

What Makes It Testable?

Conceptual Model for Safety Quantification

Edward Schwalb1, Bernhard Bieder2, Daniel Wiesenhütter2

Abstract
We propose a simple conceptual scenario based
model to formalize and quantify safety validation.
We introduce a failover model, whereby overall
failure rates are reduced exponentially in the number
of stages added, but the validation effort needed
only increases linearly in the number of stages. We
address validation of rare situations using synthetic
data. We introduce multi-scenario and multi-model
training and testing to quantify operational safety
under poor conditions, failure and emergencies.
Finally, we discuss regression introduced by a
learning process, and hypothesize that
safety-regression can be avoided in a broad class of
system revisions.

1.0 Introduction
A number of organizations are conducting road tests for
autonomous cars. Some of those tests and datasets, e.g.,
Waymo and Tesla, cover hundreds of thousands of miles.
The effort level, cost and duration required for end-to-end
testing renders validation and verification of (hardware or
software) changes prohibitively expensive. The question
we are asking is, how do we know when sufficient testing
was done? How can we quantify safety?

 In a recent position paper, Sanjit et al [1] describe many
of the key challenges of Verified AI. Among those
challenges included modeling of the environment and the
systems that learn, quantifying metrics about the training
data, lack of specification at various levels and models for
run-time quantitative verification. In contrast, Tim Menzies
and Charles Pecheur describe the approach NASA took for
verification and validation of the Remote Agent Experiment
(RAX) system which ran the deep-space probe without help
from mission control [2]. The NASA effort clearly
demonstrates that there are enough readily-available
methods that enable V&V of AI systems. The control logic
of RAX, however, was developed against handcrafted
specifications and using handcrafted rules rather than by
automated learning algorithms. The challenges facing us
with autonomous vehicles are such that neither the
specification nor the logic are handcrafted.

Figure 1: Basic concepts supporting collaboration.

Rather than present yet another learning model, algorithm,
system architecture or framework, in this workshop paper
we would like to present a simple conceptual model which
enables quantifying safety, and further simplifies and
accelerates collaboration among disparate teams.

 Consider the conceptual model depicted in Figure 1. We
introduce the notion of a capability C, such as”self
parking” or “detecting stop sign”. We define the notion of
a scenario S, which specifies the content of a dataset
originating from a simulation or a live test drive; see
www.OpenScenario.org for a standardization approach to
scenario specification. An environment E is always
implied by a scenario S. Similarly, validation is performed
by rules prescribed by the capability; not the scenario. The
driving model M is conceptually comprised of a perception
Convolutional Neural Network (CNN) and a reasoning
Deep Q Network (DQN) component.

2.0 Scenario Based Failover Model
Our goal is to quantify safety. As an
example, given C=“stop sign detection”
and S as the stop sign scenarios depicted
in Figure 2, determine the rate of failing
C, i.e. “stop sign detection”, with a
confidence of 95%. The notion of
scenarios enables such quantification.
Estimation of confidence further requires
determining distribution of such
scenarios based on real data such as the
KITTI dataset [3], and others.

Figure 3: Failover model for a simple cascading classifier.

1

Conceptual Model for Safety Quantification

Definition 1: Given a capability C and a set S of scenarios:
a) The model M passes C for s∈S, denoted M⇒Cs, if the
output of the simulation satisfies the requirement defined by
capability C for s; otherwise, we say that M fails C for s,
denoted M⇏Cs.
b) The failover rate of M on C for s, denoted
failoverRate(M,Cs), is the count of scenarios s∈S such
that M⇏Cs, divided by the total number of scenarios |S|,
namely |{ s∈S | M⇏Cs }| / |S|.
c) The confidence P of a failover rate f on S for capability
C, denoted Pc(S,f) is an estimate of confidence that
f<failoverRate(M,Cs); the specific method for computing
the confidence is not in scope for this paper.
d) A set of scenarios required to validate a model, for a
specific confidence measurement heuristic, denoted
scenarios(C,M,f,p), is any set of scenarios satisfying
p < Pc(scenarios(M,f,p), f). Note that many sets of
scenarios may satisfy this condition.

Consider the simple cascading classifier depicted in Fig 3.
Denote M(s) as the classification by M for a scenario s, and
let Mi denote the model for stage i. The Fig 3 design is
M(s) = not(not(M1(s)) and not(M2(s)) and not(M3(s))).

 This means that, if, for example, the failover rate for Mi
is O(10-3), namely one of 1000 scenarios fails, then the
overall fail rate of M would be proportional to O(10-9) and
thus require O(109) scenarios to quantify the failure rate.

Definition 1 applies to the Fig 3 staged classifier design for
C=”detect stop sign” as follows:
a) If (M1⇒Cs) or (M2⇒Cs) or (M3⇒Cs) then M⇒Cs.
b) failoverRate(M,Cs) = ∏i failoverRate(Mi,Cs).

 To derive the overall failure rate for M, first quantify
failover in each of the stages Mi separately, and then
multiply the failover rates of the individual stages, namely
Ftotal = F1×F2×F3. In contrast, it is sufficient to validate each
stage separately. Thus, the total number of scenarios
required to quantify failure of M is proportional to the sum,
namely Stotal = S1+S2+S3. Consequently, for a given p and f,

|scenarios(C,M,f,p)| ∝ |∑i scenarios(C,Mi,f,p)|.
Thus, as depicted in Fig 3, whereas the overall failure rate
Ftotal decreases exponentially, the number of scenarios
required for validation Stotal increases linearly. As an
example, for a 3-stage cascading classifier design with
overall failover rate of O(10-9), we can reduce the number of
testing scenarios from O(109) to O(103), namely reduction of
testing complexity by 6 orders of magnitude.

 The more general case is a classifier DAG depicted in
Figure 4. Each path along the arrows represents a cascade
and each scenario propagates along all paths.

Figure 4: Failover DAG, whereby every path along the arrows
represents a cascaded classifier as in Fig 3.

Proposition 1: A failover model in which failover paths
form a DAG but detection passes directly to the output, can
be validated using a number of scenarios which is
proportional to the length of the longest failover path.

The implication of this DAG failover model is as follows:
The data shown as input to a downstream classifier Cj is
filtered to exclude items detected by an upstream classifier
Ci. Further, each scenario such that M⇒Cs is passed by a
specific classifier; thus, we can partition the set of scenarios
according to the classifier which passes them.

 In summary, the premise of this paper is that, through the
use of scenarios and a DAG failover model, it is possible to
standardize training, testing, and quantify safety of
autonomous driving agents. Such quantification enables
reduction of the exponential amount of testing needed
down to a linear amount proportional to the longest
path on the DAG.

3.0 Training Rare Events using Synthetic Data
Testing is needed to quantify safety after a system revision.
The premise of a safe design is that failures are very rare.
Consequently, encountering all failure scenarios in a live
test drive would require testing millions of miles. It is not
practical to perform such a testing for each software
revision, or even upon release of a vehicle model.

 This gives rise to the need for using simulation to
quantify safety over synthetic data. Fig 5 depicts the
results of using NVIDIA DIGIT DetectNet [4] and
applying the techniques described in [5,6]. We trained a
standard DetectNet CNN on synthetic images of
self-balancing scooters, which are not commonly observed
on streets and thus not present in the KITTI dataset. The
training was basic and used uniform colors without data
augmentation. The trained DetectNet CNN was
subsequently tested on real data.

2

Conceptual Model for Safety Quantification

Figure 5: Training rare events on synthetic data, and testing on
specialized street data.

The results show that it is possible to obtain effective
detection of self-balancing scooters within real images after
training the DetectNet CNN on synthetic data.

 The failover model DAG approach depicted in Figs 3,4
further allows replacing the output of a component with its
corresponding ground truth, thus decoupling an individual
component testing from others. More specifically, filtering
the training and testing set to include only images which
failed detection from upstream classifiers constitutes a
simple extension to a training approach which sends all
samples to all components. Note however that the samples
fed into downstream classifiers due to a failover include all
additional features accumulated from upstream classifiers
beyond the input provided to the first stage classifier.

 Once a DAG is defined, it is further possible to inject
controlled failures at each component. For example, as
depicted in Fig 6, it is possible to inject a failure of the
perception layer, e.g., causing a specific vehicle or person
to be undetected. Similarly, Vires Test Drive enables
simulating poor conditions using plugins which render
noise over each frame. To represent failing breaks or
slippery roads, or blown out tires, Vires Test Drive allows
changing the physical vehicle model based on the scenario.

Figure 6: Quantifying safety of operation during poor conditions,
emergency and malfunction.

Figure 7: Ability to mapping of scenarios to models gives rise to
the need for a model selector.

4.0 Multi-Model Training, Testing and Validation
A typical training dataset comprises of a stream of video
frames or images associated with ground truth data. In
many cases these streams describe multiple scenarios. As
such, there is a need to identify the time-intervals of each
scenario, and extract the images relevant to each scenario.

 Fig 7 depicts an approach for extracting scenarios from a
dataset stream. The dataset is fed into a scenario detector,
which groups images according to the applicable scenarios.
The scenario detector can be used to determine the
distribution of scenarios in a dataset, which when combined
with failure data, can be used to quantify the confidence
output of the validator from Fig 1.

 Emergency situations, such as failure of the braking
system, would be represented by a separate physical
vehicle model, and trained on a separate CNN and DQN.
This gives rise to the a generalized model matrix depicted
in Fig 7, whereby for each scenario a model selector
associates a specific physical model, a specific perception
CNN and a specific DQN reasoner. The model selection
rules can be handcrafted, or may be learned automatically.

 Each of the CNNs, and possibly the DQNs, in the model
matrix of Fig 7 is a DAG following the failover model in
Figs 3,4. The input images need to be partitioned
according to the applicable models. Each of the stages can
be decoupled from the other stages for the purpose of
training and testing, further partitioning the images.

 In summary, the overall partitioning of the training and
testing images is performed over: a) scenarios, b) models in
the matrix, c) and stages for each model. It is desirable to
decrease exponentially the overall failure rates by adding
stages. Using the DAG failover model, the total number
partitions required, and the number of images and labels
needed within each partition, grows linearly with the
number of stages, rather than exponentially.

3

Conceptual Model for Safety Quantification

5.0 Regression Testing
Software development practices typically use regression
testing and other means to regularly test functionality after
revisions are made. It is common to find that functional
regressions are introduced by changes. We therefore
propose extending the state of the art training algorithms to
accommodate regression testing, and continuous integration

 For the purpose of the definitions berlow, we represent a
system as a model, and thus a system revision reduces to a
model revision.

Definition 2: Given a capability C and a scenario s, Model
revision M2 is regressed relative to M2 if and only if

M1⇒Cs and M2⇏Cs (regression)

To avoid regressive driving agents, we propose a new
learning task, which reduces loss (to improve mAP or
F-score) without “unlearning” correct behavior identified
critical for specific capabilities and scenarios.

Definition 3: (avoid-unlearning) Given an initial set of
parameters 𝚹init and a training data set D comprising of
samples and ground truths, find a new set of parameters
𝚹new which minimize loss, but does not modify the
classification of a subset D’⊂ D.

 The initial set of parameters 𝚹init represents a pre-trained
model. The subset D’⊂ D represents the regression tests.
The learning task is to minimize loss (and improve
accuracy), but without breaking the regression tests.

 Next, assuming that the safety testing of a revision M1 is
valid, we need to ensure that the same automated procedure
can be used for safety testing of a subsequent revision M2.

Definition 4: Model M2 is safety-test-regressive (STR)
compared to M1 if and only if M2 requires additional
scenarios for validation as compared to M1, namely it is not
possible to satisfy

∀ C,f,p scenarios(C,M2,f,p) ⊈ scenarios(C,M1,f,p)

The premise of preventing STR is to prevent the need to
change the (automated) safety testing procedures.

Hypothesis: It is possible to identify a wide range of
system revision types which do not cause STR.

The intuition behind this hypothesis is that small changes,
such as weight initialization and adjustments to training
data, should not introduce STR. It should be possible to
add new sensors and add classifier stages without
introducing STR. If should further be possible to change
physical characteristics of a vehicle, such as engine and

tires, without introducing STR, if the physical system is
encapsulated by an appropriate trajectory control model.

6.0 Conclusion
We propose to enable quantification of safety by
formalizing scenario specifications. We further suggest to
organize the scenarios according to the capabilities they are
used to validate. As an example, the scenarios needed to
quantify safety of lane changes are different from the
scenarios needed to quantify safety of self parking.
 We introduce a simple failover model, leading to a
simple conceptual safety pass/fail decision. We argue that
classifier failure rate reduces exponentially as stages are
added. We then introduce a DAG failure model show how
to reduce the number of scenarios needed to quantify safety
from an exponential to linear in the number of stages along
a path in the DAG.
 Even after such reductions, quantifying safety requires
processing of a large number of scenarios to ensure
coverage of a wide range of rare events. For a given
scenario, we argue that training and testing on synthetic
data is an effective alternative to training on real data. We
describe methods of training using dataset comprising
multiple scenarios, and how partitioning can be used to
train and test a model matrix when simulating emergencies
and operation during poor conditions or failures.
 Finally, we stress that identifying and avoiding
regression is critical. Regressive behavior of learning
agents occurs when a previously passing scenario fails. We
propose a new learning task whereby loss is minimized
without breaking regression tests. We further propose to
focus on avoiding Safety Testing Regression (STR), which
would invalidate the set of scenarios used for quantifying
safety. Finally, we hypothesise that for a broad class of
revisions would not cause STR.

References
[1] Seshia S.A, Sadigh D. and Sastry S.S, Towards Verified
Artificial Intelligence, 2016

[2] Menzies, T., Pecheur, C.: Verification and validation and
artificial intelligence. In: Zelkowitz, M. (ed.) Advances in
Computers, vol. 65, Elsevier, Amsterdam (2005)

[3] A Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets
robotics: The KTITI dataset. Inter.Jnational Journal of Robotics
Research (IJRR), 32(11):1231-1237

[4] DetectNet: Deep Neural Network for Object Detection in
DIGITS https://devblogs.nvidia.com

[5] Hoiem, D., Chodpathumwan, Y., and Dai, Q. 2012.
Diagnosing Error in Object Detectors. Computer Vision – ECCV
2012, Springer Berlin Heidelberg, 340–353.

[6] Szegedy, C., Liu, W., Jia, Y., et al. 2014. Going Deeper with
Convolutions. arXiv http://arxiv.org/abs/1409.4842.

4

https://devblogs.nvidia.com/

