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ABSTRACT

While many sentiment classification solutions report high accuracy scores in prod-
uct or movie review datasets, the performance of the methods in niche domains
such as finance still largely falls behind. The reason of this gap is the domain-
specific language, which decreases the applicability of existing models, and lack
of quality labeled data to learn the new context of positive and negative in the spe-
cific domain. Transfer learning has been shown to be successful in adapting to new
domains without large training data sets. In this paper, we explore the effective-
ness of NLP transfer learning in financial sentiment classification. We introduce
FinBERT, a language model based on BERT, which improved the state-of-the-art
performance by 14 percentage points for a financial sentiment classification task
in FinancialPhrasebank dataset.

1 INTRODUCTION

With unprecedented amount of textual data being created every day, analyzing large bodies of text
from distinct domains like medicine or finance is of the utmost importance. Yet it is more difficult to
apply supervised NLP methods, like text classification, in these domains than it is for more general
language. The difficulty comes from two factors: 1) The most sophisticated classification methods
that make use of neural nets require vast amounts of labeled data and labeling domain-specific text
snippets requires costly expertise. 2) The NLP models trained on general corpora are not well-suited
to supervised tasks since domain-specific texts have a specialized language with unique vocabulary
and expressions.

NLP transfer learning methods look like a promising solution to both of the challenges mentioned
above, and are the focus of this paper. The core idea behind these models is first training a language
model on a very large corpus and then initializing down-stream models with the weights learned
from the language modeling task. The initialized layers can range from the single word embedding
layer Peters et al. (2018) to the whole model Howard & Ruder (2018). This approach should reduce
the size of the required labeled data since language models learn the language syntax and semantic in
an unsupervised way on a very large unlabeled corpora by predicting the next word. By further pre-
training a language model on a domain specific unlabeled corpus, the model can learn the semantic
relations in the text of the target domain, which is likely to have a different distribution than a general
corpus.

In this paper, we explore the effectiveness of using and fine-tuning a pre-trained language model,
BERT Devlin et al. (2018), in financial sentiment classification using the Financial PhraseBank
created by Malo et al. (2014) and FiQA Task-1 sentiment scoring dataset in Maia et al. (2018b).

The main contributions of this paper are the following:

• We introduce FinBERT, which is a language model based on BERT for financial NLP tasks.
We evaluate FinBERT on two financial sentiment analysis datasets, where we achieve the
state-of-the-art on FiQA sentiment scoring and Financial PhraseBank.

• We implement two other pre-trained language models, ULMFit and ELMo for financial
sentiment analysis and compare these with FinBERT.

• We conduct experiments to investigate several aspects of the model, including: effects of
further pre-training on financial corpus, training strategies to prevent catastrophic forgetting
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and fine-tuning only a small subset of model layers for decreasing training time without a
significant drop in performance.

2 FINBERT

BERT (Devlin et al., 2018) is a language model that consists of a set of transformer encoders
(Vaswani et al., 2017) stacked on top of each other. It defines the language modeling in a novel
way. Instead of predicting the next word given previous ones, BERT ”masks” a randomly selected
15% of all tokens. With a softmax layer over vocabulary on top of the last encoder layer the masked
tokens are predicted. A second task BERT is trained on is ”next sentence prediction”. Given two
sentences, the model predicts whether or not these two actually follow each other.

Following the previous work (Howard & Ruder, 2018) on the effectiveness of further pre-training a
language model on a target domain, we experimented with two approaches: The first is pre-training
the model on a relatively large corpus from the target domain. For that, we further pre-train a BERT
language model on a financial corpus. The second approach is pre-training the model only on the
sentences from the training classification dataset. Although the second corpus is much smaller, using
data from the direct target might provide better target domain adaptation.

Sentiment classification is conducted by adding a dense layer after the last hidden state of the [CLS]
token. This is the recommended practice for using BERT for any classification task (Devlin et al.,
2018). Then, the classifier network is trained on the labeled sentiment dataset. An overview of all
the steps involved in the procedure is presented on figure 2.
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Figure 1: Sample figure caption.

While the focus of this paper is classification, we also implement regression with almost the same ar-
chitecture on a different dataset with continuous targets. The only difference is that the loss function
being used is mean squared error instead of the cross entropy loss.

As it was pointed out by Howard & Ruder (2018), catastrophic forgetting is a significant danger with
this fine-tuning approach. Because the fine-tuning procedure can quickly cause model to ”forget”
the information from language modeling task as it tries to adapt to the new task. In order to deal
with this phenomenon, we apply three techniques as it was proposed by Howard & Ruder (2018):
slanted triangular learning rates, discriminative fine-tuning and gradual unfreezing.

Slanted triangular learning rate applies a learning rate schedule in the shape of a slanted triangular,
that is, learning rate first linearly increases up to some point and after that point linearly decreases.

Discriminative fine-tuning is using lower learning rates for lower layers on the network. Assume
our learning rate at layer l is α. Then for discrimination rate of θ we calculate the learning rate for
layer l− 1 as αl−1 = θαl. The assumption behind this method is that the lower layers represent the
deep-level language information, while the upper ones include information for actual classification
task. Therefore we fine-tune them differently.
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Table 1: Distribtution of sentiment labels and agreement levels in Financial PhraseBank

Agreement level Positive Negative Neutral Count

100% 25.2% 13.4% 61.4% 2262
75% - 99% 26.6% 9.8% 63.6% 1191
66% - 74% 36.7% 12.3% 50.9% 765
50% - 65% 31.1% 14.4% 54.5% 627

All 28.1% 12.4% 59.4% 4845

With gradual freezing, we start training with all layers but the classifier layer as frozen. During
training we gradually unfreeze all of the layers starting from the highest one, so that the lower level
features become the least fine-tuned ones. Hence, during the initial stages of training it is prevented
for model to ”forget” low-level language information that it learned from pre-training.

3 EXPERIMENTAL SETUP

3.1 DATASETS

In order to further pre-train BERT, we use a financial corpus we call TRC2-financial. It is a subset
of Reuters’ TRC21, which consists of 1.8M news articles that were published by Reuters between
2008 and 2010. We filter for some financial keywords in order to make corpus more relevant and
in limits with the compute power available. The resulting corpus, TRC2-financial, includes 46,143
documents with more than 29M words and nearly 400K sentences.

The main sentiment analysis dataset used in this paper is Financial PhraseBank2 from Malo et al.
2014 Malo et al. (2014). Financial Phrasebank consists of 4845 english sentences selected randomly
from financial news found on LexisNexis database. These sentences then were annotated by 16
people with background in finance and business. The annotators were asked to give labels according
to how they think the information in the sentence might affect the mentioned company stock price.
The dataset also includes information regarding the agreement levels on sentences among annotators.
The distribution of agreement levels and sentiment labels can be seen on table 1. We set aside 20%
of all sentences as test and 20% of the remaining as validation set. In the end, our train set includes
3101 examples. For some of the experiments, we also make use of 10-fold cross validation.

FiQA Maia et al. (2018b) is a dataset that was created for WWW ’18 conference financial opin-
ion mining and question answering challenge3. We use the data for Task 1, which includes 1,174
financial news headlines and tweets with their corresponding sentiment score. Unlike Financial
Phrasebank, the targets for this datasets are continuous ranging between [−1, 1] with 1 being the
most positive. Each example also has information regarding which financial entity is targeted in the
sentence. We do 10-fold cross validation for evaluation of the model for this dataset.

3.2 BASELINE METHODS

For contrastive experiments, we consider baselines with three different methods: LSTM classifier
with GLoVe embeddings, LSTM classifier with ELMo embeddings and ULMFit classifier. It should
be noted that these baseline methods are not experimented with as thoroughly as we did with BERT.
Therefore the results should not be interpreted as definitive conclusions of one method being better.

We implement two classifiers using bidirectional LSTM models. In both of them, a hidden size
of 128 is used, with the last hidden state size being 256 due to bidirectionality. A fully connected
feed-forward layer maps the last hidden state to a vector of three, representing likelihood of three

1The corpus can be obtained for research purposes by applying here:
https://trec.nist.gov/data/reuters/reuters.html

2The dataset can be found here: https://www.researchgate.net/publication/251231364
FinancialPhraseBank-v10

3Data can be found here: https://sites.google.com/view/fiqa/home
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Table 2: Experimental Results on the Financial PhraseBank dataset

All data Data with 100% agreement

Model Loss Accuracy F1 Score Loss Accuracy F1 Score

LSTM 0.81 0.71 0.64 0.57 0.81 0.74
LSTM with ELMo 0.72 0.75 0.7 0.50 0.84 0.77
ULMFit 0.41 0.83 0.79 0.20 0.93 0.91

LPS - 0.71 0.71 - 0.79 0.80
HSC - 0.71 0.76 - 0.83 0.86
FinSSLX - - - - 0.91 0.88

FinBERT 0.37 0.86 0.84 0.13 0.97 0.95

LPS (Malo et al., 2014), HSC (Krishnamoorthy, 2018) and FinSSLX (Maia et al., 2018b) results are
taken from their respective papers. For LPS and HSC, overall accuracy is not reported on the papers.
We calculated them using recall scores reported for different classes. For the models implemented
by us, we report 10-fold cross validation results.

labels. The difference between two models is that one uses GLoVe embeddings, while the other uses
ELMo embeddings. A dropout probability of 0.3 and a learning rate of 3e-5 is used in both models.
We train them until there is no improvement in validation loss for 10 epochs.

Classification with ULMFit consists of three steps. The first step of pre-training a language model is
already done and the pre-trained weights are released by Howard and Ruder (2018). We first further
pre-train AWD-LSTM language model on TRC2-financial corpus for 3 epochs. After that, we fine-
tune the model for classification on Financial PhraseBank dataset, by adding a fully-connected layer
to the output of pre-trained language model.

3.3 IMPLEMENTATION DETAILS

For our implementation BERT, we use a dropout probability of p = 0.1, warm-up proportion of
0.2, maximum sequence length of 64 tokens, a learning rate of 2e − 5 and a mini-batch size of
64. We train the model for 6 epochs, evaluate on the validation set and choose the best one. For
discriminative fine-tuning we set the discrimination rate as 0.85. We start training with only the
classification layer unfrozen, after each third of a training epoch we unfreeze the next layer. An
Amazon p2.xlarge EC2 instance with one NVIDIA K80 GPU, 4 vCPUs and 64 GiB of host memory
is used to train the models.

4 EXPERIMENTAL RESULTS

The results of FinBERT, the baseline methods and state-of-the-art on Financial PhraseBank dataset
classification task can be seen on table 2. We present the result on both the whole dataset and subset
with 100% annotator agreement.

For all of the measured metrics, FinBERT performs clearly the best among both the methods we
implemented ourselves (LSTM and ULMFit) and the models reported by other papers (LPS Malo
et al. (2014), HSC Krishnamoorthy (2018), FinSSLX Maia et al. (2018a)). LSTM classifier with no
language model information performs the worst. In terms of accuracy, it is close to LPS and HSC,
(even better than LPS for examples with full agreement), however it produces a low F1-score. That is
due to it performing much better in neutral class. LSTM classifier with ELMo embeddings improves
upon LSTM with static embeddings in all of the measured metrics. It still suffers from low average
F1-score due to poor performance in less represented labels. But it’s performance is comparable
with LPS and HSC, besting them in accuracy. So contextualized word embeddings produce close
performance to machine learning based methods for dataset of this size.

ULMFit significantly improves on all of the metrics and it doesn’t suffer from model performing
much better in some classes than the others. It also handily beats the machine learning based models
LPS and HSC. This shows the effectiveness of language model pre-training. AWD-LSTM is a very
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Table 3: Experimental Results on FiQA Sentiment Dataset

Model MSE R2

Yang et. al. (2018) 0.08 0.40
Piao and Breslin (2018) 0.09 0.41

FinBERT 0.07 0.55

Yang et al. (2018) and Piao & Breslin (2018) report results on the official test set. Since we don’t
have access to that set our MSE, and R2 are calculated with 10-Fold cross validation.

large model and it would be expected to suffer from over-fitting with this small of a dataset. But
due to language model pre-training and effective training strategies, it is able to overcome small
data problem. ULMFit also outperforms FinSSLX, which has a text simplification step as well as
pre-training of word embeddings on a large financial corpus with sentiment labels.

Figure 2: Test loss different training set sizes

FinBERT outperforms ULMFit, and consequently all of the other methods in all metrics. In order to
measure the performance of the models on different sizes of labeled training datasets, we ran LSTM
classifiers, ULMFit and FinBERT on 5 different configurations. The result can be seen on figure
2, where the cross entropy losses on test set for each model are drawn. 100 training examples is
too low for all of the models. However, once the training size becomes 250, ULMFit and FinBERT
starts to successfully differentiate between labels, with an accuracy as high as 80% for FinBERT.
All of the methods consistently get better with more data, but ULMFit and FinBERT does better
with 250 examples than LSTM classifiers do with the whole dataset. This shows the effectiveness
of language model pre-training.

The results for FiQA sentiment dataset, are presented on table 3. Our model outperforms state-of-
the-art models for both MSE and R2. It should be noted that the test set these two papers Yang
et al. (2018) Piao & Breslin (2018) use is the official FiQA Task 1 test set. Since we don’t have
access to that we report the results on 10-Fold cross validation. There is no indication on Maia et al.
(2018b) that the train and test sets they publish come from different distributions and our model can
be interpreted to be at disadvantage since we need to set aside a subset of training set as test set,
while state-of-the-art papers can use the complete training set.

5 EXPERIMENTAL ANALYSIS

5.1 EFFECTS OF FURTHER PRE-TRAINING

We first measure the effect of further pre-training on the performance of the classifier. We compare
three models: 1) No further pre-training (denoted by Vanilla BERT), 2) Further pre-training on
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Table 4: Performance with different pre-training strategies

Model Loss Accuracy F1 Score

Vanilla BERT 0.38 0.85 0.84
FinBERT-task 0.39 0.86 0.85
FinBERT-domain 0.37 0.86 0.84

Results are reported on 10-fold cross validation.

classification training set (denoted by FinBERT-task), 3) Further pre-training on domain corpus,
TRC2-financial (denoted by FinBERT-domain). Models are evaluated with loss, accuracy and macro
average F1 scores on the test dataset. The results can be seen on table 4.

The classifier that were further pre-trained on financial domain corpus performs best among the
three, though the difference is not very high. There might be four reasons behind this result: 1) The
corpus might have a different distribution than the task set, 2) BERT classifiers might not improve
significantly with further pre-training, 3) Short sentence classification might not benefit significantly
from further pre-training, 4) Performance is already so good, that there is not much room for im-
provement. We think that the last explanation is the likeliest, because for the subset of Financial
Phrasebank that all of the annotators agree on the result, accuracy of Vanilla BERT is already 0.96.
The performance on the other agreement levels should be lower, as even the humans can’t agree
fully on them. More experiments with another financial labeled dataset is necessary to conclude that
effect of further pre-training on domain corpus is not significant.

5.2 CATASTROPHIC FORGETTING

For measuring the performance of the techniques against catastrophic forgetting, we try four differ-
ent settings: No adjustment (NA), only with slanted triangular learning rate (STL), slanted triangu-
lar learning rate and gradual unfreezing (STL+GU) and the techniques in the previous one, together
with discriminative fine-tuning. We report the performance of these four settings with loss on test
function and trajectory of validation loss over training epochs. The results can be seen on table 5
and figure 3.

Figure 3: Validation loss trajectories with different training strategies

Applying all three of the strategies produce the best performance in terms of test loss and accuracy.
Gradual unfreezing and discriminative fine-tuning have the same reasoning behind them: higher
level features should be fine-tuned more than the lower level ones, since information learned from
language modeling are mostly present in the lower levels. We see from table 5 that using only dis-
criminative fine-tuning with slanted triangular learning rates performs worse than using the slanted
triangular learning rates alone. This shows that gradual unfreezing is the most important technique
for our case.
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Table 5: Performance with different fine-tuning strategies

Strategy Loss Accuracy F1 Score

None 0.48 0.83 0.83
STL 0.40 0.81 0.82
STL + GU 0.40 0.86 0.86
STL + DFT 0.42 0.79 0.79
All three 0.37 0.86 0.84

Results are reported on 10-fold cross validation. STL: slanted triangular learning rates, GU: gradual
unfreezing, DFT: discriminative fine-tuning.

Table 6: Performance on starting training from different layers

First layer unfreezed Loss Accuracy Training time

Embeddings layer 0.37 0.86 332s
Layer-1 0.39 0.83 302s
Layer-2 0.39 0.83 291s
Layer-3 0.38 0.83 272s
Layer-4 0.38 0.82 250s
Layer-5 0.40 0.83 240s
Layer-6 0.40 0.81 220s
Layer-7 0.39 0.82 205s
Layer-8 0.39 0.84 188s
Layer-9 0.39 0.84 172s
Layer-10 0.41 0.84 158s
Layer-11 0.45 0.82 144s
Layer-12 0.47 0.81 133s
Classification layer 1.04 0.52 119s

One way that catastrophic forgetting can show itself is the sudden increase in validation loss after
several epochs. As model is trained, it quickly starts to overfit when no measure is taken accordingly.
As it can be seen on the figure 3, that is the case when none of the aforementioned techniques are
applied. The model achieves the best performance on validation set after the first epoch and then
starts to overfit. While with all three techniques applied, model is much more stable. The other
combinations lie between these two cases.

5.3 TRAINING ONLY A SUBSET OF THE LAYERS

BERT is a very large model. Even on small datasets, fine-tuning the whole model requires significant
time and computing power. Therefore if a slightly lower performance can be achieved with fine-
tuning only a subset of all parameters, it might be preferable in some contexts. Especially if training
set is very large, this change might make BERT more convenient to use. Here we experiment with
fine-tuning only the last k many encoder layers.

The results are presented on table 6. Fine-tuning only the classification layer does not achieve close
performance to fine-tuning other layers. However fine-tuning only the last layer handily outperforms
the state-of-the-art machine learning methods like HSC. After Layer-9, the performance becomes
virtually the same, only to be outperformed by fine-tuning the whole model. This result shows that
in order to utilize BERT, an expensive training of the whole model is not mandatory. A fair trade-off
can be made for much less training time with a small decrease in model performance.

5.4 WHERE DOES THE MODEL FAIL?

With 97% accuracy on the subset of Financial PhraseBank with 100% annotator agreement, we
think it might be an interesting exercise to examine cases where the model failed to predict the true
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label. Therefore in this section we will present several examples where model makes the wrong
prediction. Also in Malo et al. (2014), it is indicated that most of the inter-annotator disagreements
are between positive and neutral labels (agreement for separating positive-negative, negative-neutral
and positive-neutral are 98.7%, 94.2% and 75.2% respectively). Authors attribute that the difficulty
of distinguishing ”commonly used company glitter and actual positive statements”. We will present
the confusion matrix in order to observe whether this is the case for FinBERT as well.

Example 1: Pre-tax loss totaled euro 0.3 million , compared to a
loss of euro 2.2 million in the first quarter of 2005 .

True value: Positive Predicted: Negative

Example 2: This implementation is very important to the operator
, since it is about to launch its Fixed to Mobile convergence
service in Brazil

True value: Neutral Predicted: Positive

Example 3: The situation of coated magazine printing paper will
continue to be weak .

True value: Negative Predicted: Neutral

The first example is actually the most common type of failure. The model fails to do the math in
which figure is higher, and in the absence of words indicative of direction like ”increased”, might
make the prediction of neutral. However, there are many similar cases where it does make the true
prediction too. Examples 2 and 3 are different versions of the same type of failure. The model fails
to distinguish a neutral statement about a given situation from a statement that indicated polarity
about the company. In the third example, information about the company’s business would probably
help.

73% of the failures happen between labels positive and negative, while same number is 5% for neg-
ative and positive. That is consistent with both the inter-annotator agreement numbers and common
sense. It is easier to differentiate between positive and negative. But it might be more challenging
to decide whether a statement indicates a positive outlook or merely an objective observation.

6 CONCLUSION AND FUTURE WORK

In this paper, we implemented BERT for the financial domain by further pre-training it on a financial
corpus and fine-tuning it for sentiment analysis (FinBERT). This work is the first application of
BERT for finance to the best of our knowledge and one of the few that experimented with further
pre-training on a domain-specific corpus. On both of the datasets we used, we achieved state-of-the-
art results by a significant margin. For the classification task, we increased the state-of-the art by
15% in accuracy.

In addition to BERT, we also implemented other pre-training language models like ELMo and ULM-
Fit for comparison purposes. ULMFit, further pre-trained on a financial corpus, beat the previous
state-of-the art for the classification task, only to a smaller degree than BERT. These results show
the effectiveness of pre-trained language models for a down-stream task such as sentiment analysis
especially with a small labeled dataset. The complete dataset included more than 3000 examples, but
FinBERT was able to surpass the previous state-of-the art even with a training set as small as 500 ex-
amples. This is an important result, since deep learning techniques for NLP have been traditionally
labeled as too ”data-hungry”, which is apparently no longer the case.

We conducted extensive experiments with BERT, investigating the effects of further pre-training
and several training strategies. We couldn’t conclude that further pre-training on a domain-specific
corpus was significantly better than not doing so for our case. Our speculation is that BERT already
performs good enough with our dataset that there is not much room for improvement that further pre-
training can provide. We also found that learning rate regimes that fine-tune the higher layers more
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aggressively than the lower ones perform better and are more effective in preventing catastrophic
forgetting. Another conclusion from our experiments was that, comparable performance can be
achieved with much less training time by fine-tuning only the last 2 layers of BERT.
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