
Under review as a conference paper at ICLR 2019

A DIFFERENTIABLE SELF-DISAMBIGUATED SENSE EM-
BEDDING MODEL VIA SCALED GUMBEL SOFTMAX

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a differentiable multi-prototype word representation model that dis-
entangles senses of polysemous words and produces meaningful sense-specific
embeddings without external resources. It jointly learns how to disambiguate
senses given local context and how to represent senses using hard attention. Unlike
previous multi-prototype models, our model approximates differentiable discrete
sense selection via a modified Gumbel softmax. We also propose a novel human
evaluation task that quantitatively measures (1) how meaningful the learned sense
groups are to humans and (2) how well the model is able to disambiguate senses
given a context sentence—an evaluation ignored by previous models. Our model
not only discovers distinct, interpretable embeddings but is competitive against
previous models on word similarity tasks.

1 SENSE-SPECIFIC EMBEDDING

Machine learning models for natural language processing applications often represent words with
real valued vector embeddings. Popular word embedding models such as Word2Vec (Mikolov et al.,
2013a;b) and GloVe (Pennington et al., 2014) enabled state-of-the-art results on myriad NLP tasks
such as sentiment analysis (Kim, 2014; Tai et al., 2015) and textual entailment (Chen et al., 2017).

However, for polysemous words (those with multiple senses), learning a single vector for each word
type conflates different meanings (e.g., “A hydrogen bond exists between water molecules.” vs. “Do
you want to buy this bond?”). This is not a new problem—Schütze (1998) demonstrates the deficiency
of assigning just one vector per word—but it is more pernicious in modern models, as conflated senses
can pull semantically unrelated words toward each other in the embedding space (Neelakantan et al.,
2014; Pilehvar & Collier, 2016; Camacho-Collados & Pilehvar, 2018). To disentangle distinct senses
in word embeddings and learn finer-grained semantic clusters, multi-prototype word embedding
models learn multiple sense-specific embeddings for a single word (Section 7).

But what makes a good multisense word embedding? While word similarity is the most common
evaluation, it has many detractors (Faruqui et al., 2016; Gladkova & Drozd, 2016): similarity is
subjective and is hard to be differentiate from word relatedness. Moreover, word similarity tasks—
with the exception of Stanford Contextual Word Similarity (Huang et al., 2012, SCWS)—ignore
polysemous cases or are tied to specific sense inventories (Boyd-Graber et al., 2006).

Moreover, these evaluations ignore a key component of learning sense inventories: do they make
sense to a human? Previous multisense embedding papers present nearest neighbors to claim their
representations are interpretable and useful. Like topic models, these implicit interpretability claims
need to be rigorously verified. In Section 6, we adapt techniqes for evaluating topic models (Chang
et al., 2009) to measure whether learned sense groups are internally coherent and whether humans
can consistently match a learned sense vector to a word in context. Just like topic models, word
embedding models that win conventional evaluations do not always make sense to humans.

We present a simple method that not only correlates well with traditional word similarity evaluations
(Section 5) but also discovers interpretable (measured by human evaluations) sense embeddings
(Section 6). Our model extends the Skip-Gram Word2Vec model and simultaneously learns (1)
automatic sense induction given local context and (2) sense-specific embeddings. To learn disentan-
gled sense representations (i.e., avoid sense mixing), we approximate hard attention and preserve
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differentiability via a scaled variant of the Gumbel Softmax function (Section 3.2). This modeling
contribution—Scaled Gumbel Softmax—is critical for disambiguating senses.

2 FOUNDATIONS: SKIP-GRAM AND GUMBEL SOFTMAX

Our model extends Skip-Gram Word2Vec (Mikolov et al., 2013a;b), which jointly learns word embed-
dings W ∈ R|V |×d and context embeddings C ∈ R|V |×d. More specifically, given a vocabulary V
and embedding dimension d, it maximizes the likelihood of the context words cij that surround a
given center word wi in a context window c̃i,

J(W,C) ∝
∑
wi∈V

∑
cij∈c̃i

logP (cij |wi; W,C), (1)

where P (cij |wi) is estimated by a softmax over all possible context words, i.e, the vocabulary,

P (cij |wi; W,C) =
exp

(
cij
>
wi

)
∑

c∈V exp (c>wi)
. (2)

In practice, logP (cij |wi) is approximated by negative sampling to reduce computational cost.

2.1 GUMBEL SOFTMAX

The Gumbel softmax (Jang et al., 2016; Maddison et al., 2016) approximates the sampling of discrete
random variables. Given a discrete random variable X with P (X = k) ∝ αk, αk ∈ (0,∞), the
Gumbel-max (Gumbel & Lieblein, 1954; Maddison et al., 2014) refactors the sampling of X into

X = arg max
k

(logαk + gk), (3)

where the Gumbel noise gk = − log(− log(uk)) and uk are i.i.d samples drawn from Uniform(0, 1).

The Gumbel softmax approximates sampling one hot(arg maxk(logαk + gk)) by
yk = softmax((logαk + gk)/τ). (4)

3 GUMBEL-ATTENTION SENSE INDUCTION (GASI)

Building on these foundations, we now introduce our model, GASI, and along the way introduce a
soft-attention stepping-stone (SASI); afterward, we will compare models on both traditional evaluation
metrics and interpretability. The critical component of our model is that we model the sense selection
probability, which can be interpreted as sense attention over contexts, into the Skip-Gram model while
preserving the original objective through marginalization (Figure 1). By using Gumbel Softmax,
our model both approximates discrete sense selection and is differentiable. Previous models are
either non-differentiable or otherwise complicate inference through hard attention with reinforcement
learning methods (Lee & Chen, 2017).

3.1 ATTENTIONAL SENSE INDUCTION FRAMEWORK

Embedding Parameters We learn a context embedding matrix C ∈ R|V |×d and a sense embedding
tensor S ∈ R|V |×K×d. Unlike previous work (Neelakantan et al., 2014; Lee & Chen, 2017), no extra
embeddings are kept for sense induction.
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Figure 2: As the scale factor β increases, the sense selection distribution for “bond” given examples
from SemCor 3.0 for synset “bond.n.02” becomes flatter, indicating less disambiguated sense vectors.

Number of Senses For simplicity and consistency with most previous work, our model has a fixed
number of senses K.1

Sense Attention in Objective Function Assuming a center word wi has senses {si1, si2, . . . , siK},
the original Skip-Gram likelihood can be written as marginal distribution over all senses of wi with
the sense induction probability P (sik |wi), we focus on the sense disambiguation given local context
c̃i and estimate

P (cij |wi) =

K∑
k=1

P (cij | sik)P (sik |wi) ≈
K∑

k=1

P (cij | sik)P (sik |wi, c̃i)︸ ︷︷ ︸
attention

, (5)

Replacing P (cij |wi) in Equation 1 with Equation 5 gives our objective function

J(S,C) ∝
∑
wi∈V

∑
cij∈c̃i

log

K∑
k=1

P (cij | sik)P (sik |wi, c̃i). (6)

Lower Bound the Objective for Negative Sampling Like the Skip-Gram objective (Equation 2),
we model the likelihood of a context word given the center sense P (cij | sik) using softmax,

P (cij | sik) =
exp

(
cij
>
sik

)
∑|V |

j=1 exp
(
c>j s

i
k

) , (7)

where the bold symbol sik is the vector representation of sense sjk from S, and cj is the context
embedding of word cj from C.

Computing the softmax over the vocabulary is time-consuming. We want to adopt negative sampling
to approximate logP (cij | sik), which does not exist explicitly in our objective function (Equation 6).2

However, given the concavity of the logarithm function, we can apply Jensen’s inequality,

log

K∑
k=1

P (cij | sik)P (sik |wi, c̃i) ≥
K∑

k=1

P (sik |wi, c̃i) logP (cij | sik), (8)

and create a lower bound of the objective. Maximizing this lower bound gives us a tractable objective,

J(S,C) ∝
∑
wi∈V

∑
cij∈c̃i

K∑
k=1

P (sik |wi, c̃i) logP (cij | sik), (9)

where logP (cij | sik) is estimated by negative sampling Mikolov et al. (2013b),

log σ(cij
>
sik) +

n∑
j=1

Ecj∼Pn(c)[log σ(−c>j s
j
k))], (10)

1We can prune the duplicated senses for words that have senses less than K, details in Appendix B. We can
also set different number of senses based on word frequency in the training, details in Appendix B.3.

2Deriving the negative sampling requires the logarithm of a softmax (Goldberg & Levy, 2014).
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than the embeddings, dominates the sense
attention.

Modeling Sense Attention We can model the attention term, contextual sense induction distribu-
tion, with soft attention; we call the resulting model soft-attention sense induction (SASI); although it
is a stepping stone to our final model, we compare against it in our experiments as it helps isolate the
contributions of hard attention. In SASI, the sense attention is conditioned on the entire local context
c̃i with softmax:

P (sik |wi, c̃i) =
exp

(
c̄>i s

i
k

)∑K
k=1 exp

(
c̄>i s

i
k

) , (11)

where c̄i is the mean of the context vectors in c̃i.

3.2 SCALED GUMBEL SOFTMAX FOR SENSE DISAMBIGUATION

To reduce separate senses and learn distinguishable sense representations, we implement hard
attention in our full model, GASI. To preserve differentiability and circumvent the difficulties
in training with reinforcement learning (Sutton & Barto, 1998), we apply the reparameterization
trick with Gumbel softmax (Section 2.1) to our sense attention function (Equation 11) and make a
continuous relaxation.

Vanilla Gumbel Attention The discrete sense sampling from Equation 11 can be refactored by

zi = one hot(arg max
k

(c̄i
>sik + gk)), (12)

and the hard attention is approximated with

yik = softmax((c̄i
>sik + gk)/τ). (13)

Scaled Gumbel Softmax for Sense Disambiguation Gumbel softmax learns a flat distribution
over senses even with low temperatures (Figure 2): the dot product c̄>i s

i
k is too small compared to

the Gumbel noise gk (Figure 3).3 Thus we use a scaling factor β to reduce the randomness,4 and tune
it as a hyperparameter.5

γik = softmax((c̄i
>sik + βgk)/τ), (14)

We use GASI-β to identify the GASI model with scaling factor. This modification is critical for
learning distinguishable senses (Figure 2, Table 1, and Table 5).

Final Objective Function The objective function of our GASI-β model is

J(S,C) ∝
∑
wi∈V

∑
wc∈ci

K∑
k=1

softmax((c̄i
>sjk + βgk)/τ) logP (wc | sik). (15)

3Float32 precision, the saturation of log(σ(·)) and gradient vanishing result in a small range of c̄>i s
i
k.

4Normalizing c̄>i s
i
k or directly using logP (sik |wi, c̃i) results in a similar outcome.

5Learning β instead of fixing it as a hyperparameter does not successfully disambiguate senses.
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Figure 4: t-SNE projections of nearest neighbors for “bond” by hard-attention models: 1) previous
SOTA model MUSE (RL-based); 2) our proposed GASI-β. Trained on same dataset and vocabulary,
both models learn three vectors per word. Here, word i represent the i-th vector for word. Our GASI
(right) learns three distinct senses of “bond” while MUSE (left) learns overlapping senses.

4 TRAINING SETTINGS

For fair comparisons, we try to remain consistent with previous work (Huang et al., 2012; Neelakantan
et al., 2014; Lee & Chen, 2017) in all aspects of training. In particular, we train GASI on the same
April 2010 Wikipedia snapshot (Shaoul C., 2010) with 1B tokens the same vocabulary released
by Neelakantan et al. (2014); set the number of senses K = 3 and dimension d = 300 for each
word unless otherwise specified. More details are in Appendix A. We fix the temperature τ = 0.5,6
and tune the scaling factor β from {0.1, 0.2, ...,0.9} on the AvgSimC measure for the contextual
word similarity task (Section 5). The optimal scaling factor β is 0.4. If not reprinted, numbers for
competing models are either computed with pre-trained embeddings released by authors or trained
on released code.7

5 WORD SIMILARITY EVALUATION

We first compare our GASI and GASI-β model with previous work on standard word similarity tasks
before turning to interpretability experiments. Each task has word pairs with a similarity/relatedness
score. For evaluation, we measure Spearman’s rank correlation ρ (Spearman, 1904) between word
embedding similarity and the gold similarity judgements: higher scores imply the model captures
semantic similarities consistent with the trusted similarity scores.

Contextual Word Similarity Tailored for sense embedding evaluation, Stanford Contextual Word
Similarities (Huang et al., 2012, SCWS) has 2003 word pairs and similarity scores with sentential
context. Moreover, the word pairs and their contexts reflect homonymous and polysemous words.
Therefore, we use this dataset to tune our hyperparameters.

To compute the word similarity with senses we use two metrics Reisinger & Mooney
(2010) that take context and sense disambiguation into account: MaxSimC computes the
cosine similarity cos(s∗1, s

∗
2) between the two most probable senses s∗1 and s∗2 that maxi-

mizes P (sik |wi, c̃i). AvgSimC weights average similarity over the combinations of all senses∑K
i=1

∑K
i=j P (s1i |w1, c̃1)P (s2j |w2, c̃2) cos(s1i s

2
j ).

We compare variants of our model with multi-prototype sense embedding models (Table 1), including
two previous state-of-the-art models: the clustering-based Multi-Sense Skip-Gram model (Nee-
lakantan et al., 2014, MSSG) on AvgSimC metric and the RL-based Modularizing Unsupervised

6This is similar to the experiment settings for Gumbel softmax in Maddison et al. (2016)
7We adopt the numbers for Li & Jurafsky (2015) from Lee & Chen (2017) and tune the PDF-GM (Athiwaratkun

et al., 2018) model on the same 1B corpus and vocabulary as previous works using https://github.com/
benathi/multisense-prob-fasttext with suggested hyperparameters and select the best results.
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Model MaxSimC AvgSimC

Huang et al. (2012)-50d 26.1 65.7
MSSG-6K 57.3 69.3

MSSG-30K 59.3 69.2
Tian et al. (2014) 63.6 65.4

Li & Jurafsky (2015) 66.6 66.8
Qiu et al. (2016) 64.9 66.1

Bartunov et al. (2016) 53.8 61.2
MUSE Boltzmann 67.9 68.7

SASI 55.1 67.8
GASI(w/o scaling) 68.2 68.3

GASI-β 66.4 69.5

Table 1: Spearman’s correlation 100ρ on SCWS (trained
1B token, 300d vectors except for Huang et al.)

Model Accuracy(%)

Unsupervised Multi-prototype models

MSSG-30K 54.00
MUSE Boltzmann 52.14

GASI-β 55.27

Multi-prototype models
with external lexical resources

DeConf 58.55
SW2V 54.56

Table 2: Unsupervised sense selection accu-
racy on Word in Context

Sense Embeddings (Lee & Chen, 2017, MUSE) on MaxSimC. All three are better than the baseline
Skip-Gram model (65.2 using the word embedding). GASI better captures similarity than SASI,
corroborating that hard attention aids word sense selection. GASI without scaling (β) has the best
MaxSimC; however, it learns a flat sense distribution (Figure 2). GASI-β has the best AvgSimC and
a competitive MaxSimC. While MUSE has a higher MaxSimC than GASI-β, it fails to distinguish
senses as well (Figure 4, Section 6). The Probabilistic FastText Gaussian Mixture (Athiwaratkun
et al., 2018, PDF-GM) is SOTA on multiple non-contextual word similarity tasks (Table 3). Without
sense selection module given context, we evaluate PDF-GM on MaxSim (Equation 16), which is 66.4.
Our GASI-β has the same on MaxSim, and better correlation on AvgSimC (69.5).

Word Sense Selection in Context SCWS evaluates models’ ability of sense selection indirectly.
We further compare GASI-β with previous SOTA, MSSG-30K and MUSE, on the Word in Context
dataset (Pilehvar & Camacho-Collados, 2018, WiC) which requires the model to identify whether a
word has the same sense in two contexts. Lacking ground truth for the development set,8 to reduce the
variance in training and to focus on evaluating the sense selection module, we use an evaluation suited
for unsupervised models: if the model selects different sense vectors given contexts, we mark that
the word has different senses.9 For MUSE, MSSG and GASI-β, we use each model’s sense selection
module; for DeConf (Pilehvar & Collier, 2016) and SW2V (Mancini et al., 2017), we follow Pilehvar
& Camacho-Collados (2018) and Pelevina et al. (2016) by selecting the closest sense vectors to the
context vector. Results on DeConf are comparable to supervised results (59.4± 0.7). Our GASI-β has
the best result apart from DeConf itself, which uses the same sense inventory (Miller & Fellbaum,
1998, WordNet) used to build WiC.

This evaluation, however, does not reflect the interpretability of the senses themselves. We address
this in Section 6.

Non-Contextual Word Similarity To evaluate the semantics captured by each sense-specific
embeddings, we compare the models on the non-contextual word similarity datasets: RG-65 (Ruben-
stein & Goodenough, 1965); SimLex-999 (Hill et al., 2015); WS-353 (Finkelstein et al., 2002);
MEN-3k (Bruni et al., 2014); MC-30 (Miller & Charles, 1991); YP-130 (Yang & Powers, 2006);
MTurk-287 (Radinsky et al., 2011); MTurk-771 (Halawi et al., 2012); RW-2k (Luong et al., 2013).
Similar to Lee & Chen (2017) and Athiwaratkun et al. (2018), we compute the word similarity based
on senses by MaxSim (Reisinger & Mooney, 2010), which maximizes the cosine similarity over the
combination of all sense pairs and does not require local contexts,

MaxSim(w1, w2) = max
0≤i≤K,0≤j≤K

cos(s1i , s
2
j ). (16)

GASI-β has better correlation on three datasets, is competitive on the rest (Table 3), and remains
competitive without scaling. GASI is better than MUSE, the other hard-attention multi-prototype
model, on six datasets and worse on three. Our model can reproduce word similarities as well or
better than existing models through our sense selection.

8Unavailable as of November 2018 at https://pilehvar.github.io/wic/
9For words not in vocabulary or only have one sense learned, we chose randomly.
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Dataset MSSG-30K MSSG-6K MUSE Boltzmann SASI GASI GASI-β PFT-GM

SimLex-999 31.80 28.65 39.61 31.56 40.14 41.68 40.19
WS-353 65.69 67.42 68.41 58.31 68.49 69.36 68.6
MEN-3k 65.99 67.10 74.06 65.07 73.13 72.32 77.40
MC-30 67.79 76.02 81.80 70.81 82.47 85.27 74.63
RG-65 73.90 64.97 81.11 74.38 77.19 79.77 79.75
YP-130 40.69 42.68 43.56 48.28 49.82 56.34 59.39
MT-287 65.47 64.04 67.22 64.54 67.37 66.13 69.66
MT-771 61.26 58.83 64.00 55.00 66.65 66.70 68.91
RW-2k 42.87 39.24 48.46 45.03 47.22 47.69 45.69

Table 3: Spearman’s correlation 100ρ on non-contextual word similarity measured by MaxSim.
GASI-β outperforms the other models on three datasets are competitive on the others. Note that
PFT-GM are trained with two components/senses while other models learn three senses.

6 CROWDSOURCING EVALUATION

GASI can capture word similarity (Section 5), but do the learned representations make sense? Could a
human use them to help build a dictionary? If you show a human the senses, can they understand why
a model would assign a sense to that context? In this section we evaluate whether the representations
make sense to human consumers of multisense models.

Qualitive analysis Previous papers use nearest neighbors of a few examples to qualitatively argue
that their models have captured meaningful senses of words. We also give an example in Figure 4,
which provides an intuitive view on how the learned senses are clustered by visualizing the nearest
neighbors of word “bond” using t-SNE projection (Maaten & Hinton, 2008). Our proposed model
(right) disentangles the three sense of “bond” clearly and learns three distinct sense vectors.

However, the examples can be cherry-picked and lack standards. This problem also bedeviled topic
modeling until the introduction of rigorous human evaluation (Chang et al., 2009). We adapt both
aspects Chang et al’s evaluations: word intrusion (Schnabel et al., 2015) to evaluate whether individual
senses are coherent and topic intrusion—rather sense intrusion in this case—to evaluate whether
humans agree with models’ sense assignments in context. Both crowdsourcing tasks collect human
inputs on Figure-Eight. We compare our models with two previous state-of-the-art multi-prototype
sense embeddings models that disambiguate senses given local context, i.e., MSSG (Neelakantan
et al., 2014) and MUSE (Lee & Chen, 2017).10

6.1 WORD INTRUSION FOR SENSE COHERENCE

Schnabel et al. (2015) suggests a “good” word embedding should have coherent neighbors and
evaluate coherence by word intrusion. They presents crowdworkers four words: three are close in
embedding space while one of which is an “intruder”. If the embedding makes sense, contributors
will easily spot the word that “does not belong”.

Similarly, we examine the coherence of ten nearest neighbors of senses in the contextual word sense
selection task (Section 6.2) and replace one neighbor with an “intruder” (Figure 5). We generate
three intruders for each sense and collect three judgements per intruder. We consider the “intruder”
to be correctly selected if at least two judgements are correct.

Figure 5: Word intrusion task prompt

Model Sense-level Judgement-level AggrementAccuracy Accuracy

MUSE 67.33 62.89 0.73
MSSG-30K 69.33 66.67 0.76

GASI-β 71.33 67.33 0.77

Table 4: Word intrusion evalutations on top ten nearest
neighbors of sense embeddings.

10MSSG has two settings; we run human evaluation with MSSG-30K which has higher correlation with
MaxSimC on SCWS.
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Question (required)

Vandiver mentions the $100 million highway bond issue approved earlier in the

007, octopussy, moneypenny, goldfinger, thunderball, moonraker, goldeneye

atom, transition, bonding, covalent, hydrogen, molecule, substituent, carbons

mortgage-backed, securities, coupon, debenture, repurchase, refinance,  surety, 

* Choose one sense group that the target (underlined) word fits best.

Figure 6: An example (target: bond) of the
contextual word sense selection task; each
option contains top ten nearest neighbors of
a sense embedding learned by the model;
senses in this example are from our GASI-β
(1. 007; 2. chemical; 3. financial).

Like Chang et al. (2009), we want the “intruder” to not be too different in terms of frequency to the
target set but not too similar semantically. For sense smi of word type wi, we randomly select a word
from the neighbors of another sense sni of wi but with a low threshold, i.e., any words that has cosine
similarity larger than 0.0 can be viewed as a neighbor.

Result and Analysis All models have comparable model accuracy. GASI-β learns senses that have
the highest coherency among top ten nearest neighbors while MUSE learns more sense mixtures.

Inter-rater Agreement We use the aggregated confidence score provided by Figure-Eight to
estimate the level of agreement between multiple contributors.11 The agreements are high for all
models and our GASI-β has the highest agreement, suggesting that the senses learned by GASI-β are
easier to interpret.

6.2 CONTEXTUAL WORD SENSE SELECTION

The previous task measures whether individual senses are coherent. In this task, we measure whether
the learned senses by sense embedding models make sense human and evaluate the models’ ability to
disambiguate senses in context.

Task Description Given a target word in context, we ask a crowdworker to select which sense
group best fits the sentence. Each sense group is described by its top ten distinct nearest neighbors
(Figure 6).12

Data Collection We select fifty nouns with five sentences from SemCor 3.0 (Miller et al., 1994).
We first filter all word types with fewer than ten sentences and select the fifty most polysemous nouns
from WordNet (Miller & Fellbaum, 1998) among the remaining senses. For each noun, we randomly
select five sentences.

Metrics For each model, we collect three judgements for each question. We consider a model
correct if at least two crowdworkers select the same sense as the model. We also consider the
probability P assigned to the human choices by the model, indicating the model’s confidence in sense
selection. P = 1/3 indicates the model learns flat, uniform sense induction distribution is unable to
disambiguate senses.

Sense disambiguation and interpretability If humans consistently pick the same sense as the
model: 1) humans can interpret the nearest neighbor words (as measured by the previous experiment);
2) the senses are distinguishable to human; 3) the human’s choice is consistent with the model’s.

Results and Analysis GASI-β selects senses that are most consistent with humans; it has the highest
accuracy and assigns the largest probability assigned to the human choices (Table 5). Thus, GASI-β
produces sense embeddings that are both more interpretable and distinguishable. GASI without a
scaling factor, however, has low consistency and flat sense distribution.

Inter-rater Agreement We use the confidence score computed by Figure-Eight to estimate the
rater’s agreement for this task as well. Our GASI-β achieves the highest human-model agreement
while both MUSE and GASI without scaling have the lowest.

11https://success.figure-eight.com/hc/en-us/articles/201855939-How-to-Calculate-a-Confidence-Score
12We shuffle the choices for questions with the same target word.
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Model Accuracy P Agreement

MUSE 28.0 0.33 0.68
MSSG-30K 44.5 0.37 0.73
GASI (no β) 33.8 0.33 0.68

GASI-β 50.0 0.48 0.75

Table 5: Human-model consistency on contextual
word sense selection; P is the average probability
assigned by the model to the human choices. GASI-
β is most consistent with human.

MUSE MSSG GASI-β

word
overlaps

correct 4.78 0.39 1.52
error 5.43 0.98 6.36

cosine sim
by Glove

correct 0.86 0.33 0.36
error 0.88 0.57 0.81

Table 6: Similarities of human and model
choices when they disagree (error) vs. similar-
ities between the senses that both human and
model select with other senses in the same word
(correct). Human agrees with the model when
the senses are distinct.

Error Analysis Next, we attempt to answer why crowdworkers disagree with the model although
they can interpret most senses (measured by the word intruder task, Table 4). Is it that the model has
learned duplicate senses that both the users and model cannot distinguish or is it that crowdworkers
agree with each other but disagree with the model? The former relates to the model’s ability in
learning human distinguishable senses; while the latter relates to the model’s ability in contextual
sense selection.

Two trends reveal that duplicated senses that are not distinguishable to humans are one of the
main causes of human-model disagreement. First, users agree with the model when the senses are
distinct (Table 6, correct), while disagreement rises with more similar senses (Table 6, error); second,
more distinct senses allows higher inter-rater agreement (Figure 7). We measure distinctness both
by counting the number of shared nearest neighbors and the average cosine simlarities of GloVe
embeddings.13 Specifically, MUSE learns duplicate senses for most words, preventing users from
choosing appropriate senses and results in random human-model agreement. GASI-β learns some
duplicated senses and some distinguishable senses. MSSG appears to learn the least similar senses,
but they are not distinguishable enough for humans. For MSSG, small neighbor overlaps do not
necessarily help humans to distinguish between senses: users disagree with each other (agreement
0.33) even when the number of overlaps is very small (Figure 7). An intuitive example is shown in
Table 7, which demonstrates the necessity of human evaluation. If we use rater agreement to measure
how distinguishable the learned senses are to humans, GASI-β learns the most distinguishable senses
(histogram in Figure 8).

Figure 8 also shows that the model is more likely to agree with humans when humans agree more
with each other (as a result of more distinct senses), i.e., human-model consistency correlates with
rater agreement (Figure 8). MSSG disagrees with humans more even when raters agree with each
other, indicating worse sense selection ability.

6.3 WORD SIMILARITY VS. SENSE DISAMBIGUATION

The evaluation results on word similarity tasks (Section 5) and human evaluations (Section 6) are
inconsistent for several models. GASI, GASI-β model and the MUSE model are all competitive in
word similarity (Table 1 and Table 3), but only GASI-β also does well in the human evaluations
(Table 5). Both GASI without scaling and MUSE fail to learn distinguishable senses and cannot disam-
biguate senses given local context. High word similarities do not necessarily indicate “good” sense
embeddings quality; our human evaluation—contextual word sense selection—is complementary.

7 RELATED WORK

Schütze (1998) introduces context-group discrimination for senses and uses the centroid of context
vectors as a sense representation. Other work induces senses by context clustering (Purandare &
Pedersen, 2004) or probabilistic mixture models (Brody & Lapata, 2009). Reisinger & Mooney
(2010) first introduce multiple sense-specific vectors for each word, inspiring other multi-prototype
sense embedding models. Generally, to address polysemy in word embeddings, some previous work

13Different models learn different representations; we use GloVe for a uniform basis of comparison.

9



Under review as a conference paper at ICLR 2019

MSSG
MUSE

GASI-�

0.33 0.67 1.00 (rater agreement)

0.5
0.75

2.5

5.0

ov
er

la
ps

co
si

ne
 s

im

Average in-word sense similarities

Figure 7: More distinct senses within each word
lead to higher inter-rater agreement

0.2

0.3

0.4

0.5

0.6

0.33 0.67 1.00 (rater agreement)

accuracy

MSSG
MUSE

GASI-�

MSSG
MUSE

GASI-�

50

150

250

# of questions

Figure 8: Higher inter-rater agreement corre-
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trained on annotated sense corpora (Iacobacci et al., 2015) or external sense inventories (Labutov &
Lipson, 2013; Chen et al., 2014; Jauhar et al., 2015; Chen et al., 2015; Wu & Giles, 2015; Pilehvar
& Collier, 2016; Mancini et al., 2017); Rothe & Schütze (2015; 2017) extend word embeddings to
lexical resources without training; others induce senses via multilingual parallel corpora (Guo et al.,
2014; Šuster et al., 2016; Ettinger et al., 2016).

We contrast our GASI to unsupervised monolingual multi-prototype models along two dimensions:
sense induction methodology and differentiability. 1), Huang et al. (2012) and Neelakantan et al.
(2014) induce senses by context clustering; Tian et al. (2014) model a corpus-level sense distribution;
Li & Jurafsky (2015) model the sense assignment as a Chinese Restaurant Process; Qiu et al. (2016)
induce senses by minimizing an energy function on a context-depend network; Bartunov et al.
(2016) model the sense assignment as a steak-breaking process; Nguyen et al. (2017) model the
sense embeddings as a weighted combination of topic vectors with pre-computed weights by topic
models; Athiwaratkun & Wilson (2017) and Athiwaratkun et al. (2018) model word representations
as Gaussian Mixture embeddings where each Gaussian component captures different senses; Lee
& Chen (2017) computes sense distribution by a separate set of sense induction vectors; while our
GASI marginalizes the likelihood of contexts over senses and induces senses by local context vectors;
the most similar sense selection module is a bilingual model (Šuster et al., 2016) except that it does
not introduce lower bound for negative sampling but uses weighted embeddings, which results in
more sense mixture. 2), most sense selection models are non-differentiable and discretely select
senses, with two exceptions: Šuster et al. (2016) use weighted vectors over senses; Lee & Chen
(2017) implement hard attention with RL to mitigate the non-differentiability. In contrast, GASI keeps
full differentiability by reparameterization and approximates discrete sense sampling with scaled
Gumbel softmax.

8 CONCLUSION

The goal of multi-sense word embeddings is not just to win word sense evaluation datasets; rather,
they should also describe language: given millions of tokens of a language, what are the patterns in
the language that can help a lexicographer or linguist in day-to-day tasks like building dictionaries or
understanding semantic drift. Our differentiable Gumbel Attention Sense Induction (GASI) offers
a best of both worlds: comparable word similarities while also learning more distinguishable,
interpretable senses.

The real question is - how are those four years used and what is their value as training?

MSSG
s1: hypothetical, unanswered, topic, answered, discussion, yes/no, answer, facts
s2: toss-up, answers, guess, why, answer, trivia, caller, wondering, answering
s3: argument, contentious, unresolved, concerning, matter, regarding, debated, legality

Table 7: A case where MSSG has low overlaps but confuses raters (agreement 0.33); model choses s1.
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Figure 9: Histogram of number of senses left after post-training pruning for two models: GASI-0.4
initialized with three senses and GASI-0.4 initialized with five senses. We rank the number of senses
of words by their frequency from high to low.

A TRAINING DETAILS

During training, we fix the window size to five and the dimensionality of the embedding space to 300
for comparison to previous work. We initialize both sense and context embeddings randomly within
U(-0.5/dim, 0.5/dim) as in Word2Vec. We set the initial learning rate to 0.01; it is decreased linearly
until training concludes after 5 epochs. The batch size is 512, and we use five negative samples per
center word-context pair as suggested by Mikolov et al. (2013a). The subsample threshold is 1e-4.
We train our model on the GeForce GTX 1080 Ti, and our implementation (using pytorch 3.0) takes
∼ 6 hours to train one epoch on the April 2010 Wikipedia snapshot Shaoul C. (2010) with 100k
vocabulary. For comparison, our implementation of Skip-Gram on the same framework takes ∼ 2
hours each epoch.

B NUMBER OF SENSES

For simplicity and consistency with most of previous work, we present our model with a fixed number
of senses K.

B.1 POST-TRAINING PRUNING

For words that do not have multiple senses or have most senses appear very low-frequently in corpus,
our model (as well as many previous models) learns duplicate senses. We can easily remove such
duplicates by pruning the learned sense embeddings with a threshold λ. Specifically, for each word
wi, if the cosine distance between any of its sense embeddings (sim, s

i
n) is smaller than λ, we consider

them to be duplicates. After discovering all duplicate pairs, we start pruning with the sense sik that
has the most duplications and keep pruning with the same strategy until no more duplicates remain.

Model-specific pruning We estimate a model-specific threshold λ from the learned embeddings
instead of deciding it arbitrary. Therefore, this pruning methods is also applicable to other sense
embedding models. We first sample 100 words from the negative sampling distribution over the
vocabulary. Then, we retrieve the five nearest neighbors (from all senses of all words) to each sense
of each sampled word. If one of a word’s own senses appears as a nearest neighbor, we append the
distance between them to a sense duplication list Ddup. For other nearest neighbors, we append their
distances to the word neighbor list Dnn. After populating the two lists, we want to choose a threshold
that would prune away all of the sense duplicates while differentiating sense duplications with other
distinct neighbor words. Thus, we compute

λ =
1

2
(mean(Ddup) + mean(Dnn)). (17)

15



Under review as a conference paper at ICLR 2019

Model MaxSimC AvgSimC

GASI-0.4 66.4 69.5
GASI-0.4-30K 65.3 69.2

GASI-0.4-post-pruning 65.6 68.7

Table 8: Spearman’s ranking correlation 100× ρ on SCWS. GASI-0.4-30K means top 30,000 words
are initialized with three senses while the others have one sense.

Table 1 compares the sense embeddings after pruning with the original mode on the Stanford
Contextual Word Similarities (SCWS) task Huang et al. (2012). Both AvgSimC and MaxSimC with
post-pruning embeddings decrease only a few compare to that from GASI-0.4.

B.2 NUMBER OF SENSES VS. WORD FREQUENCY

It is a common assumption that more frequent words have more senses. Figure 1 shows a histogram
of the number of senses left for words ranked by their frequency, and the results agree with the
assumption. Generally, the model learns more sense for high frequent words, except for the most
frequent ones. The most frequent words are usually considered stopwords, such as “the”, “a” and
“our’, which have only one common meaning. Moreover, we compare our model initialized with three
senses (GASI-0.4, K = 3) against the one that has five (GASI-0.4, K = 5). Initializing with a larger
number of senses, the model is able to uncover more senses for most words.

B.3 INITIALZING K BASED ON WORD FREQUENCY

Despite our model has a fixed number of senses. It is easy to implement our model with different
number of senses with a mask matrix. And we can define different number of senses for each word
based on their frequency. In Table 1, we show the results from a model that only top 30,000 word are
initialized with three senses while others have one. The same choice is applied by Neelakantan et al.
(2014).
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