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ABSTRACT

In this work, we develop quantitative results to the learnability of a two-layers
Graph Convolutional Network (GCN). Instead of analyzing GCN under some
classes of functions, our approach provides a quantitative gap between a two-layers
GCN and a two-layers MLP model. Our analysis is based on the graph signal
processing (GSP) approach, which can provide much more useful insights than
the message-passing computational model. Interestingly, based on our analysis,
we have been able to empirically demonstrate a few cases when GCN and other
state-of-the-art models cannot learn even when true vertex features are extremely
low-dimensional. To demonstrate our theoretical findings and propose a solution
to the aforementioned adversarial cases, we build a proof of concept graph neural
network model with stacked filters named Graph Filters Neural Network (gfNN).

1 INTRODUCTION

Graph neural networks (GNN) is a class of neural networks which can learn from graph-structured
data. Recently, graph neural networks for vertex classification and graph isomorphism test have
achieved excellent results on several benchmark datasets and continuously set new state-of-the-art
performance (Kipf and Welling, 2017; Veličković et al., 2019; Wu et al., 2019; Klicpera et al., 2019).
Many variants of GNN have been proposed to solve problems in social networks (Hamilton et al.,
2017; Zhang et al., 2018a), biology (Veličković et al., 2017; 2019), chemistry (Fout et al., 2017;
Gilmer et al., 2017), natural language processing (Bastings et al., 2017; Zhang et al., 2018b; Wu
et al., 2019), reasoning for vision (Santoro et al., 2017), and few/zero-shot learning (Garcia and
Bruna, 2017; Kampffmeyer et al., 2019). Due to the rise of GNNs in machine learning applications,
understanding GNNs theoretically has gathered lots of attention in the machine learning community.

While most theoretical results of GNNs are based on the message-passing model (Xu et al., 2019;
Keriven and Peyré, 2019), there are a limited number of theoretical results for the filtering approach.
However, in practice, the graph filtering view have inspired many computationally fast and high accu-
racy models such as ChebNet (Defferrard et al., 2016), GCN (Kipf and Welling, 2017), SplineConv
(Fey et al., 2018), LanczosNet (Liao et al., 2019), and label efficient models (Li et al., 2019). In this
work, we theoretically study the GCN model (Kipf and Welling, 2017) and the SGC model (Wu et al.,
2019). Instead of showing which class of function a GCN or GNN model can theoretically learn,
we develop quantitative bounds for the gaps between GCN/SGC and a two-layers fully connected
neural network. Our theoretical results imply a few cases where SGC and GCN would fail to work:
high-frequency labels, noisy features, and complex features. Interestingly, we also find other state-
of-the-art GNN models such as GraphSAGE Hamilton et al. (2017) or DGI Veličković et al. (2019)
failed to perform in our high-frequency labels experiments.

Recently, Wu et al. (2019) showed that graph convolutional networks (GCN) can be broken down
into two steps: low-pass filtering and feature learning. Such simplification not only improves GCN’s
computational speed and accuracy in a wide range of problems but also allows a better understanding
of the GCN model. To show the low-pass filtering nature of GCN-like models, Wu et al. (2019)
used the Rayleigh quotient to bound the maximum eigenvalue when self-loops are added to the
graph, which means adding self-loops created a stronger low-pass filter (Wu et al., 2019, Lemma 3,
Theorem 1). Similar low-pass observation and results have also been mentioned by other works by Li
et al. (2018), Qiu et al. (2018), and Li et al. (2019). We adopt SGC’s two steps simplification and

1



Under review as a conference paper at ICLR 2020

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0 500 1000 1500 2000 2500

gfNN

MLP (org. feat.)

A
cc

ur
ac

y

# of frequency components

Noise level (std): 0.0 0.01 0.05

Figure 1: Accuracy by frequency components
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Figure 2: A simple realization of gfNN

the graph signal processing perspective (Ortega et al., 2018) to our work and further extend their
implications to demonstrate when GCN or SGC does not perform well.

We claim the following contributions:

• Our first contribution is another proof for (Wu et al., 2019, Theorem 1) using the Courant-
Fisher-Weyl’s min-max principle. Our result (Theorem 3, Section 4) has the advantage of
showing the monotone shrinking of all eigenvalues. In addtion, our proof on generalized
eigenvalues is simpler and shorter.
• Our second and main contribution is the exploration of cases when SGC or GCN fails to

work and the following performance gap Theorem:
Theorem 1 (Informal, see Theorem 7, 8). Under Assumption 2, the outcomes of SGC, GCN,
and gfNN are similar to those of the corresponding NNs using “true features”.

• Our third contribution is to empirically verify Assumption 2 since our Theorem 7 and 8 are
based on this assumption (stated below).

Assumption 2. Input features consist of frequency-limited true features and noise. The true features
have sufficient information for the machine learning task.

As a base model for analysis, we build a proof of concept model named gfNN (Figure 2). This model
adopts the two steps simplification from SGC with two major differences: 1. We use a two-layers
MLP as the classifier; and 2. We use two different filters (low-pass and high-pass). Our theorem 7
implies that, under Assumption 2, both gfNN (with appropriate filter) and GCN Kipf and Welling
(2017) have similar high performance. Since gfNN does not require multiplications of the adjacency
matrix during the learning phase, it is much faster than GCN. Besides, gfNN maintains an expected
behavior in the aforementioned cases when other GNN models do not work.

2 GRAPH SIGNAL PROCESSING

Graph signal processing (GSP) regards data on the vertices as signals and applies signal processing
techniques to understand the signal characteristics. By combining signals (feature vectors) and graph
structure (adjacency matrix or its transformations), GSP has inspired the development of learning
algorithms on graph-structured data Shuman et al. (2012). In a standard signal processing problem,
it is common to assume the observations contain some noise and the underlying “true signal” has
low-frequency Rabiner and Gold (1975). Our Assumption 2 is of similar nature.

Many recent GNNs were built upon results from graph signal processing. The most common practice
is to multiply the (augmented) normalized adjacency matrix I − L̃ with the feature matrix X . The
product (I − L̃)X is understood as features averaging and propagation. In graph signal processing
literature, such operation filters signals on the graph without explicitly performing eigendecomposition
on the normalized Laplacian matrix, which requires O(n3) time Vaseghi (2008). Here, we refer to
this augmented normalized adjacency matrix and its variants as graph filters and propagation matrices
interchangeably.

In this section, we introduce the basic concepts of graph signal processing. We adopt a recent
formulation Girault et al. (2018) of graph Fourier transform on irregular graphs.
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Let G = (V, E) be a simple undirected graph, where V = {1, . . . , n} be the set of n ∈ Z
vertices and E be the set of edges.1 Let A = (aij) ∈ Rn×n be the adjacency matrix of G,
D = diag(d(1), . . . , d(n)) ∈ Rn×n be the degree matrix of G, where d(i) =

∑
j∈V a(i, j)

is the degree of vertex i ∈ V . L = D − A ∈ Rn×n be the combinatorial Laplacian of G,
L = I −D−1/2AD−1/2 be the normalized Laplacian of G, where I ∈ Rn×n is the identity matrix,
andLrw = I−D−1A be the random walk Laplacian ofG. Also, for γ ∈ R with γ > 0, let Ã = A+γI
be the augmented adjacency matrix, which is obtained by adding γ self loops to G, D̃ = D + γI
be the corresponding augmented degree matrix, and L̃ = D̃ − Ã = L, L̃ = I − D̃−1/2ÃD̃−1/2,
L̃rw = I − D̃−1Ã be the corresponding augmented combinatorial, normalized, and random walk
Laplacian matrices.

A vector x ∈ Rn defined on the vertices of the graph is called a graph signal. To introduce a graph
Fourier transform, we need to define two operations, variation and inner product, on the space of
graph signals. Here, we define the variation ∆: Rn → R and the D̃-inner product by

∆(x) :=
∑

(i,j)∈E

(x(i)− x(j))2 = x>Lx; (x, y)D̃ :=
∑
i∈V

(d(i) + γ)x(i)y(i) = x>D̃y. (1)

We denote by ‖x‖D̃ :=
√

(x, x)D̃ the norm induced by D̃. Intuitively, the variation ∆ and the inner
product (·, ·)D̃ specify how to measure the smoothness and importance of the signal, respectively. In
particular, our inner product puts more importance on high-degree vertices, where larger γ closes
the importance more uniformly. We then consider the generalized eigenvalue problem (variational
form): Find u1, . . . , un ∈ Rn such that for each i ∈ {1, . . . , n}, ui is a solution to the following
optimization problem:

minimize ∆(u) subject to (u, u)D̃ = 1, (u, uj)D̃ = 0, j ∈ {1, . . . , n}. (2)

The solution ui is called an i-th generalized eigenvector and the corresponding objective value
λi := ∆(ui) is called the i-th generalized eigenvalue. The generalized eigenvalues and eigenvectors
are also the solutions to the following generalized eigenvalue problem (equation form):

Lu = λD̃u. (3)

Thus, if (λ, u) is a generalized eigenpair then (λ, D̃1/2u) is an eigenpair of L̃. A generalized
eigenvector with a smaller generalized eigenvalue is smoother in terms of the variation ∆. Hence, the
generalized eigenvalues are referred to as the frequency of the graph.

The graph Fourier transform is a basis expansion by the generalized eigenvectors. Let U =
[u1, . . . , un] be the matrix whose columns are the generalized eigenvectors. Then, the graph Fourier
transform F : Rn → Rn is defined by Fx = x̂ := U>D̃x, and the inverse graph Fourier trans-
form F−1 is defined by F−1x̂ = Ux̂. Note that these are actually the inverse transforms since
FF−1 = U>D̃U = I .

The Parseval identity relates the norms of the data and its Fourier transform:

‖x‖D̃ = ‖x̂‖2. (4)

Let h : R→ R be an analytic function. The graph filter specified by h is a mapping x 7→ y defined
by the relation in the frequency domain: ŷ(λ) = h(λ)x̂(λ). In the spatial domain, the above equation
is equivalent to y = h(L̃rw)x. where h(L̃rw) is defined via the Taylor expansion of h; see Higham
(2008) for the detail of matrix functions.

In a machine learning problem on a graph, each vertex i ∈ V has a d-dimensional feature x(i) ∈ Rd.
We regard the features as d graph signals and define the graph Fourier transform of the features by
the graph Fourier transform of each signal. Let X = [x(1); . . . ,x(n)]> be the feature matrix. Then,
the graph Fourier transform is represented by FX = X̂ =: U>D̃X and the inverse transform is
F−1X̂ = UX̂ . We denote X̂ = [x̂(λ1); . . . ; x̂(λn)]> as the frequency components of X .

1We only consider unweighted edges but it is easily adopted to positively weighted edges.
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3 EMPIRICAL EVIDENCE OF ASSUMPTION 2

The results of this paper deeply depend on Assumption 2. Thus, we first verify this assumption in
real-world datasets: Cora, Citeseer, and Pubmed Sen et al. (2008). These are citation networks, in
which vertices are scientific papers and edges are citations. We consider the following experimental
setting: 1. Compute the graph Fourier basis U from L̃; 2. Add Gaussian noise to the input features:
X ← X +N (0, σ2) for σ = {0, 0.01, 0.05}; 3. Compute the first k-frequency component: X̂k =

U [: k]>D̃1/2X ; 4. Reconstruct the features: X̃k = D̃−1/2U [: k]X̂k; 5. Train and report test accuracy
of a 2-layers perceptron on the reconstructed features X̃k. Figure 1 plots a fine-grained frequency
components experiment on Cora without early stopping.
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Figure 3: Average performance of 2-layers MLPs on frequency-limited feature vectors with early stop-
ping using the validation data (max epochs=500). The two horizontal lines show the performance
of our model and a 2-layers MLP on original feature.

In Figure 3, we incrementally add normalized Laplacian frequency components to reconstruct feature
vectors and train a 2-layers MLPs. We see that all three datasets exhibit a low-frequency nature.
The classification accuracy of a 2-layers MLP tends to peak within the top 20% of the spectrum
(green boxes). By adding artificial Gaussian noise, we observe that the performance at low-frequency
regions is relatively robust, which implies a considerable denoising effect2.

These experiments have confirmed our assumption that the informative features (to a given set of
labels) lie in a low-frequency region in the three benchmark datasets. Note that such low-frequency
nature, while coincides with low intrinsic dimensionality, has different behavior. For instance, we
will show later that despite having a low intrinsic dimensionality, high-frequency sets of features
and labels lead to a bad performance in both GCN and SGC. Interestingly, we observe the same
performance degradation in other message-passing models like GraphSAGE (Hamilton et al., 2017).

We further confirm the low-frequency nature of the benchmark datasets’ labels by computing the
Rayleigh quotient for each label type in the dataset. Note that our Laplacian is normalized, the
maximum value of Rayleigh quotient (corresponds to the highest eigenvalue) is 2. Figure 4 clearly
shows the low-frequency nature of the labels in Cora, Citeseer, Pubmed, and Reddit datasets.

4 MULTIPLYING ADJACENCY MATRIX IS LOW PASS FILTERING

Computing the low-frequency components is expensive since it requires O(|V|3) time to compute the
eigenvalue decomposition of the Laplacian matrix. Thus, a reasonable alternative is to use a low-pass
filter. Many papers on graph neural networks iteratively multiply the (augmented) adjacency matrix
Ãrw (or Ã) to propagate information. In this section, we see that this operation corresponds to a
low-pass filter.

As proven in previous work, multiplying the normalized adjacency matrix corresponds to applying
graph filter h(λ) = 1 − λ (Wu et al., 2019; Li et al., 2018; 2019). Since the eigenvalues of
the normalized Laplacian lie on the interval [0, 2], this operation resembles a band-stop filter that
removes intermediate frequency components. However, since the maximum eigenvalue of the
normalized Laplacian is 2 if and only if the graph contains a non-trivial bipartite graph as a connected
component (Chung, 1997, Lemma 1.7). Therefore, for other graphs, multiplying the normalized

2The standard deviation of clean signal is less than 0.01 for all three datasets. See Table 2 for more detail.
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Figure 4: Rayleigh quotients of one-hot encoded label vectors for Cora, Citeseer, Pubmed, and Reddit

(non-augmented) adjacency matrix acts as a low-pass filter (i.e., high-frequency components must
decrease). We can increase the low-pass filtering effect by adding self-loops (i.e., considering the
augmented adjacency matrix) since it shrinks the eigenvalues toward zero as follows.3

Theorem 3. Let λi(γ) be the i-th smallest generalized eigenvalue of (D̃, L) = (D + γI). Then,
λi(γ) is a non-negative number, and monotonically non-increasing in γ ≥ 0. Moreover, λi(γ) is
strictly monotonically decreasing if λi(0) 6= 0.

Note that γ cannot be too large. Otherwise, all the eigenvalues would be concentrated around zero,
i.e., all the data would be regarded as “low-frequency”; hence, we cannot extract useful information
from the low-frequency components. In practice, γ is often set at 1 (Kipf and Welling, 2017).

From another point of view, the graph filter h(λ) = 1 − λ can also be derived from a first-order
approximation of a Laplacian regularized least squares Belkin and Niyogi (2004). Let us consider
the problem of estimating a low-frequency true feature {x̄(i)}i∈V from the observation {x(i)}i∈V .
Then, a natural optimization problem is given by

min
x̄

∑
i∈V
‖x̄(i)− x(i)‖2

D̃
+ ∆(X̄) (5)

where ∆(X̄) =
∑d
p=1 ∆(x̄(i)p). Note that, since ∆(X̄) =

∑
λ∈Λ λ‖ˆ̄x(λ)‖22, it is a maximum a

posteriori estimation with the prior distribution of ˆ̄x(λ) ∼ N(0, I/λ). The optimal solution to this
problem is given by X̄ = (I + L̃rw)−1X . The corresponding filter is h′(λ) = (1 + λ)−1, and hence
h(λ) = 1− λ is its first-order Taylor approximation.

5 BIAS-VARIANCE TRADE-OFF FOR LOW PASS FILTERS

In the rest of this paper, we establish theoretical results under Assumption 2. To be concrete, we pose
a more precise assumption as follows.
Assumption 4 (Precise Version of the First Part of Assumption 2). Observed features {x(i)}i∈V
consists of true features {x̄(i)}i∈V and noise {z(i)}i∈V . The true features X̄ have frequency at
most 0 ≤ ε� 1 and the noise follows a white Gaussian noise, i.e., each entry of the graph Fourier
transform of Z independently identically follows a normal distribution N(0, σ2).

Using this assumption, we can evaluate the effect of the low-pass filter as follows.
Lemma 5. Suppose Assumption 4. For any 0 < δ < 1/2, with probability at least 1− δ, we have

‖X̄ − ÃkrwX‖D ≤
√
kε‖X̄‖D +O

(√
log(1/δ)R(2k)

)
E[‖Z‖D], (6)

3The shrinking of the maximum eigenvalue has already been proved in (Wu et al., 2019, Theorem 1). Our
theorem is stronger than theirs since we show the “monotone shrinking” of “all” the eigenvalues. In addition,
our proof is simpler and shorter.
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where R(2k) is a probability that a random walk with a random initial vertex returns to the initial
vertex after 2k steps.

The first and second terms of the right-hand side of equation 6 are the bias term incurred by applying
the filter and the variance term incurred from the filtered noise, respectively. Under the assumption,
the bias increases a little, say, O(

√
ε). The variance term decreases in O(1/degk/2) where deg is a

typical degree of the graph since R(2k) typically behaves like O(1/degk) for small k.4 Therefore,
we can obtain a more accurate estimation of the true data from the noisy observation by multiplying
the adjacency matrix if the maximum frequency of X̄ is much smaller than the noise-to-signal ratio
‖Z‖D/‖X̄‖D.

This theorem also suggest a choice of k. By minimizing the right-hand side by k, we obtain:
Corollary 6. Suppose that E[‖Z‖D] ≤ ρ‖X̄‖D for some ρ = O(1). Let k∗ be defined by k∗ =
O(log(log(1/δ)ρ/ε)), and suppose that there exist constantsCd and d̄ > 1 such thatR(2k) ≤ Cd/d̄k
for k ≤ k∗. Then, by choosing k = k∗, the right-hand side of equation 6 is Õ(

√
ε).5

This concludes that we can obtain an estimation of the true features with accuracy Õ(
√
ε) by

multiplying Ãrw several times.

6 GRAPH FILTER NEURAL NETWORK

In the previous section, we see that low-pass filtered features ÃkrwX are accurate estimations of the
true features with high probability. In this section, we analyze the performance of this operation. In
practice, k = 2 is sufficient for most datasets. Therefore, for simplicity, we set k = 2.

Let the multi-layer (two-layer) perceptron be

hMLP(X|W1,W2) = σ2(σ1(XW1)W2), (7)

where σ1 is the entry-wise ReLU function, and σ2 is the softmax function. Note that both σ1 and σ2

are contraction maps, i.e., ‖σi(X)− σ(Y )‖D ≤ ‖X − Y ‖D.

gfNN As a toy model for analysis and experiments, we define our gfNN models. It comes with
two flavors: low-frequency and high-frequency. In this section, we provide the analysis for the
low-frequency version and emprical results (Section 7) for high-frequency version.

hgfNN-low(X,A|W1,W2) = hMLP(Ã2
rwX|W1,W2) (8)

hgfNN-high(X,A|W1,W2) = hMLP(L̃2
rwX|W1,W2) (9)

Under the second part of Assumption 2, our goal is to obtain a result similar to h(X̄|W1,W2). The
simplest approach is to train a multi-layer perceptron hMLP(X|W1,W2) with the observed feature.
The performance of this approach is evaluated by

‖hMLP(X̄|W1,W2)− hMLP(X|W1,W2)‖D̃ ≤ ‖Z‖Dρ(W1)ρ(W2), (10)

where ρ(W ) is the maximum singular value of W .

Now, we consider applying graph a filter Ãkrw to the features, then learning with a multi-layer
perceptron, i.e., hMLP(h(L̃rw)X|W1,W2). Using Lemma 5, we obtain the following result.
Theorem 7. Suppose Assumption 4 and conditions in Corollary 6. By choosing k as Corollary 6,
with probability at least 1− δ for δ < 1/2,

‖hMLP(X̄|W1,W2)− hMLP(Ã2
rwX|W1,W2)‖D = Õ(

√
ε)E[‖Z‖D]ρ(W1)ρ(W2). (11)

This means that if the maximum frequency of the true data is small, we obtain a solution similar to
the optimal one.

4This exactly holds for a class of locally tree-like graphs Dembo et al. (2013), which includes Erdos–Renyi
random graphs and the configuration models.

5Õ(·) suppresses logarithmic dependencies.
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Comparison with GCN Under the same assumption, we can analyze the performance of a two-
layers GCN. The GCN is given by

hGCN(X|W1,W2) = σ2(Ãrwσ1(ÃrwXW1)W2). (12)

Theorem 8. Under the same assumption to Theorem 7, we have

‖hMLP(X̄|W1,W2)− hGCN(X|W1,W2)‖D ≤ Õ( 4
√
ε)E[‖Z‖D]ρ(W1)ρ(W2). (13)

This theorem means that GCN also has a performance similar to MLP for true features. Hence, in the
limit of ε→ 0 and Z → 0, all MLP, GCN, and the gfNN have the same performance.

In practice, gfNN has two advantages over GCN. First, gfNN is faster than GCN since it does not use
the graph during the training. Second, GCN has a risk of overfitting to the noise. When the noise is
so large that it cannot be reduced by the first-order low-pass filter, Ãrw, the inner weight W1 is trained
using noisy features, which would overfit to the noise leading to low test accuracy.

Comparison with SGC Recall that a degree-2 SGC is given by

hSGC(X|W1) = σ2(Ã2
rwXW2), (14)

i.e., it is a gfNN with a one-layer perceptron. Thus, by the same discussion, SGC has a performance
similar to the perceptron (instead of the MLP) applied to the true feature. This clarifies an issue of
SGC: if the true features are non-linearly separable, SGC cannot learn the correct function.

7 EXPERIMENTS

We first show the advantage of models like gfNN-low and SGC over GCN by injecting Gaussian
noise to the three benchmark citation networks. In accordance with Theorem 8, we see that GCN-like
models have low noise tolerance while gfNN-low and SGC are much more robust. Our experiments
on citation networks are conducted in the same transductive setting used by Kipf and Welling (2017)
and Wu et al. (2019). Training details are provided in Appendix B and C.

Experimental results in Figure 5 confirms our hypothesis for the three benchmark datasets. We see that
when a high level of noise is injected to low-frequency datasets (especially Cora), the performance of
GCN can degrade much faster than SGC or gfNN. It is also trivial to see that Logistic Regression
(LG) and MLP on raw features exhibit similar behavior when noise is introduced.

0.5

0.7

0.8

0.020.01
0.1

0.2

0.4

0.6

0.3

0.00 0.03 0.04 0.05 0.00 0.020.01 0.03 0.04 0.05 0.00 0.020.01 0.03 0.04 0.05

gfNN (low-freq) SGC GCN LG MLP

Noise ( )

A
cc

ur
ac

y

cora citeseer pubmed

Noise ( ) Noise ( )

Figure 5: Benchmark test accuracy on Cora (left), Citeseer (middle), and Pubmed (right) datasets.
The noise level is measured by standard deviation of white noise added to the features.

Next, we experiment on two synthetic datasets: Two Circles and BA-High. These datasets are
synthesized to show: 1. SGC cannot learn non-linearly separable features; and 2. SGC, GCN, DGI
(Veličković et al., 2019), and GraphSAGE (Hamilton et al., 2017) fail when it comes to high-frequency
labels (even when the features are informative). Two circles dataset is generated by generating 4, 000
points sampled from two nested circles and define a 5-nearest neighbors graph on the data points.
Visualization of this dataset is given in Appendix E. We generate BA-High dataset by constructing
a BA-graph with n = 200 and n = 10 (200 nodes, every new node are attached to 10 neighbors
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selected from existing nodes). We then find the maximal independent set for the graph and use this set
as label 1. The rest of the nodes are label 0. For each node with label 1, we generate a 50-dimensions
feature vector from a Gaussian N (+ε, 1.0). We do the same for all nodes with label 0 but with
Gaussian N (−ε, 1.0). In Table 1 we report the results at ε = 0.5.

Unsurprisingly, SGC cannot learn the non-linearly separable feature in the Two Circle experiment
(Table 1) while other more complex models perform as expected (similar performance as an MLP).
More interesting is the results of the BA-High experiment (Table 1, Figure 6). Surprisingly, we find
all popular GNN models cannot quite learn under this simple setting. Although the node features
are informative (a simple LogReg or MLP can have accuracy larger than 90%), most GNN models
reported less than 60% accuracy. In Figure 6, we show a simple solution to this setting: Use high
frequency eigenvectors or high-pass filter (gfNN-High).

High-freq Eigenvectors (last 50)GCN (k=2)SGC (k=2)

gfNN-HighGraphSAGESGC (k=3)

Figure 6: Performance on high-frequency labels

For comparison purpose, we present our results on benchmark datasets in Table 1. Model details are
presented in Appendix C. Dataset details are presented in Table 2 (Appendix E).

Table 1: Average test accuracy on original train/val/test splits (50 times)

Cora Citeseer Pubmed Reddit PPI 2Circles BA-High
DGI 83.1± 0.2 72.1± 0.1 80.1± 0.2 94.5± 0.3 99.2± 0.1 85.2± 0.6 54.6± 1.8
GCN 80.0± 1.8 69.6± 1.1 79.3± 1.3 - - 84.9± 0.8 58.9± 2.2
SGC 77.6± 2.2 65.6± 0.1 78.4± 1.1 94.9± 0.2 89.0± 0.1 53.5± 1.4 55.5± 1.3

gfNN-low 82.3± 0.2 71.8± 0.1 79.2± 0.2 94.8± 0.2 89.3± 0.5 85.6± 0.8 55.4± 2.3
gfNN-high 24.2± 1.9 22.5± 2.2 43.6± 1.3 10.5± 2.6 86.6± 0.1 48.3± 3.5 96.2± 1.0

8 DISCUSSION

Recently, Kampffmeyer et al. (2019) observed that GCN models might have too strong Laplacian
smoothing effect (low-frequency in our terms) for zero-shot learning application. This is an example
of an application where the frequency of data might be band-limited or higher than benchmark
graph datasets. Some other possible scenario in a social network might include more complex and
high-frequency nature that GNN models like GCN cannot learn well. One possible solution to this
scenario is to use both low- and high-pass filters like gfNN and select the model by validation data or
learn from both filters.

Our analysis and experimental results showed that GNN models work well on benchmark datasets
because these datasets have the low-frequency nature in both feature vectors and labels. With high-
frequency labels, popular GNN models will perform badly. While there is not yet any real-world
benchmark dataset which node labels are of high-frequency nature, such setting is not entirely
impossible given the complexity of a network. For instance, a relationship network would be less
likely to have same-gender links. Therefore, gender labels might exhibit high-frequency nature.
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APPENDIX

A PROOFS

Proof of Theorem 3. Since the generalized eigenvalues of (D + γI, L) are the eigenvalues of a
positive semidefinite matrix (D + γI)1/2L(D + γI)1/2, these are non-negative real numbers. To
obtain the shrinking result, we use the Courant–Fisher–Weyl’s min-max principle (Bhatia, 2013,
Corollary III. 1.2): For any 0 ≤ γ1 < γ2,

λi(γ2) = min
H:subspace,dim(H)=i

max
x∈H,x6=0

x>Lx

x>(D + γ2I)x
(15)

≤ min
H:subspace,dim(H)=i

max
x∈H,x6=0

x>Lx

x>(D + γ1I)x
(16)

= λi(γ1). (17)

Here, the second inequality follows because x>(D + γ1)x < x>(D + γ2)x for all x 6= 0 Hence, the
inequality is strict if x>Lx 6= 0, i.e., λi(γ1) 6= 0.

Lemma 9. If X has a frequency at most ε then ‖h(L)X‖2D ≤ maxt∈[0,ε] h(t)‖X‖2D.

Proof. By the Parseval identity,

‖LX‖2D =
∑
λ∈Λ

h(λ)‖x̂(λ)‖22 (18)

≤ max
t∈[0,ε]

h(t)
∑
λ∈Λ

‖x̂(λ)‖22 (19)

= max
t∈[0,ε]

h(t)‖X̂‖22 (20)

= max
t∈[0,ε]

h(t)‖X̂‖2D. (21)

Proof of Lemma 5. By substituting X = X̄ + Z, we obtain

‖X̄ − ÃkrwX‖D̃ ≤ ‖(I − Ã
k
rw)X̄‖D̃ + ‖ÃkrwZ‖D̃. (22)

By Lemma 9, the first term is bounded by
√
kε‖X̄‖D. By the Parseval identity equation 4, the second

term is evaluated by

‖ÃkrwZ‖2D̃ =
∑
λ∈Λ

(1− λ)2k‖ẑ(λ)‖22 (23)

=
∑

λ∈Λ,p∈{1,...,d}

(1− λ)2kẑ(λ, p)2 (24)

By (Laurent and Massart, 2000, Lemma 1), we have

Prob

∑
λ,p

(1− λ)2k(ẑ(λ, p)2/σ2 − 1) ≥ 2

√
t
∑
λ,p

(1− λ)4k + 2t

 ≤ e−t. (25)

By substituting t = log(1/δ) with δ ≤ 1/2, we obtain

Prob

∑
λ,p

(1− λ)2kẑ(λ, p)2 ≥ 5σ2nd log(1/δ)

∑
λ(1− λ)2k

n

 ≤ 1− δ. (26)

Note that E[‖Z‖2D = σ2nd, and∑
λ(1− λ)2k

n
=

tr(Ã2k
rw )

n
= R(2k) (27)

since (i, j) entry of Ã2k
rw is the probability that a random walk starting from i ∈ V is on j ∈ V at 2k

step, we obtain the lemma.
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Proof of Theorem 7. By the Lipschitz continuity of σ, we have

‖hMLP(X̄|W1,W2)− hMLP(ÃkrwX|W1,W2)‖D ≤ ‖X̄ − ÃkrwX‖Dρ(W1)ρ(W2). (28)

By using Lemma 5, we obtain the result.

Lemma 10. If X has a frequency at most ε then there exists Y such that Y has a frequency at most√
ε and ‖σ(X)− Y ‖2D ≤

√
ε‖X‖2D.

Proof. We choose Y by truncating the frequency components greater than
√
ε. Then,

‖σ(X)− Y ‖2D =
∑
λ>
√
ε

‖σ̂(X)(λ)‖2 (29)

≤ 1√
ε

∑
λ

λ‖σ̂(X)(λ)‖2 (30)

=
1√
ε

∑
(u,v)∈E

‖σ(x(u))− σ(x(v))‖22 (31)

≤ 1√
ε

∑
(u,v)∈E

‖x(u)− x(v)‖22 (32)

=
√
ε
∑
λ

λ‖x̂(λ)‖22 (33)

≤
√
ε
∑
λ

‖x̂(λ)‖22 (34)

=
√
ε‖X‖2D. (35)

Proof of Theorem 8. From Lemma 10, by taking the square root and absolute values of both sides,
we have ‖σ(X)− Y ‖D ≤ ε1/4‖X‖D.
By setting Y = σ(ÃrwX̄), since σ is an activation function, we have:

‖σ(X̄)− Ãrwσ(X̄)‖D = ‖L̃rwσ(X̄)‖D (36)

≤ O(ε1/4)‖X̄‖D (37)

Consequently, we consider the D-norm stated in Theorem 8:

‖σ(X̄W1)W2 − Ãrwσ(ÃrwXW1)W2‖D (38)

≤
(
‖σ(X̄W1)− Ãrwσ(X̄W1)‖D + ‖Ãrwσ(X̄W1)− Ãrwσ(ÃrwXW1)‖D

)
ρ(W2) (39)

=
(
‖L̃rwσ(X̄W1)‖D + ‖X̄ − ÃrwX‖Dρ(W1)

)
ρ(W2) (40)

≤
(
O(ε1/4)‖X̄‖D +R(2)‖Z‖D

)
ρ(W1)ρ(W2). (41)

B GFNN MODEL DETAILS

Our gfNN model is implemented in Pytorch. While other number of hidden layers are possible, we
find that 1 hidden layer with 256 units (2 layers MLP) is enough for all benchmark datasets. Other
changes does not significantly influence the experimental results. It worth mentioning that each gfNN
model actually has 2 identical neural networks inside, one to learn from low-pass filter Ãrw and the
other for high-pass filter L̃rw. We use PReLU (0.25) as the activation function since there are a slight
improvement (about 1%) in validation accuracy when training with PReLU compare to ReLU.

To optimize our model, we use the Pytorch built-in Adam optimizer. We fix the hyperparameters
accross all datasets:
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• Weight decay: 1× 10−4

• Learning rate: 0.01

• Batch size: 32

• Early stopping: 40 epochs patience (Max. 500 epochs).

All datasets have three sets: train, valdiation, and test. The validation set is used for early stopping
and model selection (high/low). The test accuracy is reported for all experiments.

C BASELINE DETAILS

We set GCN (Kipf and Welling, 2017) at two layers with 64 hidden units, ReLU activation, no dropout.
We keep the setting of SGC (Wu et al., 2019) as recommended by the original implementation (200
epochs, lr=0.1, weight decay: 1 × 10−4, ReLU activation). For DGI (Veličković et al., 2019),
GraphSAGE Hamilton et al. (2017), and GIN (Xu et al., 2019), we follow the authors’ default
paramter tuning. The result for GraphSAGE is reported as the best result from “small” models (mean,
sum, seq) for 200 epochs training, we also set number of level-1 neighbors at 25 and level-2 at 10.

D DATASET DETAILS

We provide an evaluation for the semi-supervised node classification performance of SGC on the
Cora, Citeseer, and Pubmed citation network datasets Sen et al. (2008). We also follow Wu et al.
(2019) to run experiments on Reddit Chen et al. (2018) and Hamilton et al. (2017) on PPI Zitnik and
Leskovec (2017).

Table 2: Real-world benchmark datasets and synthetic datasets for vertex classification

Dataset Nodes Edges Features (X) (µX , σX) Classes Train/Val/Test
Cora 2,708 5,278 1,433 (0.0007, 0.0071) 7 140/500/1,000
Citeseer 3,327 4,732 3,703 (0.0003, 0.0029) 6 120/500/1,000
Pubmed 19,717 44,338 500 (0.0019, 0.0087) 3 60/500/1,000
Reddit 231,443 11,606,919 602 - 41 151,708/23,699/55,334
PPI 56,944 818,716 50 - 121 44,906/6,514/5,524

Two Circles 4,000 10,000 2 - 2 80/80/3,840
BA-High 200 2000 50 (0,1) 2 10/10/180

The Two Circle dataset is visually presented in Figure 7 (test accuracies are shown in the corner).
The coordinates of each data point are used as features.

Original data SGC

0.485 0.862 0.872

GCN gfNN

Figure 7: Decision boundaries on 500 generated data samples following the two circles pattern

BA-High dataset generation procedure is described in Figure 8.

We have similar experimental results on different type of random graphs: ER, Configuation, and
Block Model. The experimental results on GCN/SGC can be explained simply with Figure 9

In Figure 9, the color blue and orange indicate label 1 and label 0 in a 100 node BA-graph. It is trivial
to see that any simple machine learning model can learn from the original feature. However, after
only one filter, the features become indistinguisable. More low-pass filter applications will lead to a
uniform feature (Theorem 3).
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Figure 8: BA-High generation steps
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Figure 9: Plot for 1 dimensional features in BA-High setting. We set ε = 5.0 for clarity purpose.
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