distribution is much
lower than the other methods. This shows that in most episodes, the agent can successfully navigate
to the goal; the slightly higher mean value and variance are due to the small number of episodes
in which the agent fails at the beginning of the episode. This is to be expected because the actions
taken by the IDM depend on the kind of data collected during the training process. In some cases,
the model may learn the wrong actions, leading to the agent dying early in those episodes.

8

Under review as a conference paper at ICLR 2020

Figure 7: Given a series of waypoints, we check the ability of our Humanoid to navigate through
them efficiently, and compare it with the best baseline, VGCP, trained on 20 million samples of
environment interaction (our algorithm uses 15 million). (a) We plot the trajectory followed by
each agent as it navigates through the waypoints. We see that LR can navigate through all goals
much more easily than VGCP, without deviating. In addition to this, LR enables the agent to reach
each goal much faster than VGCP, which is unable to reach the last goal due to its slow speed, as
the episode terminates in a fixed number of timesteps. (b) We plot the orientation of the agent at
uniform intervals throughout the episode. We observe that while the agent trained using LR walks
forward as expected, the agent trained using VGCP, while managing to move slowly closer to the
goal, does so in an arbitrary fashion in that its orientation is seldom in the direction of its motion.

We also provide qualitative evidence to prove that the distribution of closest distances in episodes
is indeed biased by initial state and target configurations seen in the training data. We fix the initial
state of the agent and generate goals in a specific region. We plot the results of 10 episodes for
each method in Fig. 6 for the Humanoid environment. The initial state and goal configurations
we show results for, consist of those experienced during training (left), and those not experienced
during training (right). We see that for the configurations experienced at training time, most baseline
methods, and our methods, GE and LR, are able to reach close to the goal. However, when the
configuration lies outside the training distribution, only LR (sometimes GE) can navigate to the
goal. We include more results in the Appendix.

7 CONCLUSION

We propose a new algorithm to achieve goal-directed motion for a variety of locomotion agents by
learning the inverse dynamics model on shared latent representations for equivalent experiences. To
this end, we take three important steps: (1) We utilize the experience collected by our agent while
training a standard reinforcement learning algorithm, so that our IDM has “good” samples in which
the agent walks reasonably well. (2) We generalize this experience by modifying the initial config-
uration for each observed trajectory in the collected data, and generate the equivalent trajectories.
(3) We learn the important shared information between such symmetric pairs of experience samples
through a latent representation that is used as an input to the IDM to produce the action required for
the agent to reach the goal. We provide extensive qualitative and quantitative evidence to show that
our methods surpass existing methods to achieve generalization over unseen parts of the state space.

REFERENCES

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to
poke by poking: Experiential learning of intuitive physics. In Advances in Neural Information
Processing Systems 29, pp. 5074–5082. 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

9

Under review as a conference paper at ICLR 2020

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

Paul F. Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin,
Pieter Abbeel, and Wojciech Zaremba. Transfer from simulation to real world through learning
deep inverse dynamics model. CoRR, abs/1610.03518, 2016.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. GitHub repository, 2016.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal-
conditioned policies. CoRR, abs/1811.07819, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, pp. 1861–1870, 2018.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Rad-
ford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.
com/hill-a/stable-baselines, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, 2015.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2, 2015.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in
Neural Information Processing Systems 29, pp. 3675–3683. 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. ICLR
2016, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML 2016, pp. 1928–1937, 2016.

Ofir Nachum, Shixiang (Shane) Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 3303–3313.
2018.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In ICML, 2017.

Vitchyr Pong*, Shixiang Gu*, Murtaza Dalal, and Sergey Levine. Temporal difference models:
Model-free deep RL for model-based control. In International Conference on Learning Repre-
sentations, 2018.

Tom Schaul, Dan Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In Proceedings of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pp. 1312–1320, 2015.

10

https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

Under review as a conference paper at ICLR 2020

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML 2015, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT press,
1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IROS, pp. 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5. URL http:
//dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shun Liao, and Jimmy Ba. Second-order optimiza-
tion for deep reinforcement learning using kronecker-factored approximation. In NIPS 2017, pp.
5285–5294, 2017.

A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 ENVIRONMENTS

We perform experiments on the Mujoco (Todorov et al., 2012) Ant environment in OpenAI Gym
(Brockman et al., 2016), and Humanoid and Minitaur environments in PyBullet (Coumans & Bai,
2016). In each of these environments, for our methods, the agent is trained to perform well on the
3-D locomotion task in one direction. For the baseline methods, the agent is trained to reach goals
generated in different 3-D positions.

The reward function for collecting data for RL, GE and LR includes contact and control costs, and
rewards for moving forward. The reward function for training VGCP includes contact and control
costs, but instead of moving forward, the agent is encouraged to move in the direction of the goal. In
the case of HER-Sparse, the agent only receives a reward 0 if it reaches the goal, and -1 otherwise.
For HER-Dense, the agent receives a weighted sum of distance to the goal and contact and control
costs as its reward.

Humanoid Humanoid is a bipedal robot, with a 43-D state space and 17-D action space. The state
contains information about the agent’s height, orientation (yaw, pitch, roll), 3-D velocity, and the
3-D relative positions of each of its joints (knees, shoulders, etc.). The action consists of the torques
at these joints.

Minitaur Minitaur is a quadrupedal robot, with a 17-D state space and 8-D action space. The state
contains information about motor angles, torques, velocities, and the orientation of the base. The
action consists of the torque to be applied at each joint.

Ant Ant is a quadrupedal robot, with a 111-D state space and 8-D action space. The state space
contains the agent’s height, 3-D linear and angular velocity, joint velocities, joint angles, and the
external forces at each link. The action consists of the torques at all the 8 joints.

Our choice of these locomotion environments is driven by the motivation provided earlier: we want
an agent to navigate to a desired goal position in the 3-D space. In view of this, we do not use 2-D
locomotion environments like Half-Cheetah, Walker, or Hopper. Also, though Reacher and Pusher
are goal-based environments, we do not use them as they are manipulation environments, and we
are aiming to achieve navigation by agents trained on 3-D locomotion tasks.

11

http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12

Under review as a conference paper at ICLR 2020

A.1.2 TRAINING DETAILS

The details of number of environment interactions, network architectures for the IDM, LFM, policy,
and the state-of-the-art RL algorithm used to train the policy (for baselines), or collect data (for our
methods), are given in Table 2.

We use the Adam optimizer (Kingma & Ba (2015)) with a learning rate of 1e-3 and a batch size of
512 for all our methods across all environments.

For the Humanoid environment, we observed that the first ∼ 5 million samples were predominantly
bad samples that led to the Humanoid falling down very early in each episode. Thus, we froze
training after 5 million samples, when we had a policy in which the agent was able to walk a few
steps. We used the policy at that point to collect 10 million steps of environment interaction. For
the Ant and Minitaur environments, we collected 2 million and 4 million steps of environment
interactions respectively, during training.

For RL, we used all steps encountered in on-policy data. For GE and LR, we used only the first
half of training samples encountered while training the policy. The second half of the samples is
generated by applying the generalized transformation G, explained in Section 4.3. We use the first
1 million, 2 million and 5 million samples collected for the Ant, Minitaur and Humanoid (trained)
respectively, and generate the rest by applying G.

The hyperparameters involved in training the LFM and IDM are: the dimension k of the latent
representation space, and the ratio of the latent representation loss (L1) to the regression loss (L2),
λ. We set λ = 0.25 for all 3 environments. We use k = 10 for the Ant and Minitaur environments,
and k = 50 for the Humanoid environment. We discuss the impact of the latent representation
dimension k on the performance of the model in the next section.

A.1.3 TEST SETTING

At test time, the agent is rotated by a random angle. The target is set at a distance of ∼ 2 − 5
units from the agent at an angle of [−45◦, 45◦] to the agent’s orientation in the case of the Ant and
Humanoid environments. For Minitaur, we set the target at a distance of ∼ 1.5− 2.5 units from the
agent at an angle of [−45◦, 45◦] to the agent’s orientation. The intermediate goals, or waypoints,
can be provided by any planning algorithm, since our approach is agnostic to the actual planning
algorithm used. In our work, we use Model Predictive Control, i.e. we replan at each step.

Each episode consists of a maximum of 1000 steps for each environment, and the episode terminates
when the agent reaches the goal, or falls down/dies. We report the closest distance from the target
that the agent is able to reach, for each episode. We select 10 random seeds and test the performance
of each method on 1000 episodes for each random seed. In order to ensure that the comparison
between all methods is indeed fair, we set the initial configuration of the agent and the target to be
the same across all methods at test time.

A.2 ADDITIONAL ANALYSIS OF RESULTS

Why does our method perform better than baselines in spite of using inferior samples? It is
important to note that since we take only the first half of the environment interactions for GE and LR,
we are learning from essentially inferior samples consisting of actions that may not be optimal, as
they have been encountered earlier in the training process. In spite of learning from inferior actions,
our method outperforms the baselines. This is because our IDM formulation enables the learning
of actions that can reach the next goal given the current state, which is the kind of behaviour we
require in goal-directed motion. The focus of this model is more on learning actions that caused
certain transitions, not on learning the most optimal actions that achieve the transition, although
that would be the next best thing to do. In addition to this, our LFM framework enables the agent
to achieve their equivalent transitions by producing the same action for all transitions that share a
common latent representation. This enables our agent to generalize its motion to a larger part of the
goal space in comparison with baselines that struggle to achieve goal-directed motion for goals or
states lying outside the training distribution.

12

Under review as a conference paper at ICLR 2020

Environment # of Interactions Method Architecture Training Algorithm

Humanoid 15M

RS IDM: 256× 256 -

RL Policy: 256× 256
IDM: 256× 256

SAC

VGCP Policy: 256× 256 SAC
HER-Sparse Policy: 64× 64 SAC
HER-Dense Policy: 64× 64 SAC

GE Policy: 256× 256
IDM: 256× 256

SAC

LR
Policy: 256× 256
LFM: 256× 256
IDM: 256× 256

SAC

Minitaur 4M

RS IDM: 256× 256 -

RL Policy: 256× 256
IDM: 256× 256

PPO

VGCP Policy: 256× 256 PPO
HER-Sparse Policy: 64× 64 SAC
HER-Dense Policy: 64× 64 SAC

GE Policy: 256× 256
IDM: 256× 256

PPO

LR
Policy: 256× 256
LFM: 256× 256

IDM: 50× 50
PPO

Ant 2M

RS IDM: 256× 256 -

RL Policy: 64× 64
IDM: 256× 256

PPO

VGCP Policy: 64× 64 PPO
HER-Sparse Policy: 64× 64 SAC
HER-Dense Policy: 64× 64 DDPG

GE Policy: 64× 64
IDM: 256× 256

PPO

LR
Policy: 64× 64
LFM: 256× 256

IDM: 50× 50
PPO

Table 2: Training details for Humanoid, Minitaur, Ant. Note that training algorithm refers to the
RL algorithm used to collect data (for our methods), or train the policy (for baselines). Note that
the hyperparameters for all experiments (VGCP, HER, PPO, SAC), have been taken from existing
implementations of these algorithms (Dhariwal et al. (2017); Hill et al. (2018)).

13

Under review as a conference paper at ICLR 2020

Why is our method more sample-efficient than the baselines? Our methods (GE and LR) do not
utilize the latter half of samples collected during the training process, which would consist of more
optimal actions, because that would imply using a higher number of actual environment interactions
than the baselines. In spite of this, our method outperforms all baselines for all environments.
This is because goal-conditioned policies explore the state and goal spaces to achieve goal-directed
motion. While exploration is in fact a desirable component in reinforcement learning, sampling
from the goal space during training requires the agent to acquire a sense of direction and the skill
of locomotion simultaneously. This enlarged state space, comprising the original state and the goal,
leads to an increase in the number of samples required by the agent to learn a good policy. Our
latent representations, on the other hand, encode the property of equivalence modulo orientation with
respect to actions, described in Section 4.3. This enables our method to generalize representations of
some samples of training experience to other parts of the state and goal spaces, which have not been
encountered during training. As a result, the IDM learns to predict actions for states and goals it has
never encountered before, if they have the same latent representation as those seen during training,
thus boosting performance while remaining sample-efficient.

Why does LR show qualitatively better results than VGCP? VGCP is trained as a function
of the state and goal space, and produces the action that the agent should take in order to reach
the goal. The agent is rewarded for moving towards the goal, keeping control and contact costs
minimal. There is no constraint on the type of motion exhibited by the agent, or the time taken by
the agent to reach the goal. As a result, we see in Fig. 7 that the agent trained using VGCP walks
very slowly throughout both episodes, and follows a non-optimal path to navigate through 3 out of
the 4 waypoints. Due to its slow speed, it is unable to reach the last waypoint. The LR agent, on
the other hand, learns an IDM from samples collected while training on the locomotion task. Since
the locomotion reward encourages walking forward while also keeping control and contact costs
minimal, the LR agent always walks forward facing each waypoint, and follows a smooth trajectory
through all the waypoints, validating the superior performance of our IDM. We see that though the
LR and VGCP agents are initialized in the same orientation, the VGCP agent walks with its back
facing the waypoints, while the LR agent successfully adopts the optimal path and navigates through
all waypoints adopting a “natural” walking style.

Why does HER not perform as well as other baselines? If we revisit the motivation behind the
HER algorithm, we realize that it shows superior performance using fewer training samples over
environments that have low-dimensional state and action spaces, and a sparse reward setting. In
our case, we are dealing with high-dimensional locomotion agents that require specific actions to
walk, and navigate to the goal. If we use the sparse reward setting, most samples in the replay buffer
consist of failures, as the agent first needs to learn to walk, after which it can successfully navigate
to the goal. Even with the dense reward setting, there is no significant improvement in performance
because of this reason. HER performs very well on low-dimensional sparse-reward environments
but it is difficult to extend this behaviour to higher dimensions or dense rewards, especially where
complex locomotion skills have to be learned in order to navigate to the goal.

How important is the latent representation dimension k in achieving good performance? The
dimension of the latent representation k is perhaps the most important hyperparameter that deter-
mines the performance of LR. Choosing a bad value of k could result in information loss if k di-
mensions are not sufficient to encode the relevant information for producing the action, or irrelevant
information being encoded if k is too high. In our experiments, we use k = 10 for Ant and Minitaur,
and k = 50 for Humanoid. We show the impact of k on performance in the Ant environment in Fig.
9. We see that performance improves as we keep reducing the dimension up until k = 10. As we try
to reduce further, performance suddenly drops, implying loss of information. Thus, the Ant’s 111-D
state and 3-D goal are reduced to a 10-D representation that is used by the IDM to produce actions
to navigate to the goal.

14

Under review as a conference paper at ICLR 2020

Figure 8: Qualitative comparison between different algorithms at test time for Ant.

Figure 9: Impact of latent representation k on performance for the Ant environment

15

	Introduction
	Related Work
	Preliminaries
	Learning Generalized Inverse Dynamics
	Initial Training and Collecting Experience
	Learning the Inverse Dynamics Model
	Collecting Generalized Experiences
	Learning Latent Representations

	Experiments
	Baselines
	Ablation Experiments
	Navigating through a Series of Waypoints

	Results
	Analyzing Overall Performance
	Distribution of Test Samples

	Conclusion
	Appendix
	Experimental Setup
	Environments
	Training Details
	Test Setting

	Additional Analysis of Results

