
Published as a conference paper at ICLR 2020

ONCE-FOR-ALL: TRAIN ONE NETWORK AND SPE-
CIALIZE IT FOR EFFICIENT DEPLOYMENT

Han Cai1, Chuang Gan2, Tianzhe Wang1, Zhekai Zhang1, Song Han1

1Massachusetts Institute of Technology, 2MIT-IBM Watson AI Lab
{hancai, chuangg, songhan}@mit.edu

ABSTRACT

We address the challenging problem of efficient inference across many devices
and resource constraints, especially on edge devices. Conventional approaches
either manually design or use neural architecture search (NAS) to find a specialized
neural network and train it from scratch for each case, which is computationally
prohibitive (causing CO2 emission as much as 5 cars’ lifetime Strubell et al. (2019))
thus unscalable. In this work, we propose to train a once-for-all (OFA) network that
supports diverse architectural settings by decoupling training and search, to reduce
the cost. We can quickly get a specialized sub-network by selecting from the OFA
network without additional training. To efficiently train OFA networks, we also
propose a novel progressive shrinking algorithm, a generalized pruning method
that reduces the model size across many more dimensions than pruning (depth,
width, kernel size, and resolution). It can obtain a surprisingly large number of sub-
networks (> 1019) that can fit different hardware platforms and latency constraints
while maintaining the same level of accuracy as training independently. On diverse
edge devices, OFA consistently outperforms state-of-the-art (SOTA) NAS methods
(up to 4.0% ImageNet top1 accuracy improvement over MobileNetV3, or same
accuracy but 1.5× faster than MobileNetV3, 2.6× faster than EfficientNet w.r.t
measured latency) while reducing many orders of magnitude GPU hours and CO2

emission. In particular, OFA achieves a new SOTA 80.0% ImageNet top-1 accuracy
under the mobile setting (<600M MACs). OFA is the winning solution for the
3rd Low Power Computer Vision Challenge (LPCVC), DSP classification track
and the 4th LPCVC, both classification track and detection track. Code and 50
pre-trained models (for many devices & many latency constraints) are released at
https://github.com/mit-han-lab/once-for-all.

1 INTRODUCTION

Deep Neural Networks (DNNs) deliver state-of-the-art accuracy in many machine learning applica-
tions. However, the explosive growth in model size and computation cost gives rise to new challenges
on how to efficiently deploy these deep learning models on diverse hardware platforms, since they
have to meet different hardware efficiency constraints (e.g., latency, energy). For instance, one mobile
application on App Store has to support a diverse range of hardware devices, from a high-end Sam-
sung Note10 with a dedicated neural network accelerator to a 5-year-old Samsung S6 with a much
slower processor. With different hardware resources (e.g., on-chip memory size, #arithmetic units),
the optimal neural network architecture varies significantly. Even running on the same hardware,
under different battery conditions or workloads, the best model architecture also differs a lot.

Given different hardware platforms and efficiency constraints (defined as deployment scenarios),
researchers either design compact models specialized for mobile (Howard et al., 2017; Sandler et al.,
2018; Zhang et al., 2018) or accelerate the existing models by compression (Han et al., 2016; He
et al., 2018) for efficient deployment. However, designing specialized DNNs for every scenario
is engineer-expensive and computationally expensive, either with human-based methods or NAS.
Since such methods need to repeat the network design process and retrain the designed network
from scratch for each case. Their total cost grows linearly as the number of deployment scenarios
increases, which will result in excessive energy consumption and CO2 emission (Strubell et al., 2019).
It makes them unable to handle the vast amount of hardware devices (23.14 billion IoT devices till

1

https://github.com/mit-han-lab/once-for-all

Published as a conference paper at ICLR 2020

Number of Deployment Scenarios
 0 20 40 60 80

16x~1300x
reduction

direct deploy (no retrain)

train a once-for-all network

specialized sub-nets

Samsung Note10 Latency (ms)

cpu
F P

G A

Different Hardware / Constraint

De
sig

n
Co

st

Previous: O(N) design cost
Ours: O(1) design cost

Mobile AI
Tiny AI
(AIoT)Cloud AI

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

6 9 12 15 18 21 24

OFA MobileNetV3

70.0

76.1

Train Once, 

 Get M
any

75.2

73.3

70.4

67.4
Tra

in Four T
im

es,

Get F
our

MCU

Number of Deployment Scenarios
 0 20 40 60 80

16x~1300x
reduction

direct deploy (no retrain)

train a once-for-all network

specialized sub-nets

cpu
F P

G A

Different Hardware / Constraint

De
sig

n
Co

st
Previous: O(N) design cost
Ours: O(1) design cost

Mobile AI
Tiny AI
(AIoT)Cloud AI

MCU

1

Figure 1: Left: a single once-for-all network is trained to support versatile architectural configurations
including depth, width, kernel size, and resolution. Given a deployment scenario, a specialized sub-
network is directly selected from the once-for-all network without training. Middle: this approach
reduces the cost of specialized deep learning deployment from O(N) to O(1). Right: once-for-all
network followed by model selection can derive many accuracy-latency trade-offs by training only
once, compared to conventional methods that require repeated training.

20181) and highly dynamic deployment environments (different battery conditions, different latency
requirements, etc.).

This paper introduces a new solution to tackle this challenge – designing a once-for-all network that
can be directly deployed under diverse architectural configurations, amortizing the training cost. The
inference is performed by selecting only part of the once-for-all network. It flexibly supports different
depths, widths, kernel sizes, and resolutions without retraining. A simple example of Once-for-All
(OFA) is illustrated in Figure 1 (left). Specifically, we decouple the model training stage and the
neural architecture search stage. In the model training stage, we focus on improving the accuracy
of all sub-networks that are derived by selecting different parts of the once-for-all network. In the
model specialization stage, we sample a subset of sub-networks to train an accuracy predictor and
latency predictors. Given the target hardware and constraint, a predictor-guided architecture search
(Liu et al., 2018) is conducted to get a specialized sub-network, and the cost is negligible. As such,
we reduce the total cost of specialized neural network design from O(N) to O(1) (Figure 1 middle).

However, training the once-for-all network is a non-trivial task, since it requires joint optimization
of the weights to maintain the accuracy of a large number of sub-networks (more than 1019 in our
experiments). It is computationally prohibitive to enumerate all sub-networks to get the exact gradient
in each update step, while randomly sampling a few sub-networks in each step will lead to significant
accuracy drops. The challenge is that different sub-networks are interfering with each other, making
the training process of the whole once-for-all network inefficient. To address this challenge, we
propose a progressive shrinking algorithm for training the once-for-all network. Instead of directly
optimizing the once-for-all network from scratch, we propose to first train the largest neural network
with maximum depth, width, and kernel size, then progressively fine-tune the once-for-all network to
support smaller sub-networks that share weights with the larger ones. As such, it provides better
initialization by selecting the most important weights of larger sub-networks, and the opportunity to
distill smaller sub-networks, which greatly improves the training efficiency. From this perspective,
progressive shrinking can be viewed as a generalized network pruning method that shrinks multiple
dimensions (depth, width, kernel size, and resolution) of the full network rather than only the width
dimension. Besides, it targets on maintaining the accuracy of all sub-networks rather than a single
pruned network.

We extensively evaluated the effectiveness of OFA on ImageNet with many hardware platforms
(CPU, GPU, mCPU, mGPU, FPGA accelerator) and efficiency constraints. Under all deployment
scenarios, OFA consistently improves the ImageNet accuracy by a significant margin compared to
SOTA hardware-aware NAS methods while saving the GPU hours, dollars, and CO2 emission by
orders of magnitude. On the ImageNet mobile setting (less than 600M MACs), OFA achieves a new
SOTA 80.0% top1 accuracy with 595M MACs (Figure 2). To the best of our knowledge, this is the
first time that the SOTA ImageNet top1 accuracy reaches 80% under the mobile setting.

1https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

2

Published as a conference paper at ICLR 2020

0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81

Im
ag

eN
et

 T
op

-1
 a

cc
ur

ac
y

(%
)

2M 4M 8M

Handcrafted

16M

AutoML

32M 64M

→→The higher the better

The lower the better

Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x reduction
595M MACs

80.0% Top-1

Model Size

1

Figure 2: Comparison between OFA and state-of-the-art CNN models on ImageNet. OFA provides
80.0% ImageNet top1 accuracy under the mobile setting (< 600M MACs).

2 RELATED WORK

Efficient Deep Learning. Many efficient neural network architectures are proposed to improve the
hardware efficiency, such as SqueezeNet (Iandola et al., 2016), MobileNets (Howard et al., 2017;
Sandler et al., 2018), ShuffleNets (Ma et al., 2018; Zhang et al., 2018), etc. Orthogonal to architecting
efficient neural networks, model compression (Han et al., 2016) is another very effective technique
for efficient deep learning, including network pruning that removes redundant units (Han et al., 2015)
or redundant channels (He et al., 2018; Liu et al., 2017), and quantization that reduces the bit width
for the weights and activations (Han et al., 2016; Courbariaux et al., 2015; Zhu et al., 2017).

Neural Architecture Search. Neural architecture search (NAS) focuses on automating the architec-
ture design process (Zoph & Le, 2017; Zoph et al., 2018; Real et al., 2019; Cai et al., 2018a; Liu et al.,
2019). Early NAS methods (Zoph et al., 2018; Real et al., 2019; Cai et al., 2018b) search for high-
accuracy architectures without taking hardware efficiency into consideration. Therefore, the produced
architectures (e.g., NASNet, AmoebaNet) are not efficient for inference. Recent hardware-aware
NAS methods (Cai et al., 2019; Tan et al., 2019; Wu et al., 2019) directly incorporate the hardware
feedback into architecture search. Hardware-DNN co-design techniques (Jiang et al., 2019b;a; Hao
et al., 2019) jointly optimize neural network architectures and hardware architectures. As a result,
they can improve inference efficiency. However, given new inference hardware platforms, these
methods need to repeat the architecture search process and retrain the model, leading to prohibitive
GPU hours, dollars, and CO2 emission. They are not scalable to a large number of deployment
scenarios. The individually trained models do not share any weight, leading to large total model size
and high downloading bandwidth.

Dynamic Neural Networks. To improve the efficiency of a given neural network, some work
explored skipping part of the model based on the input image. For example, Wu et al. (2018); Liu &
Deng (2018); Wang et al. (2018) learn a controller or gating modules to adaptively drop layers; Huang
et al. (2018) introduce early-exit branches in the computation graph; Lin et al. (2017) adaptively
prune channels based on the input feature map; Kuen et al. (2018) introduce stochastic downsampling
point to reduce the feature map size adaptively. Recently, Slimmable Nets (Yu et al., 2019; Yu &
Huang, 2019b) propose to train a model to support multiple width multipliers (e.g., 4 different global
width multipliers), building upon existing human-designed neural networks (e.g., MobileNetV2 0.35,
0.5, 0.75, 1.0). Such methods can adaptively fit different efficiency constraints at runtime, however,
still inherit a pre-designed neural network (e.g., MobileNet-v2), which limits the degree of flexibility
(e.g., only width multiplier can adapt) and the ability in handling new deployment scenarios where
the pre-designed neural network is not optimal. In this work, in contrast, we enable a much more
diverse architecture space (depth, width, kernel size, and resolution) and a significantly larger number
of architectural settings (1019 v.s. 4 (Yu et al., 2019)). Thanks to the diversity and the large design

3

Published as a conference paper at ICLR 2020

39

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

progressively shrink the width

channel
importance

0.82

0.11

0.46
reorg.

reorg.

progressively shrink the width

channel
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

Progressive Shrinking

Figure 3: Illustration of the progressive shrinking process to support different depth D, width W ,
kernel size K and resolution R. It leads to a large space comprising diverse sub-networks (> 1019).

space, we can derive new specialized neural networks for many different deployment scenarios rather
than working on top of an existing neural network that limits the optimization headroom. However, it
is more challenging to train the network to achieve this flexibility, which motivates us to design the
progressive shrinking algorithm to tackle this challenge.

3 METHOD

3.1 PROBLEM FORMALIZATION

Assuming the weights of the once-for-all network as Wo and the architectural configurations as
{archi}, we then can formalize the problem as

min
Wo

∑
archi

Lval

(
C(Wo, archi)

)
, (1)

where C(Wo, archi) denotes a selection scheme that selects part of the model from the once-for-all
network Wo to form a sub-network with architectural configuration archi. The overall training
objective is to optimize Wo to make each supported sub-network maintain the same level of accuracy
as independently training a network with the same architectural configuration.

3.2 ARCHITECTURE SPACE

Our once-for-all network provides one model but supports many sub-networks of different sizes,
covering four important dimensions of the convolutional neural networks (CNNs) architectures, i.e.,
depth, width, kernel size, and resolution. Following the common practice of many CNN models (He
et al., 2016; Sandler et al., 2018; Huang et al., 2017), we divide a CNN model into a sequence of
units with gradually reduced feature map size and increased channel numbers. Each unit consists of a
sequence of layers where only the first layer has stride 2 if the feature map size decreases (Sandler
et al., 2018). All the other layers in the units have stride 1.

We allow each unit to use arbitrary numbers of layers (denoted as elastic depth); For each layer,
we allow to use arbitrary numbers of channels (denoted as elastic width) and arbitrary kernel sizes
(denoted as elastic kernel size). In addition, we also allow the CNN model to take arbitrary input
image sizes (denoted as elastic resolution). For example, in our experiments, the input image size
ranges from 128 to 224 with a stride 4; the depth of each unit is chosen from {2, 3, 4}; the width
expansion ratio in each layer is chosen from {3, 4, 6}; the kernel size is chosen from {3, 5, 7}.
Therefore, with 5 units, we have roughly ((3× 3)2 + (3× 3)3 + (3× 3)4)5 ≈ 2× 1019 different
neural network architectures and each of them can be used under 25 different input resolutions. Since
all of these sub-networks share the same weights (i.e., Wo) (Cheung et al., 2019), we only require
7.7M parameters to store all of them. Without sharing, the total model size will be prohibitive.

3.3 TRAINING THE ONCE-FOR-ALL NETWORK

Naı̈ve Approach. Training the once-for-all network can be cast as a multi-objective problem, where
each objective corresponds to one sub-network. From this perspective, a naı̈ve training approach
is to directly optimize the once-for-all network from scratch using the exact gradient of the overall
objective, which is derived by enumerating all sub-networks in each update step, as shown in Eq. (1).
The cost of this approach is linear to the number of sub-networks. Therefore, it is only applicable to
scenarios where a limited number of sub-networks are supported (Yu et al., 2019), while in our case,
it is computationally prohibitive to adopt this approach.

Another naı̈ve training approach is to sample a few sub-networks in each update step rather than
enumerate all of them, which does not have the issue of prohibitive cost. However, with such a large
number of sub-networks that share weights, thus interfere with each other, we find it suffers from

4

Published as a conference paper at ICLR 2020
Connection to Network Pruning

15

Train the
full model

Shrink the model
(only width)

Fine-tune
the small net

single pruned
network

Network Pruning

Train the
full model

Shrink the model
(4 dimensions)

Fine-tune
both large and
small sub-nets

once-for-all
network

• Progressive shrinking can be viewed as a generalized network pruning with much
higher flexibility across 4 dimensions.

Progressive Shrinking

Figure 4: Progressive shrinking can be viewed as a generalized network pruning technique with
much higher flexibility. Compared to network pruning, it shrinks more dimensions (not only width)
and provides a much more powerful once-for-all network that can fit different deployment scenarios
rather than a single pruned network.

7x7

Transform

Matrix

25x25

5x5

Transform

Matrix

9x9

3x3

train with full width

channel

importance

0.02
0.15
0.85
0.63

channel

sorting

progressively shrink the width

unit i

train with full depth

channel

importance

0.82
0.11
0.46

reorg.
channel

sorting

reorg.

progressively shrink the width

channel

sorting .

+
+ +

p1

p2

p3O1

O2

O3O1

O2

O1

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

�1

Figure 5: Left: Kernel transformation matrix for elastic kernel size. Right: Progressive shrinking for
elastic depth. Instead of skipping each layer independently, we keep the first D layers and skip the
last (4−D) layers. The weights of the early layers are shared.

significant accuracy drop. In the following section, we introduce a solution to address this challenge,
i.e., progressive shrinking.

Progressive Shrinking. The once-for-all network comprises many sub-networks of different sizes
where small sub-networks are nested in large sub-networks. To prevent interference between the
sub-networks, we propose to enforce a training order from large sub-networks to small sub-networks
in a progressive manner. We name this training scheme as progressive shrinking (PS). An example of
the training process with PS is provided in Figure 3 and Figure 4, where we start with training the
largest neural network with the maximum kernel size (e.g., 7), depth (e.g., 4), and width (e.g., 6).
Next, we progressively fine-tune the network to support smaller sub-networks by gradually adding
them into the sampling space (larger sub-networks may also be sampled). Specifically, after training
the largest network, we first support elastic kernel size which can choose from {3, 5, 7} at each layer,
while the depth and width remain the maximum values. Then, we support elastic depth and elastic
width sequentially, as is shown in Figure 3. The resolution is elastic throughout the whole training
process, which is implemented by sampling different image sizes for each batch of training data. We
also use the knowledge distillation technique after training the largest neural network (Hinton et al.,
2015; Ashok et al., 2018; Yu & Huang, 2019b). It combines two loss terms using both the soft labels
given by the largest neural network and the real labels.

Compared to the naı̈ve approach, PS prevents small sub-networks from interfering large sub-networks,
since large sub-networks are already well-trained when the once-for-all network is fine-tuned to
support small sub-networks. Regarding the small sub-networks, they share the weights with the
large ones. Therefore, PS allows initializing small sub-networks with the most important weights of
well-trained large sub-networks, which expedites the training process. Compared to network pruning
(Figure 4), PS also starts with training the full model, but it shrinks not only the width dimension but
also the depth, kernel size, and resolution dimensions of the full model. Additionally, PS fine-tunes
both large and small sub-networks rather than a single pruned network. As a result, PS provides
a much more powerful once-for-all network that can fit diverse hardware platforms and efficiency
constraints compared to network pruning. We describe the details of the PS training flow as follows:

5

Published as a conference paper at ICLR 2020

7x7

Transformation

Matrix: 25x25

5x5

Transformation

Matrix: 9x9

3x3

train with full width

channel

importance

0.02
0.15
0.85
0.63

channel

sorting

progressively shrink the width

stage i stage i

train with full depth

stage i

channel

importance

0.82
0.11
0.46

reorg.
channel

sortingreorg.

progressively shrink the width

channel

sorting

progressively shrink the depth progressively shrink the depth

.

O1

+
+ +

p1

p2

p3

O2

O3

O1

O2

O1

O2

O3

O1

O2

O1

�1

Figure 6: Progressive shrinking for elastic width. In this example, we progressively support 4, 3, and
2 channel settings. We perform channel sorting and pick the most important channels (with large L1
norm) to initialize the smaller channel settings. The important channels’ weights are shared.

• Elastic Kernel Size (Figure 5 left). We let the center of a 7x7 convolution kernel also serve as
a 5x5 kernel, the center of which can also be a 3x3 kernel. Therefore, the kernel size becomes
elastic. The challenge is that the centering sub-kernels (e.g., 3x3 and 5x5) are shared and need
to play multiple roles (independent kernel and part of a large kernel). The weights of centered
sub-kernels may need to have different distribution or magnitude as different roles. Forcing them
to be the same degrades the performance of some sub-networks. Therefore, we introduce kernel
transformation matrices when sharing the kernel weights. We use separate kernel transformation
matrices for different layers. Within each layer, the kernel transformation matrices are shared
among different channels. As such, we only need 25× 25+ 9× 9 = 706 extra parameters to store
the kernel transformation matrices in each layer, which is negligible.

• Elastic Depth (Figure 5 right). To derive a sub-network that has D layers in a unit that originally
has N layers, we keep the first D layers and skip the last N −D layers, rather than keeping any
D layers as done in current NAS methods (Cai et al., 2019; Wu et al., 2019). As such, one depth
setting only corresponds to one combination of layers. In the end, the weights of the first D layers
are shared between large and small models.

• Elastic Width (Figure 6). Width means the number of channels. We give each layer the flexibility
to choose different channel expansion ratios. Following the progressive shrinking scheme, we first
train a full-width model. Then we introduce a channel sorting operation to support partial widths.
It reorganizes the channels according to their importance, which is calculated based on the L1
norm of a channel’s weight. Larger L1 norm means more important. For example, when shrinking
from a 4-channel-layer to a 3-channel-layer, we select the largest 3 channels, whose weights are
shared with the 4-channel-layer (Figure 6 left and middle). Thereby, smaller sub-networks are
initialized with the most important channels on the once-for-all network which is already well
trained. This channel sorting operation preserves the accuracy of larger sub-networks.

3.4 SPECIALIZED MODEL DEPLOYMENT WITH ONCE-FOR-ALL NETWORK

Having trained a once-for-all network, the next stage is to derive the specialized sub-network for a
given deployment scenario. The goal is to search for a neural network that satisfies the efficiency
(e.g., latency, energy) constraints on the target hardware while optimizing the accuracy. Since OFA
decouples model training from neural architecture search, we do not need any training cost in this
stage. Furthermore, we build neural-network-twins to predict the latency and accuracy given a neural
network architecture, providing a quick feedback for model quality. It eliminates the repeated search
cost by substituting the measured accuracy/latency with predicted accuracy/latency (twins).

Specifically, we randomly sample 16K sub-networks with different architectures and input image
sizes, then measure their accuracy on 10K validation images sampled from the original training set.
These [architecture, accuracy] pairs are used to train an accuracy predictor to predict the accuracy of
a model given its architecture and input image size2. We also build a latency lookup table (Cai et al.,
2019) on each target hardware platform to predict the latency. Given the target hardware and latency
constraint, we conduct an evolutionary search (Real et al., 2019) based on the neural-network-twins
to get a specialized sub-network. Since the cost of searching with neural-network-twins is negligible,

2Details of the accuracy predictor is provided in Appendix A.

6

Published as a conference paper at ICLR 2020

40

Performances of Sub-networks on ImageNet

Im
ag

eN
et

 T
op

-1
 A

cc
 (%

)

67

70

73

75

78
w/o PS w/ PS

D=2
W=3
K=3

D=2
W=3
K=7

D=2
W=6
K=3

D=2
W=6
K=7

D=4
W=3
K=3

D=4
W=3
K=7

D=4
W=6
K=3

D=4
W=6
K=7

2.5%
2.8%

3.5%
3.4% 3.3%

3.4%
3.7%

3.5%

Sub-networks under various architecture configurations
D: depth, W: width, K: kernel size

• Progressive shrinking consistently improves accuracy of sub-networks on ImageNet.Figure 7: ImageNet top1 accuracy (%) performances of sub-networks under resolution 224× 224.
“(D = d, W = w, K = k)” denotes a sub-network with d layers in each unit, and each layer has an
width expansion ratio w and kernel size k.

we only need 40 GPU hours to collect the data pairs, and the cost stays constant regardless of
#deployment scenarios.

4 EXPERIMENTS

In this section, we first apply the progressive shrinking algorithm to train the once-for-all network on
ImageNet (Deng et al., 2009). Then we demonstrate the effectiveness of our trained once-for-all
network on various hardware platforms (Samsung S7 Edge, Note8, Note10, Google Pixel1, Pixel2,
LG G8, NVIDIA 1080Ti, V100 GPUs, Jetson TX2, Intel Xeon CPU, Xilinx ZU9EG, and ZU3EG
FPGAs) with different latency constraints.

4.1 TRAINING THE ONCE-FOR-ALL NETWORK ON IMAGENET

Training Details. We use the same architecture space as MobileNetV3 (Howard et al., 2019). For
training the full network, we use the standard SGD optimizer with Nesterov momentum 0.9 and
weight decay 3e−5. The initial learning rate is 2.6, and we use the cosine schedule (Loshchilov &
Hutter, 2016) for learning rate decay. The full network is trained for 180 epochs with batch size 2048
on 32 GPUs. Then we follow the schedule described in Figure 3 to further fine-tune the full network3.
The whole training process takes around 1,200 GPU hours on V100 GPUs. This is a one-time training
cost that can be amortized by many deployment scenarios.

Results. Figure 7 reports the top1 accuracy of sub-networks derived from the once-for-all networks
that are trained with our progressive shrinking (PS) algorithm and without PS respectively. Due to
space limits, we take 8 sub-networks for comparison, and each of them is denoted as “(D = d, W =
w, K = k)”. It represents a sub-network that has d layers for all units, while the expansion ratio and
kernel size are set to w and k for all layers. PS can improve the ImageNet accuracy of sub-networks
by a significant margin under all architectural settings. Specifically, without architecture optimization,
PS can achieve 74.8% top1 accuracy using 226M MACs under the architecture setting (D=4, W=3,
K=3), which is on par with MobileNetV3-Large. In contrast, without PS, it only achieves 71.5%,
which is 3.3% lower.

4.2 SPECIALIZED SUB-NETWORKS FOR DIFFERENT HARDWARE AND CONSTRAINTS

We apply our trained once-for-all network to get different specialized sub-networks for diverse
hardware platforms: from the cloud to the edge. On cloud devices, the latency for GPU is measured
with batch size 64 on NVIDIA 1080Ti and V100 with Pytorch 1.0+cuDNN. The CPU latency is
measured with batch size 1 on Intel Xeon E5-2690 v4+MKL-DNN. On edge devices, including
mobile phones, we use Samsung, Google and LG phones with TF-Lite, batch size 1; for mobile GPU,

3Implementation details can be found in Appendix B.

7

Published as a conference paper at ICLR 2020

Model ImageNet MACs Mobile Search cost Training cost Total cost (N = 40)
Top1 (%) latency (GPU hours) (GPU hours) GPU hours CO2e (lbs) AWS cost

MobileNetV2 [31] 72.0 300M 66ms 0 150N 6k 1.7k $18.4k
MobileNetV2 #1200 73.5 300M 66ms 0 1200N 48k 13.6k $146.9k
NASNet-A [44] 74.0 564M - 48,000N - 1,920k 544.5k $5875.2k
DARTS [25] 73.1 595M - 96N 250N 14k 4.0k $42.8k
MnasNet [33] 74.0 317M 70ms 40,000N - 1,600k 453.8k $4896.0k
FBNet-C [36] 74.9 375M - 216N 360N 23k 6.5k $70.4k
ProxylessNAS [4] 74.6 320M 71ms 200N 300N 20k 5.7k $61.2k
SinglePathNAS [8] 74.7 328M - 288 + 24N 384N 17k 4.8k $52.0k
AutoSlim [38] 74.2 305M 63ms 180 300N 12k 3.4k $36.7k
MobileNetV3-Large [15] 75.2 219M 58ms - 180N 7.2k 1.8k $22.2k
OFA w/o PS 72.4 235M 59ms 40 1200 1.2k 0.34k $3.7k
OFA w/ PS 76.0 230M 58ms 40 1200 1.2k 0.34k $3.7k
OFA w/ PS #25 76.4 230M 58ms 40 1200 + 25N 2.2k 0.62k $6.7k
OFA w/ PS #75 76.9 230M 58ms 40 1200 + 75N 4.2k 1.2k $13.0k
OFALarge w/ PS #75 80.0 595M - 40 1200 + 75N 4.2k 1.2k $13.0k

Table 1: Comparison with SOTA hardware-aware NAS methods on Pixel1 phone. OFA decouples
model training from neural architecture search. The search cost and training cost both stay constant
as the number of deployment scenarios grows. “#25” denotes the specialized sub-networks are
fine-tuned for 25 epochs after grabbing weights from the once-for-all network. “CO2e” denotes CO2

emission which is calculated based on Strubell et al. (2019). AWS cost is calculated based on the
price of on-demand P3.16xlarge instances.

High (Low) Workload

High (Low) Battery

Specialized
sub-network

Number of Deployment Scenarios
 0 20 40 60 80

16x~1300x
reduction

direct deploy (no retrain)

train a once-for-all network

specialized sub-nets

Samsung Note10 Latency (ms)

75.4

cpu
F P

G A

Different Hardware / Constraint

De
sig

n
Co

st

Previous: O(N) design cost
Ours: O(1) design cost

8.
9%

Edge,

Full battery

Edge,

Low battery Cloud

Number of Deployment Scenarios
 0 20 40 60 80

cpu
F P

G A

Different Hardware / Constraint

De
sig

n
Co

st

Previous: O(N) design costEdge,

Full battery

Edge,

Low battery

Cloud

…

Architecture
Design

Train from
Scratch

Architecture
Design

Train from
Scratch

Architecture
Design

Train from
Scratch

Repeated architecture

design and model training

Note10

OFA #5 Acc Loss MobileNetV3-
Small

#5 Acc Loss MobileNetV3-
Large

Untitled 1 8.0 70.0 8.0 67.4 15.3

Untitled 2 8.9 71.0 10.8 70.4 22.0

Untitled 3 10.0 71.7

Untitled 4 10.9 72.6

11.7 73.4

13.0 73.8

14.1 74.3

15.1 74.6

15.8 74.8

17.0 75.0

18.5 75.1

19.4 75.5

20.0 75.6

21.3 75.7

21.7 75.9

22.4 76.1

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

6 9 12 15 18 21 24

OFA MobileNetV3-Large
MobileNetV3-Small

70.0

76.1

Train Once, 

 Get M
any

75.2

73.3

70.4

67.4
Tra

in Four T
im

es,

Get F
our

ProxylessNAS

FBNet

MnasNet

0 30000 60000 90000 120000

N = 40 N = 100

Table 1

40 100

ProxylessNAS 5700 8550

FBNet 6500 9750

MnasNet 45380 68070 453800 567250

14.3k

16.3k

1134.5k453.8k

specialized
sub-nets

Once-for-all
network

Edge,

Full battery

Cloud

Edge,

Full battery

Edge,

Low battery

Cloud

…

Architecture
Design

Train from
Scratch

Architecture
Design

Train from
Scratch

Architecture
Design

Train from
Scratch

Previous
Repeated architecture

design and model training

direct deploy
(no retrain)

Ours
Train once, specialize for

many deployment scenarios

…

Edge,

Low battery

Improved Efficiency

SOTA Accuracy on ImageNet Mobile Setting

CO2

ProxylessNAS

FBNet

MnasNet

OFA
0 12500 25000 37500 50000

Total cost (lbs of CO2 emission), N = 40 Table 1-1-1

40 100

ProxylessNAS 5700 8550

FBNet 6500 9750

MnasNet 45380 68070 453800 567250

OFA 300 300

5.7k
6.5k

454k

0.34k 1300x

1

Figure 8: OFA saves orders of magnitude design cost compared to NAS methods.

we use Jetson TX2 with Pytorch 1.0+cuDNN, batch size of 16; for embedded FPGA, we use Xilinx
ZU9EG and ZU3EG FPGAs with Vitis AI4, batch size 1.

Comparison with NAS on Mobile Devices. Table 1 reports the comparison between OFA and
state-of-the-art hardware-aware NAS methods on the mobile phone (Pixel1). OFA is much more
efficient than NAS when handling multiple deployment scenarios since the cost of OFA is constant
while others are linear to the number of deployment scenarios (N). With N = 40, the total CO2

emissions of OFA is 16× fewer than ProxylessNAS, 19× fewer than FBNet, and 1,300× fewer
than MnasNet (Figure 8). Without retraining, OFA achieves 76.0% top1 accuracy on ImageNet,
which is 0.8% higher than MobileNetV3-Large while maintaining similar mobile latency. We can
further improve the top1 accuracy to 76.4% by fine-tuning the specialized sub-network for 25 epochs
and to 76.9% by fine-tuning for 75 epochs. Besides, we also observe that OFA with PS can achieve
3.6% better accuracy than without PS.

OFA under Different Computational Resource Constraints. Figure 9 summarizes the results
of OFA under different MACs and Pixel1 latency constraints. OFA achieves 79.1% ImageNet top1
accuracy with 389M MACs, being 2.8% more accurate than EfficientNet-B0 that has similar MACs.
With 595M MACs, OFA reaches a new SOTA 80.0% ImageNet top1 accuracy under the mobile
setting (<600M MACs), which is 0.2% higher than EfficientNet-B2 while using 1.68× fewer MACs.
More importantly, OFA runs much faster than EfficientNets on hardware. Specifically, with 143ms
Pixel1 latency, OFA achieves 80.1% ImageNet top1 accuracy, being 0.3% more accurate and 2.6×
faster than EfficientNet-B2. We also find that training the searched neural architectures from scratch
cannot reach the same level of accuracy as OFA, suggesting that not only neural architectures but
also pre-trained weights contribute to the superior performances of OFA.

Figure 10 reports detailed comparisons between OFA and MobileNetV3 on six mobile devices.
Remarkably, OFA can produce the entire trade-off curves with many points over a wide range
of latency constraints by training only once (green curve). It is impossible for previous NAS
methods (Tan et al., 2019; Cai et al., 2019) due to the prohibitive training cost.

4https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html

8

Published as a conference paper at ICLR 2020

Compared with EfficientNet (FLOPs)

OFA - Train From
Scratch

#5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss EfficientNet #5 Acc Loss MnasNet #5 Acc Loss ProxylessNAS

Untitled 1 389 77.0 389 79.10 390 76.3

Untitled 2 482.0 77.6 482.0 79.60 700 78.8

Untitled 3 595.0 77.9 595.0 80.00 1000 79.8

Untitled 4

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

200 400 600 800 1,000 1,200

OFA OFA - Train from scratch EfficientNet

76.3

78.8

79.879.6
79.1

MACs (M)

80.0
1.68x MACs
reduction

Compared with EfficientNet (Pixel1)

OFA - Train From
Scratch

#5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss EfficientNet #5 Acc Loss MnasNet #5 Acc Loss ProxylessNAS

Untitled 1 78.7 76.4 78.7 78.70 163 76.3

Untitled 2 132.0 78.0 132.0 79.80 276 78.8

Untitled 3 143.0 78.2 143.0 80.10 375 79.8

Untitled 4

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

0 50 100 150 200 250 300 350 400
76.3

78.8

79.8
79.8

78.7

Google Pixel1 Latency (ms)

80.1
2.6x latency
reduction

3.8% higher
accuracy

2.8% higher
accuracy

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

200 400 600 800 1,000 1,200

OFA EfficientNet

76.3

78.8

79.879.6
79.1

MACs (M)

80.0
1.68x MACs
reduction

2.8% higher
accuracy

FLOPs

Once for All #5 Acc Loss Once for All #25

Untitled 1 59.0

Untitled 2 90.0

Untitled 3 154.0

Untitled 4 213.0

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

40 80 120 160 200 240

OFA MobileNetV3

75.2

73.3

70.4

67.4

69.8

72.6

75.2
76.3

MACs (M)

Pixel1

OFA - Train From
Scratch

Untitled 1 20.0

Untitled 2 28

Untitled 3 40

Untitled 4 58

Google Pixel1 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

18 24 30 36 42 48 54 60

OFA MobileNetV3
OFA - Train from scratch

75.2

73.3

70.4

67.4

76.4
74.9

73.3

71.4

4% higher
accuracy

1.5x speedup

77.0
77.6

77.9

76.4

78.0
78.2

1

Figure 9: OFA achieves 80.0% top1 accuracy with 595M MACs and 80.1% top1 accuracy with
143ms Pixel1 latency, setting a new SOTA ImageNet top1 accuracy on the mobile setting.

Note10

OFA #5 Acc Loss OFA #25 #5 Acc Loss MobileNetV3-
Small

#5 Acc Loss MobileNetV3-
Large

#5 Acc Loss

Untitled 1 8.0 70.0 8 71.4 8.0 67.4

Untitled 2 8.9 71.0 10.9 73.6 10.8 70.4

Untitled 3 10.0 71.7 15.8 75.5 15.3 73.3

Untitled 4 10.9 72.6 22.4 76.6 22.0 75.2

11.7 73.4

13.0 73.8

14.1 74.3

15.1 74.6

15.8 74.8

17.0 75.0

18.5 75.1

19.4 75.5

20.0 75.6

21.3 75.7

21.7 75.9

22.4 76.1

Note8

OFA #5 Acc Loss OFA #25 #5 Acc Loss MobileNetV3-
Small

#5 Acc Loss MobileNetV3-
Large

#5 Acc Loss

Untitled 1 22.0 68.5 22.0 70.4 22.0 67.4

Untitled 2 24.0 69.4 31.0 72.8 31.0 70.4

Untitled 3 26.0 70.3 49.0 74.9 49.0 73.3

Untitled 4 28.0 70.9 65.0 76.1 65.0 75.2

30.0 71.6

31.0 71.7

34.0 72.3

36.0 72.7

38.0 73.1

39.0 73.4

42.0 73.7

44.0 74.0

46.0 74.3

49.0 74.7

52.0 74.9

54.0 75.0

56.0 75.2

58.0 75.3

60.0 75.4

62.0 75.6

65.0 75.7

LG G8

OFA #5 Acc Loss OFA #25 #5 Acc Loss MobileNetV3-
Small

#5 Acc Loss MobileNetV3-
Large

#5 Acc Loss

Untitled 1 8.3 69.4 8.3 71.1 8.2 67.4

Untitled 2 8.9 70.0 11.3 73.0 11.0 70.4

Untitled 3 10.0 70.9 16.0 74.7 17.0 73.3

Untitled 4 11.3 72.1 24.0 76.4 24.0 75.2

13.3 73.0

14.0 73.5

15.3 73.9

16.0 74.3

18.0 75.0

19.0 75.2

20.0 75.3

21.0 75.4

22.0 75.6

23.0 75.8

24.0 76.0

Samsung S7 Edge Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

25 40 55 70 85 100

75.2

73.3

70.4

67.4

70.5

73.1

74.7

76.3

Samsung Note10 Latency (ms)
To

p-
1

Im
ag

eN
et

 A
cc

 (%
)

67

69

71

73

75

77

7 9 11 13 15 17 19 21 23

OFA #25 OFA MobileNetV3

75.2

73.3

70.4

67.4

76.6
75.5

73.6

71.4

Samsung Note8 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

20 26 32 38 44 50 56 62 68

75.2

73.3

70.4

67.4

76.1
74.9

72.8

70.4

LG G8 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

7 10 13 16 19 22 25

75.2

73.3

70.4

67.4

76.4

74.7

73.0

71.1

Google Pixel1 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

18 24 30 36 42 48 54 60

75.2

73.3

70.4

67.4

76.4
74.9

73.3

71.4

Google Pixel2 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

23 28 33 38 43 48 53 58 63 68

75.2

73.3

70.4

67.4

75.8
74.7

73.4

71.5

1

Figure 10: OFA consistently outperforms MobileNetV3 on mobile platforms.

OFA for Diverse Hardware Platforms. Besides the mobile platforms, we extensively studied the
effectiveness of OFA on six additional hardware platforms (Figure 11) using the ProxylessNAS
architecture space (Cai et al., 2019). OFA consistently improves the trade-off between accuracy and
latency by a significant margin, especially on GPUs which have more parallelism. With similar latency
as MobileNetV2 0.35, “OFA #25” improves the ImageNet top1 accuracy from MobileNetV2’s 60.3%
to 72.6% (+12.3% improvement) on the 1080Ti GPU. Detailed architectures of our specialized models
are shown in Figure 14. It reveals the insight that using the same model for different deployment
scenarios with only the width multiplier modified has a limited impact on efficiency improvement:
the accuracy drops quickly as the latency constraint gets tighter.

OFA for Specialized Hardware Accelerators. There has been plenty of work on NAS for general-
purpose hardware, but little work has been focused on specialized hardware accelerators. We
quantitatively analyzed the performance of OFA on two FPGAs accelerators (ZU3EG and ZU9EG)
using Xilinx Vitis AI with 8-bit quantization, and discuss two design principles.

Principle 1: memory access is expensive, computation is cheap. An efficient CNN should do as
much as computation with a small amount of memory footprint. The ratio is defined as the arithmetic
intensity (OPs/Byte). The higher OPs/Byte, the less memory bounded, the easier to parallelize.
Thanks to OFA’s diverse choices of sub-network architectures (1019) (Section 3.3), and the OFA

9

Published as a conference paper at ICLR 2020

2080ti-gpu64

Once for All #5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss

Untitled 1 5.5 68.3 5.5 70.0 5.9 59.7

Untitled 2 6.8 71.1 6.8 72.2 7.7 64.4

Untitled 3 10.9 73.8 10.9 74.4 12.3 68.9

Untitled 4 13.4 74.6 13.4 75.0 14.3 70.5

59

63

66

70

73

77

5 7 9 11 13 15

OFA #25 OFA
MnasNet MobileNetV2
Slimmable Nets

V100 gpu64

Once for All #5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss MobileNetV2 #5 Acc Loss MnasNet #5 Acc Loss

Untitled 1 4.8 69.0 4.8 71.6 4.9 59.7 4.9 60.3 4.8 62.4

Untitled 2 6.0 71.2 6.0 73.0 5.8 64.4 5.8 65.4 6.2 67.8

Untitled 3 9.2 74.6 9.2 75.3 9.2 68.9 9.2 69.8 9.3 71.5

Untitled 4 10.6 75.5 10.6 76.1 10.6 70.5 10.6 72.0 11.2 74.0

58

62

66

69

73

77

4 6 8 10 12

OFA #25 OFA MnasNet MobileNetV2 Slimmable Nets

1080ti gpu64

Once for All #5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss MobileNetV2 #5 Acc Loss MnasNet #5 Acc Loss

Untitled 1 11.6 70.1 11.6 72.6 12.2 59.7 12.2 60.3 11.9 62.4

Untitled 2 14.9 72.1 14.9 73.8 15.1 64.4 15.1 65.4 15.4 67.8

Untitled 3 22.0 74.6 22.0 75.3 24.0 68.9 24.0 69.8 23.4 71.5

Untitled 4 27.3 75.9 27.3 76.4 27.9 70.5 27.9 72.0 28.5 74.0

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

58

62

66

69

73

77

10 14 18 22 26 30

2080Ti Latency (ms)

NVIDIA V100 Latency (ms)
Batch Size = 64

60.3

65.4

69.8
72.0

60.3

65.4

69.8

72.0

NVIDIA 1080Ti Latency (ms)
Batch Size = 64

60.3

65.4

69.8
72.0

72.6
73.8

75.3 76.4

70.0

72.2

74.4 75.0

71.6
73.0

75.3

Intel Xeon CPU

Once for All #5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss MobileNetV2 #5 Acc Loss MnasNet #5 Acc Loss

Untitled 1 9.7 68.8 9.7 71.1 9.8 59.7 9.8 60.3 9.8 62.4

Untitled 2 10.9 70.2 10.9 72.0 10.6 64.4 10.6 65.4 11.0 67.8

Untitled 3 14.8 73.7 14.8 74.6 15.5 68.9 15.5 69.8 14.5 71.5

Untitled 4 16.8 75.0 16.8 75.7 17.8 70.5 17.8 72.0 17.5 74.0

58

62

66

69

73

77

9 11 13 15 17 19
Intel Xeon CPU Latency (ms)

Batch Size = 1

60.3

65.4

69.8

72.071.1

74.6
75.7

72.0

76.1

Jetson TX2 Latency (ms)
Batch Size = 16

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

58

62

66

69

73

77

30 45 60 75 90 105
58

62

66

69

73

77

1.5 2.0 2.5 3.0 3.5 4.0
58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
59.1

63.3

69.0
71.5

67.0
69.4

72.8
73.6

Xilinx ZU9EG FPGA Latency (ms)
Batch Size = 1 (Quantized)

Xilinx ZU3EG FPGA Latency (ms)
Batch Size = 1 (Quantized)

59.1

63.3

69.0
71.5

67.0

69.6

72.8
73.7

72.0
69.8

65.4

60.3

75.875.4

72.9

70.3

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0

1

Figure 11: Specialized OFA models consistently achieve significantly higher ImageNet accuracy
with similar latency than non-specialized neural networks on CPU, GPU, mGPU, and FPGA. More
remarkably, specializing for a new hardware platform does not add training cost using OFA.

FPGA Arithmetic Intensity (op/B)

MobileNetV2 MnasNet OFA

0.35 27 27.6 39.4

0.5 35.3 37.1 49.4

0.75 51.6 51.9 54.4

1.0 61 61.2 63.9

Ar
ith

m
et

ic
In

te
ns

ity

(O
PS

/B
yt

e)

0

18

35

53

70

1.0x

FPGA UltraZed-EG GOPS/s

MobileNetV2 MnasNet OFA

0.35 36 31.8 61.2

0.5 48.1 44.0 75.5

0.75 67.8 81.3

1.0 79 83.7

ZU
3E

G
 F

PG
A

(G
O

PS
/s

)

0

23

45

68

90

FPGA ZCU102 GOPS/s-1

MobileNetV2 MnasNet OFA

0.35 77 67.6 126.8

0.5 102.6 94.4 155.3

0.75 150.6 135.4 164.6

1.0 185 167.3 186.3

ZU
9E

G
 F

PG
A

(G
O

PS
/s

)

0

50

100

150

200
MobileNet-v2 MnasNet OFA (Ours)

(under different latency constraints)

on Xilinx ZU3EG FPGAon Xilinx ZU9EG FPGA

0.75x0.5x0.35x1.0x0.75x0.5x0.35x1.0x0.75x0.5x0.35x
(under different latency constraints)(under different latency constraints)

O
ut

 o
f B

RA
M

O
ut

 o
f B

RA
M

Ar
ith

m
et

ic
In

te
ns

ity

(O
PS

/B
yt

e)

0.0

12.5

25.0

37.5

50.0

ZU
9E

G
 F

PG
A

(G
O

PS
/s

)

0.0

40.0

80.0

120.0

160.0
MobileNet-v2 MnasNet OFA (Ours)

ZU
3E

G
 F

PG
A

(G
O

PS
/s

)

0.0

20.0

40.0

60.0

80.0

1

Figure 12: OFA models improve the arithmetic intensity (OPS/Byte) and utilization (GOPS/s)
compared with the MobileNetV2 and MnasNet (measured results on Xilinx ZU9EG and ZU3EG
FPGA).

model twin that can quickly give the accuracy/latency feedback (Section 3.4), the evolutionary search
can automatically find a CNN architecture that has higher arithmetic intensity. As shown in Figure 12,
OFA’s arithmetic intensity is 48%/43% higher than MobileNetV2 and MnasNet (MobileNetV3 is
not supported by Xilinx Vitis AI). Removing the memory bottleneck results in higher utilization and
GOPS/s by 70%-90%, pushing the operation point to the upper-right in the roofline model (Williams
et al., 2009), as shown in Figure 13. (70%-90% looks small in the log scale but that is significant).

Principle 2: the CNN architecture should be co-designed with the hardware accelerator’s cost model.
The FPGA accelerator has a specialized depth-wise engine that is pipelined with the point-wise
engine. The pipeline throughput is perfectly matched for 3x3 kernels. As a result, OFA’s searched
model only has 3x3 kernel (Figure 14, a) on FPGA, despite 5x5 and 7x7 kernels are also in the search
space. Additionally, large kernels sometimes cause “out of BRAM” error on FPGA, giving high cost.
On Intel Xeon CPU, however, more than 50% operations are large kernels. Both FPGA and GPU
models are wider than CPU, due to the large parallelism of the computation array.

5 CONCLUSION

We proposed Once-for-All (OFA), a new methodology that decouples model training from architecture
search for efficient deep learning deployment under a large number of hardware platforms. Unlike

10

Published as a conference paper at ICLR 2020

FPGA Arithmetic Intensity (op/B)

MobileNetV2 MnasNet OFA

0.35 27 27.6 39.4

0.5 35.3 37.1 49.4

0.75 51.6 51.9 54.4

1.0 61 61.2 63.9

Ar
ith

m
et

ic
In

te
ns

ity

(O
PS

/B
yt

e)
0

18

35

53

70

1.0x

FPGA UltraZed-EG GOPS/s

MobileNetV2 MnasNet OFA

0.35 36 31.8 61.2

0.5 48.1 44.0 75.5

0.75 67.8 81.3

1.0 79 83.7

ZU
3E

G
 F

PG
A

(G
O

PS
/s

)

0

23

45

68

90

FPGA ZCU102 GOPS/s-1

MobileNetV2 MnasNet OFA

0.35 77 67.6 126.8

0.5 102.6 94.4 155.3

0.75 150.6 135.4 164.6

1.0 185 167.3 186.3

ZU
9E

G
 F

PG
A

(G
O

PS
/s

)

0

50

100

150

200
MobileNet-v2 MnasNet OFA (Ours)

(under different latency constraints)

(b) on Xilinx ZU3EG FPGA(a) on Xilinx ZU9EG FPGA

0.75x0.5x0.35x1.0x0.75x0.5x0.35x1.0x0.75x0.5x0.35x
(under different latency constraints)(under different latency constraints)

�1

Figure 13: Quantative study of OFA’s roofline model on Xilinx ZU9EG and ZU3EG FPGAs (log
scale). OFA model increased the arithmetic intensity by 33%/43% and GOPS/s by 72%/92% on these
two FPGAs compared with MnasNet.

M
B

1
3x

3

C
on

v
3x

3

P
oo

lin
g

FC

164x164

M
B

4
3x

3

M
B

5
3x

3

M
B

6
3x

3

M
B

5
3x

3

M
B

6
3x

3

ZU3EG 4.1ms (R = 164)
(3x3_MBConv1_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

M
B

4
3x

3

M
B

4
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

4
3x

3

CPU 10.9ms (R = 144)
3x3_Conv_O40

(3x3_MBConv1_RELU6_O24
(5x5_MBConv4_RELU6_O32
(5x5_MBConv3_RELU6_O32

(3x3_MBConv3_RELU6_O56
(7x7_MBConv3_RELU6_O56
(5x5_MBConv4_RELU6_O104
(3x3_MBConv4_RELU6_O104

(7x7_MBConv3_RELU6_O104
(5x5_MBConv4_RELU6_O128
(7x7_MBConv4_RELU6_O128

(3x3_MBConv6_RELU6_O248
(3x3_MBConv4_RELU6_O248
(5x5_MBConv4_RELU6_O416

1x1_Conv_O1664
1664x1000_Linear

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
5x

5

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
7x

7

M
B

6
3x

3

M
B

4
3x

3

M
B

4
5x

5

P
oo

lin
g

FC

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
3x

3

M
B

4
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

4
3x

3

M
B

3
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

4
5x

5

M
B

3
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
7x

7

M
B

4
7x

7

M
B

6
3x

3

M
B

3
5x

5

P
oo

lin
g

FC

1

(a) 4.1ms latency on Xilinx ZU3EG (batch size = 1).

M
B

1
3x

3

C
on

v
3x

3

P
oo

lin
g

FC

164x164

M
B

4
3x

3

M
B

5
3x

3

M
B

6
3x

3

M
B

5
3x

3

M
B

6
3x

3

ZU3EG 4.1ms (R = 164)
(3x3_MBConv1_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

M
B

4
3x

3

M
B

4
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

4
3x

3

CPU 10.9ms (R = 144)
3x3_Conv_O40

(3x3_MBConv1_RELU6_O24
(5x5_MBConv4_RELU6_O32
(5x5_MBConv3_RELU6_O32

(3x3_MBConv3_RELU6_O56
(7x7_MBConv3_RELU6_O56
(5x5_MBConv4_RELU6_O104
(3x3_MBConv4_RELU6_O104

(7x7_MBConv3_RELU6_O104
(5x5_MBConv4_RELU6_O128
(7x7_MBConv4_RELU6_O128

(3x3_MBConv6_RELU6_O248
(3x3_MBConv4_RELU6_O248
(5x5_MBConv4_RELU6_O416

1x1_Conv_O1664
1664x1000_Linear

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
5x

5

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
7x

7

M
B

6
3x

3

M
B

4
3x

3

M
B

4
5x

5

P
oo

lin
g

FC

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
3x

3

M
B

4
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

4
3x

3

M
B

3
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

4
5x

5

M
B

3
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
7x

7

M
B

4
7x

7

M
B

6
3x

3

M
B

3
5x

5

P
oo

lin
g

FC

1

(b) 10.9ms latency on Intel Xeon CPU (batch size = 1).

M
B

1
3x

3

C
on

v
3x

3

P
oo

lin
g

FC

164x164

M
B

4
3x

3

M
B

5
3x

3

M
B

6
3x

3

M
B

5
3x

3

M
B

6
3x

3

ZU3EG 4.1ms (R = 164)
(3x3_MBConv1_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

M
B

4
3x

3

M
B

4
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

4
3x

3

CPU 10.9ms (R = 144)
3x3_Conv_O40

(3x3_MBConv1_RELU6_O24
(5x5_MBConv4_RELU6_O32
(5x5_MBConv3_RELU6_O32

(3x3_MBConv3_RELU6_O56
(7x7_MBConv3_RELU6_O56
(5x5_MBConv4_RELU6_O104
(3x3_MBConv4_RELU6_O104

(7x7_MBConv3_RELU6_O104
(5x5_MBConv4_RELU6_O128
(7x7_MBConv4_RELU6_O128

(3x3_MBConv6_RELU6_O248
(3x3_MBConv4_RELU6_O248
(5x5_MBConv4_RELU6_O416

1x1_Conv_O1664
1664x1000_Linear

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
5x

5

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
7x

7

M
B

6
3x

3

M
B

4
3x

3

M
B

4
5x

5

P
oo

lin
g

FC

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
3x

3

M
B

4
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

4
3x

3

M
B

3
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

4
5x

5

M
B

3
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
7x

7

M
B

4
7x

7

M
B

6
3x

3

M
B

3
5x

5

P
oo

lin
g

FC

1

(c) 14.9ms latency on NVIDIA 1080Ti (batch size = 64).

Figure 14: OFA can design specialized models for different hardware and different latency constraint.
“MB4 3x3” means “mobile block with expansion ratio 4, kernel size 3x3”. FPGA and GPU models are
wider than CPU model due to larger parallelism. Different hardware has different cost model, leading
to different optimal CNN architectures. OFA provides a unified and efficient design methodology.

previous approaches that design and train a neural network for each deployment scenario, we designed
a once-for-all network that supports different architectural configurations, including elastic depth,
width, kernel size, and resolution. It reduces the training cost (GPU hours, energy consumption, and
CO2 emission) by orders of magnitude compared to conventional methods. To prevent sub-networks
of different sizes from interference, we proposed a progressive shrinking algorithm that enables
a large number of sub-network to achieve the same level of accuracy compared to training them
independently. Experiments on a diverse range of hardware platforms and efficiency constraints
demonstrated the effectiveness of our approach. OFA provides an automated ecosystem to efficiently
design efficient neural networks with the hardware cost model in the loop.

ACKNOWLEDGMENTS

We thank NSF Career Award #1943349, MIT-IBM Watson AI Lab, Google-Daydream Research
Award, Samsung, Intel, Xilinx, SONY, AWS Machine Learning Research Award for supporting this

11

Published as a conference paper at ICLR 2020

research. We thank Samsung, Google and LG for donating mobile phones. We thank Shuang Wu and
Lei Deng for drawing the Figure 2.

REFERENCES

Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and Kris M Kitani. N2n learning: Network to
network compression via policy gradient reinforcement learning. In ICLR, 2018. 5

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by
network transformation. In AAAI, 2018a. 3

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network transformation
for efficient architecture search. In ICML, 2018b. 3

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task
and hardware. In ICLR, 2019. URL https://arxiv.org/pdf/1812.00332.pdf. 3, 6,
8, 9

Brian Cheung, Alex Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Superposition of
many models into one. In NeurIPS, 2019. 4

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In NeurIPS, 2015. 3

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009. 7

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420,
2019. 8

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015. 3

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In ICLR, 2016. 1, 3

Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu,
and Deming Chen. Fpga/dnn co-design: An efficient design methodology for 1ot intelligence on
the edge. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, 2019. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 4

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In ECCV, 2018. 1, 3

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. 5

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In ICCV
2019, 2019. 7, 8

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 1, 3

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017. 4

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q Weinberger.
Multi-scale dense networks for resource efficient image classification. In ICLR, 2018. 3

12

https://arxiv.org/pdf/1812.00332.pdf

Published as a conference paper at ICLR 2020

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016. 3

Weiwen Jiang, Lei Yang, Edwin Sha, Qingfeng Zhuge, Shouzhen Gu, Yiyu Shi, and Jingtong Hu.
Hardware/software co-exploration of neural architectures. arXiv preprint arXiv:1907.04650, 2019a.
3

Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, Qingfeng Zhuge, Yiyu Shi, and Jingtong Hu.
Accuracy vs. efficiency: Achieving both through fpga-implementation aware neural architecture
search. In Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6, 2019b. 3

Jason Kuen, Xiangfei Kong, Zhe Lin, Gang Wang, Jianxiong Yin, Simon See, and Yap-Peng
Tan. Stochastic downsampling for cost-adjustable inference and improved regularization in
convolutional networks. In CVPR, 2018. 3

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In NeurIPS, 2017. 3

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV,
2018. 2

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In ICLR,
2019. 3, 8

Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs
by selective execution. In AAAI, 2018. 3

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In ICCV, 2017. 3

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. 7

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In ECCV, 2018. 3

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In AAAI, 2019. 3, 6

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018. 1, 3, 4, 8

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. In ACL, 2019. 1, 8

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019. 3, 8

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In ECCV, 2018. 3

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual perfor-
mance model for floating-point programs and multicore architectures. Technical report, Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2009. 10

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In CVPR, 2019. 3, 6, 8

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman,
and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In CVPR, 2018. 3

13

Published as a conference paper at ICLR 2020

Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for channel numbers.
arXiv preprint arXiv:1903.11728, 2019a. 8

Jiahui Yu and Thomas Huang. Universally slimmable networks and improved training techniques. In
ICCV, 2019b. 3, 5

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. In
ICLR, 2019. 3, 4

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In CVPR, 2018. 1, 3

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. In ICLR,
2017. 3

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In ICLR, 2017.
3

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In CVPR, 2018. 3, 8

A DETAILS OF THE ACCURACY PREDICTOR

We use a three-layer feedforward neural network that has 400 hidden units in each layer as the
accuracy predictor. Given a model, we encode each layer in the neural network into a one-hot vector
based on its kernel size and expand ratio, and we assign zero vectors to layers that are skipped.
Besides, we have an additional one-hot vector that represents the input image size. We concatenate
these vectors into a large vector that represents the whole neural network architecture and input image
size, which is then fed to the three-layer feedforward neural network to get the predicted accuracy. In
our experiments, this simple accuracy prediction model can provide very accurate predictions. At
convergence, the root-mean-square error (RMSE) between predicted accuracy and estimated accuracy
on the test set is only 0.21%. Figure 15 shows the relationship between the RMSE of the accuracy
prediction model and the final results (i.e., the accuracy of selected sub-networks). We can find that
lower RMSE typically leads to better final results.

Once for All #25

Untitled 1 16.3 72.4

Untitled 2 8.7 72.2

Untitled 3 4.5 72.7

2.3 72.8

1.0 74.1

0.5 74.7

0.2 75.1

Ac
c

of
 S

el
ec

te
d

Su
b-

ne
t (

%
)

72.0

72.9

73.8

74.6

75.5

0 5 10 15 20
RMSE of Acc Prediction Model (%)

1

Figure 15: Performances of selected sub-networks using different accuracy prediction model.

B IMPLEMENTATION DETAILS OF PROGRESSIVE SHRINKING

After training the full network, we first have one stage of fine-tuning to incorporate elastic kernel size.
In this stage (i.e., K ∈ [7, 5, 3]), we sample one sub-network in each update step. The network is
fine-tuned for 125 epochs with an initial learning rate of 0.96. All other training settings are the same
as training the full network.

14

Published as a conference paper at ICLR 2020

Next, we have two stages of fine-tuning to incorporate elastic depth. We sample two sub-networks
and aggregate their gradients in each update step. The first stage (i.e., D ∈ [4, 3]) takes 25 epochs
with an initial learning rate of 0.08 while the second stage (i.e., D ∈ [4, 3, 2]) takes 125 epochs with
an initial learning rate of 0.24.

Finally, we have two stages of fine-tuning to incorporate elastic width. We sample four sub-networks
and aggregate their gradients in each update step. The first stage (i.e., W ∈ [6, 4]) takes 25 epochs
with an initial learning rate of 0.08 while the second stage (i.e., W ∈ [6, 4, 3]) takes 125 epochs with
an initial learning rate of 0.24.

15

	Introduction
	Related Work
	Method
	Problem Formalization
	Architecture Space
	Training the Once-for-all Network
	Specialized Model Deployment with Once-for-all Network

	Experiments
	Training the Once-for-all Network on ImageNet
	Specialized Sub-networks for Different Hardware and Constraints

	Conclusion
	Details of the Accuracy Predictor
	Implementation Details of Progressive Shrinking

