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ABSTRACT

Deep Learning (DL) algorithms based on Generative Adversarial Network (GAN)
have demonstrated great potentials in computer vision tasks such as image restora-
tion. Despite the rapid development of image restoration algorithms using DL
and GANSs, image restoration for specific scenarios, such as medical image en-
hancement and super-resolved identity recognition, are still facing challenges.
How to ensure visually realistic restoration while avoiding hallucination or mode-
collapse? How to make sure the visually plausible results do not contain halluci-
nated features jeopardizing downstream tasks such as pathology identification and
subject identification? Here we propose to resolve these challenges by coupling
the GAN based image restoration framework with another task-specific network.
With medical imaging restoration as an example, the proposed model conducts
additional pathology recognition/classification task to ensure the preservation of
detailed structures that are important to this task. Validated on multiple medi-
cal datasets, we demonstrate the proposed method leads to improved deep learn-
ing based image restoration while preserving the detailed structure and diagnostic
features. Additionally, the trained task network show potentials to achieve super-
human level performance in identifying pathology and diagnosis. Further valida-
tion on super-resolved face identity recognition tasks also show that the proposed
method can be generalized for diverse image restoration tasks.

1 INTRODUCTION

Image restoration is an essential computer vision task and a widely applied technique. Recently
there are increasing interests and significant progresses in this area enabling more realistic image
super-resolution Dong et al.|(2014); Ledig et al.| (2016); [Lim et al.| (2017); Bulat et al.| (2018)); Zhao
et al.| (2018));|Yuan12 et al.[(2018)), in-painting Xie et al.|(2012)); Yeh et al.|(2017); |Yang et al.|(2017);
Ulyanov et al.|(2017)) and denoising |Xie et al.|(2012); Zhang et al.[(2017bja)). With the development
of image restoration technologies, various applications can be applied in different verticals to reach
the unfulfilled needs.

Among all the image restoration applications, restoration in medical imaging is one of the most
challenging tasks. Image restoration in medical imaging is important and attractive, since it enables
imaging in more desirable conditions, e.g. imaging with faster protocols |Pruessmann et al.| (1999),
cheaper devices and lower radiation Naidich et al.| (1990), etc. However, medical image restora-
tion requires a tougher evaluation than restoring natural images. It does not only require sharper and
visually realistic restoration, but also requires accurate image completion without altering any patho-
logical features or affecting any diagnostic qualities/properties. Therefore medical image restoration
can be a benchmark task for related image restoration techniques.

Within this decade, image restoration technique has been rapidly growing by incorporating various
prior information into solving the ill-posed inverse imaging task. The prior information evolves
from using sparse representation assumption Mairal et al.|(2008)), enforcing low-rank analysis|Dong
et al. (2013)) to more recently using deep learning based priors |Wang et al.|(2015) or models Zhang
& Zuo|(2017). However there are still several challenges and limitations for existing algorithms:

1) Pixel-wise losses for deep learning do not consider non-local structural information which leads
to blurred and not visually plausible restoration |Ledig et al.| (2016).
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2) Generative Adversarial Network (GAN) |Goodfellow et al.| (2014) based methods significantly
improve the results to generate visually realistic restoration |Ledig et al.|(2016). However GANSs en-
sure the consistency to a learned distribution but do not necessarily guarantee the visually plausible
solution exactly matches the corresponding ground truth.

3) It is still possible that hallucination or mode-collapses may happen while minimizing loss function
designed in improved GAN frameworks (Goodfellow| (2016), |/Arjovsky et al.|(2017).

4) The discriminator network regularizes on general image distribution and visual quality , but it
does not consider what are the key characteristic features such as pathologies, contrasts and image
identification that the model needs to preserve for restoring an image.

These challenges are critical for vertical applications such as medical imaging and surveillance
where not only the visual property but also the fidelity of the recovered details matters for key
purposes of pathology or recognizing faces.

To solve the problems and challenges for realistic and accurate image restoration, we propose the
task-GAN which extends GAN based image restoration framework and includes 3 networks: a
Generator, a Discriminator and a Task-specific Network. The new task-specific network predicts the
pathology recognition or face identity from both the ground truth images and the restored images. It
helps to regularize the training of generator and complement the adversarial loss of GAN to ensure
the output images better approximate the ground truth images. Task-GAN both achieves realistic
visual quality and preserves the important task-specific features/properties, which are related to the
end goal for medical imaging restoration and super-resolution face restoration.

The contribution of this work are:

e We propose a Task Generative Adversarial Network framework (Task-GAN) to ensure both
visually plausible and more accurate (medical/face) image restoration.

e A Task Network and a task-driven loss are introduced to ensure the preservation of visual
details important to the downstream tasks, and more importantly it regularizes the image
restoration to be more accurate both quantitatively and qualitatively.

e The method is validated on two in-vivo clinical medical imaging datasets across different
modalities, including Magnetic Resonance Imaging (MRI) and Positron Emission Tomog-
raphy (PET). Additionally, the generalization of the proposed method is further evaluated
on a super-resolution face restoration dataset.

e Both quantitative and qualitative evaluations were conducted, including rigorous evaluation
by human experts (radiologists) to ensure the image restoration quality and preservation of
important visual features.

e Results demonstrate the superiority of the proposed method in image restoration and also
show the potential of applying the trained task network for super-human level automatic
classification/diagnosis.

e Theory behind the method is further discussed. More justification on how the proposed
method improves GAN to approximate one-to-one mapping.The way of how the proposed
Task-GAN improves the image restoration may lead to better model design for other appli-
cations.

2 RELATED WORKS

2.1 IMAGE RESTORATION

Image restoration, such as image super-resolutionLedig et al.| (2016), denoising Xie et al.| (2012)
and in-painting [Pathak et al.| (2016) etc., has been rapidly developed and widely applied in various
applications. For medical imaging application, the restoration task is often an image de-aliasing
task Mardani et al.| (2017)) to reduce artifacts, or denoising task Manjon et al. (2008) to mitigate the
reduced SNR due to low radiation energy or low photon counts.

Conventionally, denoising tasks are conducted by using block matchingMahmoudi & Sapiro|(2005)
and/or sparse coding|Dabov et al.| (2009) with the assumptions that natural images generally can be
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represented using low-rank and sparse signal models, such that improved SNR can be achieved by
enforcing the relationship when solving in a block-based approach.

Recently, deep learning further advances the image restoration capability by learning the nonlin-
ear mapping either locally or globally and recover the high quality image information [Burger et al.
(2012). Deep Neural Network (DNN) models (such as MLP) as well as the convolutional neural net-
work (CNN) models (such as SRCNNDong et al.[(2014), DCNN [Xu et al.| (2014)) show superiority
to learn sparse presentation and are much more efficient than optimization based tools in denois-
ing, deblurring and super-resolution applications. Pre-trained network and perceptual loss Johnson
et al|(2016) have also been used to improve the cost-function design considering perception based
similarities.

For medical image restoration, variable methods based on Deep Learning have also been proposed
recently. For example, on MRI reconstruction, which restores image from aliasing inputs, deep
learning models and GAN based models Mardani et al.| (2017)) are used to ensure reconstruction
quality. Deep learning approaches are shown to outperform conventional sparsity-regularized opti-
mization (Compressed Sensing Lustig et al.| (2007) etc.) based methods, generating more accurate
and sharper reconstruction. Similar methods have also shown the potential to restore image from
low SNR for low-dose Computer Tomography (CT) Kang et al.|(2017) or low-dose Positron Emis-
sion Tomography (PET) Xiang et al.|(2017) images that are acquired with reduced radiation dose.
Deep learning methods using multi-scale CNNs show significant improvements to enable low-dose
PET (usually at around 25% radiation dosage compared to standard-dose).

2.2 GENERATIVE ADVERSARIAL NETWORK

Generative Adversarial Networks (GAN) Goodfellow et al.| (2014) have achieved significant
improvements in many tasks such as image generation, image translation and image restoration.
GAN also plays a game-changer role for image restoration tasks by generating sharper and realistic
restoration |Ledig et al.| (2016 [sola et al.| (2016).

The main idea of using GAN for image restoration is to regularize the training with an adversarial
loss function. This forces the generated images to follow a learned distribution so that they are indis-
tinguishable from ground truth images. By training the Generator network GG and the Discriminator
Network D together, G learns the non-linear mapping to restore image quality, while D, challenged
by G, tries to distinguish whether the inputs are from ground truth images or restored images. The
adversarial training approach in a way ensures realistic image quality and sharper details.

One of the challenges for applying GAN in image restoration is to reduce hallucination and mode-
collapse |Goodfellow| (2016). Various improvements in better conditioning, cost functions |Arjovsky
et al.| (2017) and model structures have been proposed to more accurately approximate the one-to-
one mapping and further improve the robustness of the adversarial training.

Improving GAN with multiple networks is proposed in this work. In general, multiple networks
are trained to discriminate different information instead of using a single discriminator network to
learn a single information. Related but different ideas have been used in learning multiple networks
to improve GAN.

For example in Generative Multi-Adversarial Network model Durugkar et al.| (2016), multiple net-
works are introduced to change the role from a formidable adversary to a forgiving teacher and
improve the robustness to mode-collapse. Coupled Generative Adversarial Networks model [Liu &
Tuzel| (2016) generates outputs in multiple domains and learns multiple discriminators for better
results in several joint distribution learning tasks. Multi-Agent Diverse Generative Adversarial Net-
works model (Ghosh et al.| (2017)) forces the discriminator to identify multiple generators to improve
high quality and diverse generation.

Another idea related to the proposed method is to incorporate additional information in adversarial
training. Works on InfoGAN |Chen et al.| (2016) have shown incorporating information can learn
interpretable representations and better generation. Related idea is also applied in method such as
Training Using Privileged Information (TUPI) [Vapnik & Vashist (2009), which shows significant
improvements to SVM as well as Network training. Additional label information provided by added
classifier is also proved to be useful in both image synthesigBazraftkan & Corcoran|(2018)) and semi-
supervised generationLi et al.|(2017)).
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3 PROPOSED METHOD: TASK-GAN

3.1 DESIGNS

Here we propose the Task-GAN that extends the GAN based image restoration framework [sola et al.
(2016). The goal of Task-GAN is to predict the image restoration of images X from the corrupted
measurements X . In addition, we incorporate further information Y in the learning, which is one
or a set of properties of X and important to preserve in the image restoration tasks. For example,
the property can be the characteristics or identification information for face image restoration or
pathology in medical imaging, which are used as examples in this work.

In general, there are three different networks that are optimized in the training.

Discriminator

___Pixel-wise supervision
\ (1,0)
X

' mp s
Task-Discriminator

Y Generator
T

Task-driven supervision

~

Figure 1: Formulations and flowchart for Task-GAN

Firstly, a Generator network G, learns the non-linear mapping from inputs X to restoration images
X, which conducts the major image restoration task. This task is supervised with pixel-wise L; cost

function, which has been shown outperform conventional L5 cost function in image restoration tasks
Isola et al.|(2016).

Secondly, a Discriminator network D, similar to other adversarial training for GAN, is used to dis-
tinguish in the adversarial way to ensure X is consistent with the distribution of X. A classification

task is conducted by D to learn D(X) =1 and D(X) = D(G(X)) = 0.

Lastly, a Task network 7' is generalized in the multiple image restoration settings. The Task net-

work tries to predict the set of property of X, such that it favors 7(X) = Y and T(X) = Y.
For a binary case as in pathology recognition example in this work, Y € (0, 1), representing if
there is pathology in the image. Other variant could include classifier for multi-label restoration or
segmentation network .

3.2 FORMULATION

Figure [T] shows the overall framework of the Task-GAN architecture for image restoration. For a
single sample consisting of a image = with its property y, we fed the corresponding corrupted image
Z with the random noise z to the generator which outputs restored image z. The weights of three
networks are optimized based on multiple cost functions across multiple tasks:

1) To approximate the image content in = from generator (G, we used a pixel-level supervision with

Ly loss between x and & = G(&).
Lpizel = E(2.5)~paata(e.2).zp-(2) | G(Z,2) = 2]y (1

2) To stabilize the training process and to challenge the conventional Discriminator Network D
which recognizes whether the input is ground truth image x or restored version & = G(Z), we
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| Restoration Dataset | Subjects | Images | Task | Task-specific Features Learned |
1% low-dose PET 40 ~ 3,600 | Pathology | Diagnostic features for Alzheimer’s Disease
Multi-contrast MRI 67 ~ 10,318 | Contrast Non-local features for MR image contrasts
Face Images (LFW-a) 5700 ~ 13,000 | Identity Facial features for identity recognition

Table 1: Datasets information

used the feature matching adversarial loss Salimans et al.| (2016). f(x) denote activations on an
intermediate layer of the discriminator.

LaaN = || Eompiora@) F () = B mpuaia(@),2~p- () F (G(F:2)) 2

3) To teach the Task network 7' to recognize the property y from image x, and more importantly to
ensure that the recognizable features are still preserved in Z, we use a regression loss for this task.

Liask = (a2 p)mpuara (@.5.9).2~p- () (T(G(E, 2)) — y)* + (T(x) — y)? (3)
3.3 FINAL OBJECTIVE FUNCTION FOR TRAINING TASK-GAN

In summary, the optimization task consists of 3 parts: pixel-wise loss using L cost, Adversarial
loss using feature matching GAN cost and Task loss with regression cost. And the weights from
tree networks are optimized to minimize the mixed loss function combining Generator Network G,
Discriminator Network D and Task-specific Network T, for each supervised sample (x, Z, y)

L(G,D,T) = Lpizet(G, X, X)+
Mean (G, D, X, X)+
(1 Lsask (T, X, X, Y) ©))

To apply the trained model for image restoration, we pass  through the trained Generator network
and the restored Z is outputted with the model weights to minimize the mixed loss function.

3.4 IMPLEMENTATION DETAILS

We adapted our generator and discriminator architectures from [Isola et al.,| (2016). Task-specific
network has the Res-Net structure He et al.| (2016) and is slightly different in the structures and
training schemes. More implementation details can be found in the appendix.

4 EXPERIMENTS

4.1 DATASETS

The main information of the datasets used is summarized in table[l]

Ultra-low-dose Amyloid PET datasets

To evaluate the performance of the proposed method on low-quality medical image restoration, we
generated supervised 1% low-dose/standard-dose PET image pairs. Our proposed method was ex-
pected to generate high quality synthesized standard-dose PET from 1% low-dose degraded PET
images, while preserving pathological features of the Amyloid status (positive or negative) related
to the diagnosis of Alzheimer’s Disease. 40 subjects were recruited for the study, among which
10 subjects were Amyloid status positive and the other 30 were negative. Datasets were acquired
on an integrated PET/MR scanner with time-of-flight capabilities (SIGNA PET/MR, GE health-
care). 330 £ 30 MBq of the Amyloid radiotracer (18F-florbetaben) was injected into the subject (as
standard-dose) and the PET data was acquired simultaneously 90-110 minutes after injection. The
raw list-mode PET data was randomly undersampled by a factor of 100 and then reconstructed as
the low-dose PET.
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Multi-contrast MR datasets

To validate the generality of the proposed method on different modality of medical image restora-
tion, we conducted experiments on magnetic resonance(MR) datasets. In this setting, we tried to
synthesize high quality multi-contrast MR neuroimaging from the multi-acquisition input [Hagi-
wara et al.[ (2017) while preserving the contrast-specific features. The proposed method is aimed
to not only generate visually plausible MR images but also preserve the contrast that required for
the diagnosis of neurological diseases. 67 cases were included in our datasets. Among them 44
are patients and 23 are healthy controls. Each subjects were scanned with 6 conventional MR se-
quences(T1w, T1-FLAIR, T2w, T2-FLAIR, STIR and PDw) as the ground truth and Multi-Dynamic
Multi-Echoes(MDME) sequence as the input.

Labeled Faces in the Wild-a (LFW-a)

To further verify the performance of the proposed method on tasks other than medical image restora-
tion, we adapted it to super-resolution identity-preserving face reconstruction. LFW-a consists of
faces captured in an uncontrolled setting with several poses, lightings and expressions. The im-
ages were filtered with a Gaussian blur followed 8 times downsampling. Then they were resized to
original size by bicubic interpolation as the low-resolution images. We followed the training and
test splits as indicated in the LFW development benchmark, which contains a set of image pairs for
identity verification task. 1000 images pairs of 500 matched and 500 mismatched pairs for testing
verification.

4.2 RESULTS
4.2.1 QUANTITATIVE RESULTS

Both quantitative and qualitative evaluation were conducted for all the experiments to demonstrate
the improvements on image restoration for medical image and natural image applications. Results
demonstrate the superiority of the proposed method over the comparable original GAN based so-
Iution with improvements in supervised image restoration accuracy as well as the accuracy of the
downstream identification tasks of pathology, contrasts and face identity.

Medical image datasets

The quantitative results on image quality are shown in table 2] We evaluated the synthesized
image quality by peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean
square error (RMSE). As shown in the table, for ultra-low-dose PET datasets, the proposed method
significantly outperforms the GAN without the task network by 1.50 dB in PSNR, 8.38% in SSIM,
and 3.21% in RMSE. Improved restoration is also visible on the Multi-contrast MR datasets. The
table shows the results for the most remarkably improved contrast T1 sequence, achieving the
improvement of 3.88 dB in PSNR, 10.22% in SSIM, and 36.2% in RMSE. More results on different
contrasts can be found in the appendix.

For the ultra-low-dose PET datasets, we also conducted experiments to evaluate the performance
of maintaining the pathological features by comparing the error rate of both the Amyloid status
network (the task-specific network) and radiologists. We considered the Amyloid reading results
on the standard-dose images by two expert radiologists as the ground truth status. They were also
asked to read 10 testing datasets based on the synthesized images (volumes) by GAN and task-GAN
separately. Amyloid status network’s performance was evaluated slice-wise based on the middle
40 slices in each volume by the mean absolute error (MAE). As shown in table (3| radiologists’
error rate decreased by 42.8% based on the synthesized images by task-GAN, comparing to the
synthesized images by GAN. The Amyloid status network trained ensure consistently super-human
level accuracy (no-error) of classification for both standard quality images and low quality images.
In addition, the MAE is reduced by 7.4% for the synthesized images using the proposed task-GAN.
These results demonstrate that adding the task-specific network can not only improve quality, but
also can preserve more task-specific pathological features and potentially enable super-human
level diagnosis for applications like Alzheimer Disease.

Natural image dataset

The extended experiment on super-resolution face restoration can also verify the similar conclusion
as in medical image restoration. Apart from the improved image quality metrics of PSNR and
SSIM shown in |2} we also evaluate the proposed method by face identity verification. One widely
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Method Ultra-low-dose PET [ Multi-contrast MR (T1) | LFW-a
PSNR | SSIM [ RMSE [ PSNR [ SSIM [ RMSE | PSNR | SSIM [ RMSE
Input 2241 | 0.864 | 0.304 N/A N/A N/A 22.52 | 0.679 | 0.168
GAN without Task-net | 28.49 | 0.945 | 0.156 | 25.68 | 0.812 | 0.052 | 27.53 | 0.800 | 0.096
Task-GAN 2999 | 0953 | 0.151 | 29.56 | 0.895 | 0.033 | 28.10 | 0.812 | 0.097
Table 2: Image quality metrics on the ultra-low-dose Amyloid PET datasets, Multi-contrast MR
datasets (T1 sequence), and LFW-a datasets, with the comparison of the GAN without and with the
proposed task-GAN feature.

. . standard-dose Synthesized images | Synthesized images
Classification Performance ground truth images by GAN by task-GAN
Human Experts (radiologists) 0 (ground truth) 0.35 (7/20) 0.20 (2/10)
Amyloid Status Network (MAE) 0.139 0.135 0.125
Amyloid Status Network (Error Rate) 0 (0/10) 0 (0/10) 0 (0/10)

Table 3: Radiologists and Task-net’s performance (Amyloid status) on standard-dose ground truth
images, synthesized images by GAN, and synthesized images by task-GAN. Radiologist’s patholog-
ical decision was based on the whole volume. The table shows the error rate over 2 radiologists’ 20
decisions on 10 testing datasets. Amyloid status network was slice-wise, whose accuracy is shown
in the table by the mean absolute error (MAE). The volume-wise decision was based on the middle
40 slices in each volume, which is shown in the bracket.

used benchmark [Parkhi et al.| (2015) for face recognition is extracting features from VGG-Face
and computing the Euclidean distance in the embedding space. For the 500 matched and 500
un-matched image pairs in LFW-a, we drew the receiver operating characteristic (ROC) curves in
figure 2(a)] The area under curve (AUC) of the synthesized images by the proposed method is
more than 1% higher than the GAN, which means the additional task-specific network can help to
preserve identity related features.

ROC

~ Low-resolution Plain GAN Task-GAN _ high-resolution

V. ¥ ¥
h

True Positive Rate

— low-resolution(area = 0.7616)
plain GAN(area = 0.9400)
— task-GAN(area = 0.9516)
— high-resolution(area = 0.9729)

0.0 0.2 0.4 0.6 0.8
False Positive Rate

Figure 2: (a) ROC curves for the face identity verification by high-resolution ground truth images,
low-resolution input images and synthesized images by GAN and task-GAN. (b) The specific com-
parative results by GAN and task-GAN. (c) More examples on LFW-a.
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4.2.2 QUALITATIVE RESULTS

Here we demonstrate the proposed method achieve significantly improved image restoration for
multiple datasets. For ultra-low-dose Amyloid PET datasets, a detailed comparison of the restored
image is shown in figure Radiologists are trained to make diagnosis of Amyloid status
positive/negative from the detailed activation pattern on cortex. Figure [3(2)}A and B are Amyloid
positive cases while C and D are Amyloid negative. GAN without Task-net blurred out some parts
of cortex in A, C and D, and generated some hallucinate uptake in B, while the proposed method
kept the original pathological structures better.

For multi-contrast MR datasets, one typical example is shown in[3(b)] GAN introduced the artificial
features like the grid, while the proposed model achieved better detail-restoration and sharpness.
Using task-GAN, the network can get information from contrasts whose quality is better, and store
the shared information in the encoded latent space. Also, task-GAN learns the style of different
contrasts, and add this additional regularization to the generator to ensure that right features were
matched.

For LFW-a datasets, figure [2(b)| shows a typical example where the proposed method kept more
fine-grained details in faces. Figure presents more images comparing the proposed method
with GAN’s results. As we can see, task-GAN achieved visually better results which have less
hallucinate structures and keep more realistic details that related to people’s identity.

5 DISCUSSION

Results on in-vivo medical imaging datasets demonstrate the superior performance of the proposed
algorithm on improved image restoration. The proposed task-GAN achieves this by coupling adver-
sarial training with the training of the task-specific network. Detailed contribution of the task-GAN
is explained in the figure ]

In comparison, the task of the image restoration is to learn a non-linear mapping from low-quality
images in the measurement domain to its corresponding high-quality images in a different high-
quality domain containing visually realistic images. Shown in figure in addition, the recogni-
tion of image is a space separation of features/labels along different dimensions that can be orthog-
onal to the quality dimensions.

In comparison, as is shown in figure[d(b)} conventional learning strategy learns the image restoration
task by regression, which may fail to generate realistic restoration. The learning is usually based on
the minimization of an averaged distance penalty which ensures robustness but lead to unrealistic
restoration such as blurring. Additionally, the averaged solution is also likely to be away from the
distribution of visually plausible solutions that falls out of the high-quality image space as is shown
in the figure.

GAN-based approach on one hand overcomes this by further enforcing an adversarial loss with
a Discriminator network which ensures to generate realistic restoration following the distribution
of the target high-quality images. As the figure |4(c)[ shows, the solution is no longer an simple
average but pushed into the space of visually realistic high-quality images. However, on the other
hand, the discriminator only regularizes the output samples to follow the distribution but ignores
the inter-sample relationship. For example, it cannot avoid hallucinations or mode-collapse, where
the restored images may be over-similar or undesirably add/remove important visual features. As is
shown in the figure, the restored image can have a different label as the ground-truth which fails the
purpose of image restoration. We can picture the hallucinations or mode-collapse as a “’shrinking”
of solution space.

To avoid the possible mode-collapse and ensure a 1-to-1 mapping, various improved GAN models
and cost functions have been proposed. For example, Cycle-GAN |Zhu et al.| (2017) incorporate
a cyclic relationship to improve the mapping. However, cyclic relationship does not necessarily
lead to exact mappings. The inter-sample relationship as well as the important feature labels can
be swapped while still satisfying the cyclic relationship. The illustrating image can be found in the
appendix. For example, in the figure, one task label is altered while the cyclic loss is not affected.
This may lead to mode-collapse, or specifically a failed image restoration leading to misclassified
pathology/normality for medical imaging applications. The consequences of the restoration errors
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Figure 3: Improved image restoration on (a) Amyloid PET datasets (A and B are Amyloid Positive,
C and D are Amyloid Negative) and (b) Multi-contrast MR datasets. Zoomed-in visualization and
the error show the pathological important features that are preserved by task-GAN but missing in
GAN.

can be huge for medical imaging applications since they can directly lead to mis-diagnosis or over-
diagnosis. We can picture the mislabeling or mode-collapse as a "twisting” of solution space. This
“twisting” maintains well within visually-plausible space, however severely changes the positioning
around the decision boundary of task-label space. More details of the reasoning and visualization
will be place in the appendix.

Differently, task-GAN here regularizes both the inter-sample relationship and the sample-label re-
lationship. As is shown in figure [f(d)] accurate mapping can be generated with the mixed loss
regularization:

1) pixel-level supervision so the restored image is closer to the ground truth,

2) Adversarial loss regularization so that the restored image is within the high-quality space consist-
ing of visually realistic images

3) the task-specific loss that ensure the restored image still preserve the important feature of interests,
aka the same labels. In other words, the combination regularization enforce the solution to fall
onto the intersection of the manifold preserving pixel-level similarity, distribution consistency and
important visual labels. In the view of inter-sample relationship, the task regularization stop the
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inter-sample relationship to any visual plausible but destructive “shrinking” or “twisting” around
the boundary of task-label space, which ensures more accurate mappings.

Conventional Methods minimizes averaged effects of distances (L1/L2

Visualization for Simultaneous Image Restoration and Classification tasks cost) Lead to unrealistic/blurred results
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Figure 4: How Task-GAN improves the mapping in image restoration.

6 CONCLUSION

In this paper, we proposed an improved design of GAN, Task-GAN, which includes a new task-
specific network and corresponding task-specific loss for training GAN based image restoration.
Task-GAN is demonstrated to boost the performance of image restoration while preserving impor-
tant features. Medical imaging applications are used as primary examples, which is one of the
most challenging restoration applications since it requires not only realistic restoration, but also
high-fidelity as well as accurate classification for subtle diagnostic features. Super-resolution face
restoration is used to show the proposed method generalize to natural image applications such as
super-resolving face images, where face identity need to be preserved.

The proposed method is demonstrated to achieve superior performance compared with GAN on both
image quality metrics and task-specific feature preservation (e.g. pathological features, face identity
features, etc.). Based on visual inspection from human experts (clinicians/radiologists), anatomical
and diagnostic features are preserved better and fewer artifacts are introduced. The trained task
network also shows potentials for super-human level diagnosis tasks.

Task-GAN further extends the regularization of adversarial training. The mixed loss balances be-
tween content similarity, distribution consistency and preserving important features for the given
tasks. It results in more accurate image restoration with better visual similarity and avoids mode-
collapse and hallucinations. Intuitively, task-GAN enforces the solution fall into proper manifold,
prevents any alternation (”shrinking” and “twisting”) of the restoration from the correct solution
space, and preserves both inter-sample relationship and feature-of-interest.

In the future, we will explore further improvements in the design of networks and task formulation.
The proposed technique is also valuable to other challenging restoration applications that require
realistic restoration and preserving distinguishable details for down-stream tasks.
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APPENDIX

Network structure

We adapted the same notation from [Isola et al| (2016). C}, represents a Convolution-BatchNorm-
ReLU layer with k filters and C' Dy, denotes a Convolution-BatchNorm-Dropout-ReLU layer with k
filters and 50% dropout rate. All Convolution and Deconvolution layers uses 4 x 4 kernels and 2 x 2
stride. The corresponding layers in the encoder and decoder has skip connections. The architecture
of the Generator is:

encoder: C64-C128-C256-C512-C512-C512-C512-C512

decoder: CD512-CD512-CD512-C512-C512-C256-C128-C64

Discriminator is a image-based classifier with the architecture of C64-C128-C256-C512-C512-
Cs12.

The Task-specific Network is slightly different between different tasks. For the ultra-low-dose
PET datasets, the Task Network is a ResNet18 (2016) pretrained on the ground truth
standard-dose images. For the high-resolution face restoration datasets, the Task Network is the
pretrained VGG-face model. [Parkhi et al. (2015).For the MR contrast-synthesis task, the Task
Network is a 6-layer patch-based classifier derived from the discriminator in (20716).

Training

All the computation works were done on an Ubuntu server with 4 NVIDIA Tesla V100 GPUs. The
proposed network is implemented in TensorFlow and Pytorch. The Adam optimizer is used with 8
chosen at 0.5 and a learning rate of 2 x 10~3. For MR contrast-synthesis, since great variance exists
in the target domain(different contrasts), to accelerate the training we adopt a three-step strategy.
First the Task Net is trained to learn the features of different labels. Second, only one label(contrast)
were trained per epoch, to fasten the convergence of the encoder. Lastly, images with different
labels were trained randomly.

Complementary Figures
Below is the complementary image for figure [4] illustrating how Cycle-GAN improves the image
restoration.

Advanced GAN models, such as Cycle-GAN, ensure a cyclic relationship
but does not guarantee the optimized one-to-one mapping is the desired
mapping function.

Label#1 Space One-to-one mapping
cannot exclude

undesired cycle-
Qiistent paired twist

Measured Low-quality Doimain

Label#2 Space

Figure 5: How Cycle-GAN improves the mapping in image restoration.
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