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ABSTRACT

The 3D-zoom operation is the positive translation of the camera in the Z-axis,
perpendicular to the image plane. In contrast, the optical zoom changes the focal
length and the digital zoom is used to enlarge a certain region of an image to the
original image size. In this paper, we are the first to formulate an unsupervised
3D-zoom learning problem where images with an arbitrary zoom factor can be
generated from a given single image. An unsupervised framework is convenient,
as it is a challenging task to obtain a 3D-zoom dataset of natural scenes due to
the need for special equipment to ensure camera movement is restricted to the Z-
axis. In addition, the objects in the scenes should not move when being captured,
which hinders the construction of a large dataset of outdoor scenes. We present
a novel unsupervised framework to learn how to generate arbitrarily 3D-zoomed
versions of a single image, not requiring a 3D-zoom ground truth, called the Deep
3D-Zoom Net. The Deep 3D-Zoom Net incorporates the following features: (i)
transfer learning from a pre-trained disparity estimation network via a back re-
projection reconstruction loss; (ii) a fully convolutional network architecture that
models depth-image-based rendering (DIBR), taking into account high-frequency
details without the need for estimating the intermediate disparity; and (iii) incor-
porating a discriminator network that acts as a no-reference penalty for unnaturally
rendered areas. Even though there is no baseline to fairly compare our results, our
method outperforms previous novel view synthesis research in terms of realistic
appearance on large camera baselines. We performed extensive experiments to
verify the effectiveness of our method on the KITTI and Cityscapes datasets.

1 INTRODUCTION

Novel view synthesis is the task of hallucinating an image seen from a different camera pose given a
single image or a set of input images. In natural images, this is a challenging task due to occlusions,
ambiguities, and complex 3D structures in the scene. In addition, the larger the baseline (relative
distance between input camera pose and target camera pose) the more challenging the problem be-
comes, as occlusions and ambiguities become dominant. New view synthesis finds applications in
robotics, image navigation, augmented reality, virtual reality, cinematography, and image stabiliza-
tion. There is a large body of literature that has studied the novel view synthesis problem for the
multiple input image scenario, in both classical and learning based approaches. On the other hand,
few works have tackled the problem of single input image novel view synthesis, which is a more
complex task, as the deep understanding of the underlying 3D structure of the scene is needed to
synthesize a new view. Finally, 3D-zoom is a subset of the novel view synthesis problem that has
not been studied separately as exemplified in Figure 1.

3D-zoom is the positive translation of the camera in the Z-axis as depicted in Figure 2. In contrast,
digital and optical zoom are close to a change in focal length and don’t require any knowledge about
the scene 3D geometry. Generating a 3D-zoom dataset with natural scene imagery is a challenging
task. Special devices would need to be used to ensure translation is restricted to the Z-axis. In
addition, moving objects would need to be masked or avoided as they would represent ambiguities
for the 3d-zoom model. Alternatively, some available driving datasets could be used by filtering
the sequences that move in a straight line. However, it does not guarantee camera pose changes
to be restricted to the Z-axis neither the absence of moving objects between captures in the scene.
For these reasons, we propose to learn 3D-zoom in an unsupervised fashion by utilizing a pre-
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Figure 1: Categorization of Deep Novel View Synthesis. Our problem belongs to the novel view
synthesis on a single image domain, and our pipeline is unsupervised.

Figure 2: Optical Zoom vs 3D zoom

trained disparity estimation network with transfer learning. Our 3D-Zoom Net is based on a fully
convolutional network architecture that learns the under-laying 3D structure of the scene without the
need of intermediate disparity as it is trained based on a novel back re-projection reconstruction cost
that enforces both 3D geometry and natural appearance. Additionally, we include an adversarial
network that acts as a no-reference measure that penalizes unnaturally rendered areas. Our proposed
model, Deep 3D-Zoom Net, can perform inference of naturally looking 3D-zoomed images very
fast. We show the efficacy of our proposed model in generating 3D-Zoomed images at various zoom
factors on the KITTI (Geiger et al., 2012; Menze & Geiger, 2015) and Cityscapes (Cordts et al.,
2016) datasets.

2 RELATED WORKS

Novel view synthesis has been well studied over the years. We could define two types of algorithms,
the multiple views, and the single view types. Multiple view algorithms are those that mainly rely
on the correspondences between multiple input views to render the final synthetic view. In contrast,
single image approaches rely on depth cues (textures, objects sizes, geometries, etc.) to model the
3D structure of the single image input and generate the novel view.

2.1 MULTIPLE INPUT VIEW SYNTHESIS

Classical approaches for novel view synthesis rely on optimization techniques to render the new
view. The method proposed by Chaurasia et al. (2013) over-segments the input image into super-
pixels to estimate depth via an optimization process. Super-pixels from multiple views are then
warped (guided by the corresponding depth value) and blended to generate the novel view. In con-
trast, in (Liu et al., 2009), instead of estimating the depth map, used an off-the-shelf structure from
motion algorithm to obtain the camera pose and fixed background points of a given video sequence
in combination with traditional optimization techniques to directly estimate the warping operation
for each input image. Woodford et al. (2007) simultaneously solved for color and depth in the new
view using a graph-cut-based optimizer for multi-label conditional random fields (CRFs).

Deep learning approaches. Even though classical approaches succeed in their context, their perfor-
mance is limited and proportional to the number of available input views. On the other hand, recent
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deep learning approaches have shown promising results for the novel view synthesis problem. The
early work on natural real-world datasets of Flynn et al. (2015) takes multiple inputs and works on
small patches to synthesize the target view. Their architecture, Deepstereo, divides the novel view
synthesis problem into two branches, (1) selection volume and (2) image color estimation branches.
The first performs image-based rendering (IBR) by learning how to blend the multiple input images.
The second branch corrects the color for the target pixels. Their approach is very slow (taking up
to seconds to perform inference). In the later work of Zhou et al. (2016), based on the assumption
that pixels in adjacent views are highly correlated, instead of estimating the view or the blending
operation directly, they learned the warping operation to copy pixels from the input view into the
new view. Their network is not fully convolutional and, whereas they showed good results on single
object case, their model performs poorly for full scene synthesis. Similar to the classical approaches,
the quality of the generated view in (Flynn et al., 2015) and (Zhou et al., 2016) is proportional to the
number of input images. On the other hand, Ji et al. (2017) proposed Deep View Morphing, which
receives two input images and estimates the intermediate view. This method first rectifies the pair,
then estimates correspondences and visibility masks. These correspondences are used to warp the
input images into the intermediate pose and the visibility masks are used to blend them together.
This work resembles the video frame interpolation work by Jiang et al. (2017). Similarly, the model
proposed by Zhou et al. (2018) takes two images as input and generates new views along and be-
yond the baseline, and in a similar way to (Flynn et al., 2015; Xie et al., 2016; Liu et al., 2018) a
multi-channel representation of the input image is learned, but instead of being a selection volume,
it is a multiplane image with corresponding alpha channels. This multiplane image can then be used
to synthesize multiple new views by applying planar transformations.

2.2 SINGLE INPUT VIEW SYNTHESIS

Classical approaches for single input view synthesis have shown very limited performance under
several assumptions. Horry et al. (1997) used depth priors from user input to model the scene 3D
information. Hoiem et al. (2005) proposed Photopop-up, which aims to statistically model geo-
metric classes defined by the scene’s objects’ orientations. By coarse labeling, they achieve decent
performance on large structures like landscapes or buildings but seriously fail on estimating the 3D
structure of thin and complex objects. The more recent work of Rematas et al. (2016) takes a single
image object and a 3D model prior. Their model learns how to align the 3D model with the input
view and estimates each output pixel in the novel view as a linear combination of the input pixels.
Performance is far from real-time and limited to the 3D models of single objects in the collection.

Deep learning approaches. Single image novel view synthesis has been greatly benefited by deep
learning approaches. The recent work of Liu et al. (2018) tried to solve the problem by incor-
porating four networks for the disparity, normals, selection volume estimation, and image refine-
ment, respectively. The predicted disparities and normals are combined with a super-pixel over-
segmentation mask like in (Chaurasia et al., 2013) to create a fixed number of homographies which
produce warped images from the monocular input. These images are blended together, weighted
by the estimated selection volume, which is also pre-warped by the corresponding homographies.
The disparity and normals network follow the UNET architecture, whereas the selection volume is
estimated from the up-scaling of deep features from an encoder-like architecture, similar to (Flynn
et al., 2015). In addition, the refinement network further improves the final result. In a subclass
of novel view generation algorithms, Deep3D (Xie et al., 2016) reduces the scope of novel view
synthesis to estimate the corresponding right view from a single left input image. Similar to (Flynn
et al., 2015; Liu et al., 2018), Deep3d produces a probabilistic disparity map to blend multiple left
and right shifted versions of the input left view to generate a fixed synthetic right view. Deep3D
limits itself to produce low-resolution probabilistic disparity maps due to its non-fully convolutional
architecture. By enforcing geometry constraints, CNNs can be trained to learn disparity in an unsu-
pervised fashion from stereo inputs by minimizing a reconstruction loss between a synthesized new
view and the input view. Godard et al. (2016) introduced a monocular disparity estimation network,
the Monodepth, where their left-right consistency loss term greatly improved performance. How-
ever, their network could not estimate a complete disparity map in a single pass. Gonzalez Bello &
Kim (2019) further improved the performance of unsupervised disparity learning architectures by
modeling ambiguities in the disparity maps and enabling full disparity estimations in a single pass,
even with almost one-third of numbers of parameters in comparison with (Godard et al., 2016). We
make use of their pre-trained models to train our 3D-zoom architectures.
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3D-zoom: Unsupervised single image close-up view synthesis. 3D-zoom is a subset of the single
image novel view synthesis, where the camera pose change is restricted to be in the Z-axis only.
Our novel work is the first to isolate and solve the 3D-zoom learning problem in an unsupervised
fashion. We are able to learn novel view synthesis by modeling 3D-zoom as a blending operation
between multiple up-scaled versions of a single input image. Our novel back re-projection recon-
struction loss facilitates learning the under-laying 3D structure of the scene while preserving the
natural appearance of the generated 3D-zoomed view, even while performing very fast inference.

2.3 3D-ZOOM

3D-zoom can be defined as the positive translation of the camera in the Z-axis. From the pinhole
camera model, the following basic trigonometric relationship can be obtained

tan θ =
xc
f

=
Xw

Zw
(1)

where θ is the angle measured from the principal axis to the camera plane coordinate, xc is the x
component of the camera plane coordinate, Xw is x component of the world coordinate, f is the
focal length, and Zw is the Z-axes component of the world coordinate. The projection in the camera
plane can be defined as

xc =
Xwf

Zw
(2)

where Zw or “depth” is inversely proportional to disparity “D” and directly proportional to the focal
length f and the separation between stereo cameras s, and is defined as

Zw =
sf

D
(3)

Therefore, the projection in the camera plane xc can be re-written as

xc =
XwD

s
(4)

We can generalize the projection for any camera setup by taking the proportionality and furthermore
by using a normalized disparity map Dn. This is defined as

xc ∝ XwDn (5)
Finally, any change in world coordinates ∆Xw (e.g. 3D-zoom) is projected into the camera plane
weighted by the normalized disparity map as

∆xc ∝ ∆XwDn (6)
This allows us to use the normalized disparity map to weight the zoom-in optical flow, which is a
critical step in our novel back re-projection reconstruction loss function. In other words, up-scaling
of objects/pixels in 3D-zoom is linearly proportional to their disparity values. If an object is closer
to the camera, it will have a larger disparity value, thus, leading to high up-scaling. Similarly, a
faraway object from the camera will have a low disparity, leading to small or no up-scaling.

3 METHOD

As demonstrated in the previous section, 3D-zoom can be understood as a 3D-geometry-dependant
up-scaling operation. Therefore, we model the synthesis problem as learning the blending operation
between multiple up-scaled versions of the single input image Ims. The blending operation consists
of an element-wise multiplication, denoted by �, between the n-th channel of the selection volume
Selection voln(·) and Inms, followed by a summation along the channel axis, defined as

Zin =

N∑
n=1

Inms � Selection voln(I, fin, fout) (7)

where Zin is the output 3D-zoomed image, I is the single image input, fin is the uniform zoom-in
optical flow, fout is the uniform zoom-out optical flow, N is the number of channels of the selection
volume, and Ims represents the multiple bilinear up-scaled versions of the input image from unity
(upscale ratio = 1) to the target zoom factor (upscale ratio = zoom factor). Ims, fin and fout
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Figure 3: Deep 3D-Zoom Net for inference. It consists of synthesis network, the refinement block
and the blending operation.

are defined in Equations 8, 9 and 10 respectively.

Inms = upscale(I, 1 +
n

N
(zoom factor − 1)) (8)

fin = (1− zoom factor)i grid (9)
fout = (1/zoom factor − 1)i grid (10)

where i grid is a uniform grid defined by i gridij = (i, j).

3.1 NETWORK ARCHITECTURE - DEEP 3D-ZOOM NET

Our proposed network architecture, which we call Deep3D − ZoomNet, is shown in Figure 3
and is composed by an auto-encoder synthesis network, a refinement block, and the final blending
operation. Our architecture takes a single image I , along with the uniform zoom-in and zoom-out
optical flows fin and fout as a concatenated input. The synthesis network extracts the under-laying
3D-structure from the single image and generates the selection logits, which are the precursors
of the selection volume. The selection logits are then bi-linearly expanded in a similar way to
{Inms} and fed into the refinement block which models the local relationships between the channels
of the selection logits after being expanded.As depicted in Figure 3, after the synthesis network,
each output channel is up-scaled from factor 0 to the target zoom factor correspondingly. As this
operation is discrete, we believe it is worth modeling local relationships among the pre selection
volume channels. The refinement block has the effect of reducing double edge artifacts as can be
observed by closely looking at Figure 8. Finally, a channel-wise softmax is applied to generate the
final selection volume. The selection volume is used to blend the multi-scale inputs {Inms} into the
final 3D-zoomed-in image Zin as described in Equation (7). In contrast with (Flynn et al., 2015) and
(Xie et al., 2016) we first apply the expansion operation to the selection logits and then the softmax
operation, instead of directly applying softmax on them. Also, in contrast with (Liu et al., 2018),
our refinement block works on the selection logits instead of the synthetic image. Modeling the
local relationships of the blending volume is essential under the absence of the 3D-zoomed ground
truth. In contrast with other novel view synthesis techniques like (Flynn et al., 2015; Xie et al.,
2016; Ji et al., 2017), which estimate a fixed novel view depending on the input views, our network
architecture allows for novel view generation with arbitrary zoom factors.

3.1.1 SYNTHESIS NETWORK

A UNET-like architecture is used to extract the underlying 3D structure from the single image input.
In general, auto-encoders are used as image transformation networks due to their very large receptive
field (as every down-scaling step doubles the receptive field). In particular, the U-NET adds the
skip connections which allow recovering fine details from the shallower encoder stages. Due to
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Figure 4: Fully convolutional synthesis network. Our synthesis network follows the UNET archi-
tecture with residual blocks.

Figure 5: Training strategy for Deep 3D-Zoom Net. The re-projection reconstruction loss is com-
puted between the zoomed-out re-projection and the input image. An adversarial loss is computed
over the network output.

these reasons, we use a U-NET type of architecture to perform 3D-zoom, as the network needs
a considerable amount of contextual information provided by the large receptive fields to reason
about close and far away objects. In addition, the network needs fine detail information to preserve
the edges of the objects in the output image, which can be obtained via the skip connections. We
designed the encoder part of our synthesis network inspired by the light encoder architecture of
Gonzalez Bello & Kim (2019), which contains only 3x3 convolutions and residual blocks. Our
fully convolutional synthesis network is depicted in Figure 4. Our synthesis network is fed with the
channel-wise concatenated single input view and optical flows. Strided convolutions followed by
residual blocks are used to downscale and extract relevant features trough seven stages. The decoder
part of our synthesis network combines local and global information by adopting skip connections
from the encoder part and performing nearest up-scaling plus 3x3conv and exponential linear unit
(ELU) until the target resolution is achieved. Note that our fully convolutional network allows for
high-resolution selection volumes, in contrast with (Flynn et al., 2015; Xie et al., 2016; Zhou et al.,
2016), where their fully connected layers fix the size of the input patch. The output of our synthesis
network constitutes the N channels of selection logits. We set N = 32 for all our experiments.

3.2 TRAINING STRATEGY

Due to the unsupervised nature of our problem, we have adopted a transfer learning strategy that
relies on a novel back re-projection reconstruction loss, that allows the network not only to learn
the underlying 3D structure but also to maintain a natural appearance. Figure 5 depicts our training
strategy. Given a single input image, a pre-trained disparity estimation network is used to estimate
monocular disparity during training, which, once normalized, can be used to generate a weighted
zoom-in optical flow by element-wise multiplication with the uniform zoom-in optical flow fin, as
defined in Equation (12) and depicted in Figure 5. We feed our network with the same monocular
input image and estimate a 3D-zoomed version Zin. By back re-projecting the estimated Zin image
into the input image via a backward warping operation g(·), we obtain a zoomed-out image Zout,
defined in Equation (11), that can be compared against the input image. The resulting error can then
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be minimized to end-to-end train our model.

Zout = g(Zin, fwin) (11)

fwin = fin �Dn (12)
whereDn = disp network(I)/max(disp network(I)), and disp network(·) is the output of the
disparity network from (Gonzalez Bello & Kim, 2019). As depicted in Figure 5, the g(·) is open not
capable of reconstructing the image borders Zout. We define a dis-occlusion mask that takes this
into account and lets the loss function to ignore those areas in cost calculations. The dis-occlusion
mask is defined as

disocc maskij =


0 if i+ finij �Dnij > W
0 if i+ finij �Dnij < 0
0 if j + finij �Dnij > H
0 if j + finij �Dnij < 0
1 o.w.

(13)

whereH andW are the input image height and width respectively. Applying the dis-occlusion mask
we get the complete zoom-out image Z̃out, which is given by

Z̃out = disocc mask � Zout + (1− disocc mask)� I (14)

3.2.1 RECONSTRUCTION LOSS

Our reconstruction loss is defined as a combination of two terms, appearance loss and perceptual
loss, as

lrec = 0.8lap + 0.2lp (15)

Appearance loss. The appearance loss enforces the image Z̃out to be similar to the input image I ,
and can be defined by the weighted sum of the l1 and ssim loss terms (a weight of α = 0.85 was
used) as

lap = α||I − Z̃out||1 + (1− α)SSIM(I, Z̃out) (16)
Perceptual loss. Perceptual loss (Johnson et al., 2016) is ideal to penalize deformations, textures
and lack of sharpness. Three layers, denoted as φl, from the pre-trained V GG19 (Simonyan &
Zisserman, 2014) (relu1 2, relu2 2, relu3 4) were used as follows:

lp =

3∑
l=1

||φl(I)− φl(Z̃out)||1 (17)

3.2.2 ADVERSARIAL LOSS

In addition to not counting on a 3D-zoomed ground truth (GT), the disparity map, needed for training
only, is not perfect as it is obtained from a pre-trained network. To mitigate this issue, we incorporate
a discriminator network that acts as a no-reference penalty function for unnaturally rendered areas.
Our discriminator network is depicted in Figure 9-(a). It consists of four stages of strided Conv-BN-
LReLU-Conv-BN-LReLU (BN: batch norm, LReLU: leaky relu) through which the single image
input is down-scaled from 256x256 to 16x16, where the final activation function is not leaky ReLU
but sigmoid. Since the 3D-zoom ground truth is not available, our networks cannot be trained on
the recent WGANGP (Gulrajani et al., 2017) configuration, as the gradient penalty term in it could
not be estimated. Instead, the traditional patch-GAN training technique was used with the mean
square error (MSE) loss. Our novel back re-projection reconstruction loss with an adversarial loss
is defined as

lrec = 0.8lap + 0.2lp + 0.02ld (18)
where ld is the adversarial loss, lap is the appearance loss, and lp is the perceptual loss. While
the generator network, Deep 3D-Zoom Net, is trained to minimize the probability of the generated
image to be classified as fake, the discriminator is trained to correctly classify real and fake images.
This can be formulated as minimizing

lD = mse(D(Zin),0) +mse(D(I),1) (19)

whereD indicates the discriminator network and lD indicates the discriminator loss. The real images
are sampled from the inputs to the Deep 3D-Zoom Net, and the fake images sampled from the Deep
3D-Zoom Net outputs.
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Figure 6: Results on KITTI2012 / NIQE for sampled images (top, bottom) and subjective compar-
ison with the results showed in (Liu et al., 2018) for visual quality only. In terms of natural image
generation, our Deep 3D-Zoom Net outperforms geometric-aware networks with no visible artifacts
for the equivalent zoom factors (1.6 top, 2.4 bottom). Note ground truth is just for reference, and
was not used to train our model.

4 RESULTS

We perform extensive experiments to verify the effectiveness of our proposed model and training
strategy on the KITTI2015 (Menze & Geiger, 2015) dataset which contains 200 binocular frames
and sparse disparity ground truth obtained from velodyne laser scanners and CAD models. An
ablation study is performed by training and testing our networks with and without the refinement
block, perceptual loss, and adversarial loss to prove the efficacy of each of them. Additionally, we
test our Deep 3D-Zoom Net on the Cityscapes (Cordts et al., 2016) dataset, a higher resolution urban
scene dataset, to demonstrate it can generalize to previously unseen scenes.

4.1 IMPLEMENTATION DETAILS

We used the Adam (Kingma & Ba, 2014) optimizer with the recommended betas for image synthesis
(beta1 = 0.5 and beta2 = 0.9). Our models were trained for 50 epochs with an initial learning rate of
0.0001 for the generator, and 0.00001 for the discriminator. The mini-batch size was set to 8 images.
The learning rate was halved at epochs 30 and 40. The following data augmentations on-the-fly were
performed: random crop (256x256), random horizontal flips, random gamma, brightness and color
shifts. All models were trained on the KITTI split (Godard et al., 2016), which consists of 29,000
stereo pairs spanning 33 scenes from the KITTI2012 dataset (Geiger et al., 2012). As can be seen in
Figure 5, the dis-occlusion area grows along with the zoom factor, and this limits the effective area
to train the network. Therefore, to properly train the network on higher zoom factors, we need to
train the model on large zoom factors more often than small zoom factors. To achieve this, the zoom
factor for each image in the mini-batch is randomly sampled from a left-folded normal distribution
with µ = max zoom factor and σ = 1 to ensure larger zoom factors are trained more often. We
set the max zoom factor = 3 for all our experiments.

4.2 KITTI

We loosely compare our results with the results presented in (Liu et al., 2018), whenever their camera
motion was mostly positive in the Z-axis, with the objective of comparing how natural the generated
images look. As depicted in Figure 6 our method generates considerably better natural images, with
few or no artifacts. The equivalent zoom factor used in each image generated by our method is 1.6
for the top row, and 2.4 for the bottom row. Our Deep 3D-Zoom Net performs very fast inference
on a 1225x370 image in 0.01 seconds on a Titan Xp GPU.

4.2.1 ABLATION STUDIES

We performed ablation studies to prove that the refinement block, the perceptual loss, and the ad-
versarial loss contribute to improving the final quality of the generated image. As depicted by the
qualitative results in Figure 8, each part of our full pipeline improves the overall result. We measure
the performance of our networks on the Kitty2015 dataset by using the no-reference Natural Image
Quality Evaluator (NIQE) metric (Mittal et al., 2013). The average values for the 200 frames in the
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Figure 7: Model performance on Cityscapes dataset. Images generated with different zoom factors
showing our network performs well even on unseen scenes. Forward warping, guided by disparity
estimation from (Gonzalez Bello & Kim, 2019), produces blurred, occluded, and deformed results.
Digital zoom based on linear interpolation produces uniformly up-scaled images, thus not account-
ing for 3D geometry.

Figure 8: Results from ablation studies / NIQE score. A progressive improvement in terms of
structure and sharpness can be appreciated from our model trained without perceptual loss to our
model trained with perceptual loss and refinement block.

Figure 9: (a) Our fully convolutional patch discriminator network. (b) Adversarial learning ablation
study. From top to bottom, input images, Deep 3D-Zoom Net with GAN, and Deep 3D-Zoom Net
w/o GAN. The adversarial loss helps by reducing ghosting artifacts as can be appreciated in the
power generator (right) and car boot (left).
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KITTI2015 dataset for 1.5, 2.0 and 2.5 zoom factors are presented in Figure 8, where the lower value
is better. As depicted in Figure 8, the most significant change in quality comes with the perceptual
loss, as can be seen in the textured areas of the image (e.g. threes and van logos). Figure 9-(b) shows
the benefits of utilizing the adversarial loss. The adversarial loss reduces the ghosting artifacts and
extraneous deformations, as they rarely appear in natural images. By utilizing our GAN setting, the
mean NIQE score falls from 2.99 to 2.86, demonstrating the effectiveness of the adversarial loss.

4.3 CITYSCAPES

To prove our model can generalize well to other outdoor datasets, we validate our final model on the
challenging Cityscapes dataset. As displayed in Figure 7 our model shows excellent generalization
to the previously unseen data. In addition, we display equivalent results for forward-warping (based
on the monocular disparity estimation from (Gonzalez Bello & Kim, 2019)), and digital zoom.
Forward warping generates blurred and heavily deformed 3D-zoomed-in images, whereas optical
zoom simply does not provide a 3D sensation, as every pixel is up-scaled uniformly. In contrast, our
Deep 3D-Zoom Net generates natural-looking 3D-zoomed images.

5 CONCLUSIONS

We formulated a new image synthesis problem, by constraining it to positive translations in the
Z-axis, which we call 3D-zoom, and presented an unsupervised learning solution, called the Deep
3D-Zoom Net. We demonstrated that 3D-zoom can be learned in an unsupervised fashion, by (i)
modeling the image synthesis as a blending operation between multiple up-scaled versions of the
input image, (ii) by minimizing a novel back re-projection reconstruction loss that facilitates transfer
learning from a pre-trained disparity estimation network and accounts for 3D structure and appear-
ance, and (iii) incorporating an adversarial loss to reduce unnaturally synthesized areas. Our Deep
3D-Zoom Net produces naturally looking images for both the KITTI and Cityscapes dataset, estab-
lishing a state-of-the-art solution for this class of single image novel view synthesis problem. We
believe our Deep 3D-Zoom Net can be used as a tool for cinematography and user 3D-visualization
of 2D images. Our work could also be extended for virtual and augmented reality, and even in
glasses-free 3D displays as having arbitrary 3D zoomed versions of the input image generates a 3D
sensation.
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A APPENDIX

We show additional results for the KITTI and Cityscapes datasets. In addition, selection volume
activation maps are shown for a given input image and a zoom factor. Additional comparisons with
plain forward warping and digital zoom are depicted in Section A-2.

A.1 ADDITIONAL RESULTS ON THE KITTI DATASET

Additional results for the KITTI2012 dataset are presented in Figure 10. A frame at time ’t’ was
selected as the input to our Deep 3D-Zoom Net. Different zoom factors were selected to subjectively
match the appearance of the respective ’t+1’ frame, where the camera movement between the t and
t+ 1 images is mainly in the Z-axis. As depicted in Figure 10, our unsupervised method generates
photo-realistic 3D-zoomed images.

A.1.1 SELECTION MAP ACTIVATION

The activation map of the 32 channels of the selection volume is depicted in Figure 11 for a given
input image and zoom factor = 2.0. The selection volume, as depicted in red color in Figure 3
of the main paper, is used to weight the multiple up-scaled versions of the input in the blending
operation, as defined in Equation 7 of our main paper. Therefore, each of the 32 activation maps
shown in Figure 11 corresponds to an up-scaled version of the input image from up-scale factor 1 to
the target zoom factor = 2.0.

A.2 ADDITIONAL RESULTS ON THE CITYSCAPES DATASET

Additional results are provided for the CityScapes dataset as depicted in Figure 12. We compare
our Deep 3D-Zoom Net against the forward warping method guided by the monocular disparity
estimation in (Gonzalez Bello & Kim, 2019) and a plain digital zoom method. While the forward
warping method generates blurred, occluded and heavily deformed 3D-zoomed images, our Deep
3D-Zoom Net synthesizes cleaner and sharper 3D-zoomed versions of the input image. As can be
observed in Figure 12, the digital zoom method fails to take into account 3D geometry and uniformly
up-scales the input image.
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Figure 12: Subjective comparison on zoomed versions of the input images by three different methods
for zoom factor 2.5. It is noted that the forward warping generates low-quality 3D-zoomed versions
of the input image, while our Deep 3D-Zoom Net generates cleaner and sharper results with the
input image’s structures well preserved.
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