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Abstract 
We propose a simple conceptual scenario based       
model to formalize and quantify safety validation.       
We introduce a failover model, whereby overall       
failure rates are reduced exponentially in the number        
of stages added, but the validation effort needed        
only increases linearly in the number of stages. We         
address validation of rare situations using synthetic       
data. We introduce multi-scenario and multi-model      
training and testing to quantify operational safety       
under poor conditions, failure and emergencies.      
Finally, we discuss regression introduced by a       
learning process, and hypothesize that     
safety-regression can be avoided in a broad class of         
system revisions. 

 

1.0 Introduction 
A number of organizations are conducting road tests for 
autonomous cars.  Some of those tests and datasets, e.g., 
Waymo and Tesla, cover hundreds of thousands of miles. 
The effort level, cost and duration required for end-to-end 
testing renders validation and verification of (hardware or 
software) changes prohibitively expensive.  The question 
we are asking is, how do we know when sufficient testing 
was done?  How can we quantify safety?  

    In a recent position paper, Sanjit et al [1] describe many 
of the key challenges of ​Verified AI​.  Among those 
challenges included modeling of the environment and the 
systems that learn, quantifying metrics about the training 
data, lack of specification at various levels and models for 
run-time quantitative verification.  In contrast, Tim Menzies 
and Charles Pecheur describe the approach NASA took for 
verification and validation of the Remote Agent Experiment 
(RAX) system which ran the deep-space probe without help 
from mission control [2].  The NASA effort clearly 
demonstrates that there are enough readily-available 
methods that enable V&V of AI systems.  The control logic 
of RAX, however, was developed against handcrafted 
specifications and using handcrafted rules rather than by 
automated learning algorithms.  The challenges facing us 
with autonomous vehicles are such that neither the 
specification nor the logic are handcrafted. 

 
 

 
Figure 1:​ Basic concepts supporting collaboration. 
 

Rather than present yet another learning model, algorithm, 
system architecture or framework, in this workshop paper 
we would like to present a simple conceptual model which 
enables quantifying safety, and further simplifies and 
accelerates collaboration among disparate teams. 

    Consider the conceptual model depicted in Figure 1.  We 
introduce the notion of a capability ​C​, such as”self 
parking” or “detecting stop sign”.  We define the notion of 
a scenario ​S​, which specifies the content of a dataset 
originating from a simulation or a live test drive; see 
www.OpenScenario.org​ for a standardization approach to 
scenario specification.  An environment ​E​ is always 
implied by a scenario ​S​.  Similarly, validation is performed 
by rules prescribed by the capability; not the scenario.  The 
driving model M is conceptually comprised of a perception 
Convolutional Neural Network (CNN) and a reasoning 
Deep Q Network (DQN) component. 
 

2.0 Scenario Based Failover Model 
Our goal is to quantify safety.  As an 
example, given ​C=​“stop sign detection” 
and ​S​ as the stop sign scenarios  depicted 
in Figure 2, determine the rate of failing 
C, i.e. “stop sign detection”, with a 
confidence of 95%.  The notion of 
scenarios enables such quantification. 
Estimation of confidence further requires 
determining distribution of such 
scenarios based on real data such as the 
KITTI dataset [3], and others. 

 
Figure 3:​ Failover model for a simple cascading classifier. 

1 



 
Conceptual Model for Safety Quantification 

Definition 1:​ Given a capability ​C​ and a set ​S ​of scenarios: 
a) The model ​M​ ​passes C for s​∈S, denoted ​M​⇒​Cs​, ⁣if the 
output of the simulation satisfies the requirement defined by 
capability ​C​ for ​s​; otherwise, we say that ​M fails C for s, 
denoted ​M​⇏​Cs.  
b) The failover rate of ​M​ on ​C​ for ​s​, denoted 
failoverRate​(M,Cs)​, is the count of scenarios ​s​∈S such 
that ​M​⇏​Cs, ​divided by the total number of scenarios |S|, 
namely |{ ​s​∈S | ​M​⇏​Cs​ }| / |​S​|. 
c) The confidence ​P​ of a failover rate ​f​ on ​S​ for capability 
C​, denoted ​Pc(S,f)​ is an estimate of confidence that 
f<failoverRate(M,Cs)​; the specific method for computing 
the confidence is not in scope for this paper. 
d) A set of scenarios required to validate a model, for a 
specific confidence measurement heuristic, denoted 
scenarios​(C,M,f,p)​, is ​any​ set of scenarios satisfying 
p < Pc( scenarios(M,f,p), f).​  Note that many sets of 
scenarios may satisfy this condition. 

Consider the simple cascading classifier depicted in Fig 3. 
Denote M(s) as the classification by M for a scenario ​s, ​and 
let M​i​ denote the model for stage i.  The Fig 3 design is 
M(s) = not( not(M​1​(s)) and not(M​2​(s)) and not(M​3​(s)) ).  

    This means that, if, for example, the failover rate for M​i 
is O(10​-3​), namely one of 1000 scenarios fails, then the 
overall fail rate of M would be proportional to O(10​-9​) and 
thus require O(10​9​) scenarios to quantify the failure rate.  

Definition 1 applies to the Fig 3 staged classifier design for 
C=”detect stop sign” as follows: 
a) If (​M​1​⇒​Cs​) or (​M​2​⇒​Cs​) or (​M​3​⇒​Cs​) then ​M​⇒​Cs​.  
b) ​failoverRate(M,Cs) = ​∏​i​ ​failoverRate(M​i​,Cs)​. 

    To derive the overall failure rate for M, first quantify 
failover in each of the stages M​i​ separately, and then 
multiply the failover rates of the individual stages, namely 
F​total​ = F​1​×F​2​×F​3​.  In contrast, it is sufficient to validate each 
stage separately.  Thus, the total number of scenarios 
required to quantify failure of M is proportional to the sum, 
namely S​total​ = S​1​+S​2​+S​3​.  Consequently, for a given p and f,  

|scenarios(C,M,f,p)| ​∝​ |∑​i​ scenarios(C,M​i​,f,p)|.  
Thus, as depicted in Fig 3, whereas the overall failure rate 
F​total​ decreases exponentially, the number of scenarios 
required for validation S​total​ increases linearly.  As an 
example, for a 3-stage cascading classifier design with 
overall failover rate of O(10​-9​), we can reduce the number of 
testing scenarios from O(10​9​) to O(10​3​), namely reduction of 
testing complexity by ​6​ orders of magnitude. 

    The more general case is a classifier DAG depicted in 
Figure 4.  Each path along the arrows represents a cascade 
and each scenario propagates along all paths. 

 

 
Figure 4:​ Failover DAG, whereby every path along the arrows 
represents a cascaded classifier as in Fig 3. 
 

Proposition 1:​ A failover model in which failover paths 
form a DAG but detection passes directly to the output, can 
be validated using a number of scenarios which is 
proportional to the length of the longest failover path. 
 

The implication of this DAG failover model is as follows: 
The data shown as input to a downstream classifier ​C​j​ is 
filtered to exclude items detected by an upstream classifier 
C​i​.  Further, each scenario such that ​M​⇒​Cs ​is passed by a 
specific classifier; thus, we can partition the set of scenarios 
according to the classifier which passes them. 

    In summary, the premise of this paper is that, through the 
use of scenarios and a DAG failover model, it is possible to 
standardize training, testing, and quantify safety of 
autonomous driving agents.  Such quantification enables 
reduction of the exponential amount of testing needed 
down to a linear amount proportional to the longest 
path on the DAG​. 
 

3.0 Training Rare Events using Synthetic Data 
Testing is needed to quantify safety after a system revision. 
The premise of a safe design is that failures are very rare. 
Consequently, encountering all failure scenarios in a live 
test drive would require testing millions of miles.  It is not 
practical to perform such a testing for each software 
revision, or even upon release of a vehicle model. 

     ​This gives rise to the need for using simulation to 
quantify safety over synthetic data.  Fig 5 depicts the 
results of using NVIDIA DIGIT DetectNet [4] and 
applying the techniques described in [5,6].  We trained a 
standard DetectNet CNN on synthetic images of 
self-balancing scooters, which are not commonly observed 
on streets and thus not present in the KITTI dataset.  The 
training was basic and used uniform colors without data 
augmentation.  The trained DetectNet CNN was 
subsequently tested on real data. 
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Figure 5:​ Training rare events on synthetic data, and testing on 
specialized street data. 

The results show that it is possible to obtain effective 
detection of self-balancing scooters within real images after 
training the DetectNet CNN on synthetic data. 

    The failover model DAG approach depicted in Figs 3,4 
further allows replacing the output of a component with its 
corresponding ground truth, thus decoupling an individual 
component testing from others.  More specifically, filtering 
the training and testing set to include only images which 
failed detection from upstream classifiers constitutes a 
simple extension to a training approach which sends all 
samples to all components.  Note however that the samples 
fed into downstream classifiers due to a failover include all 
additional features accumulated from upstream classifiers 
beyond the input provided to the first stage classifier.  

    Once a DAG is defined, it is further possible to inject 
controlled failures at each component.  For example, as 
depicted in Fig 6, it is possible to inject a failure of the 
perception layer, e.g., causing a specific vehicle or person 
to be undetected.  Similarly, ​Vires Test Drive ​ enables 
simulating poor conditions using plugins which render 
noise over each frame.  To represent failing breaks or 
slippery roads, or blown out tires, ​Vires Test Drive​ allows 
changing the physical vehicle model based on the scenario. 

 
Figure 6:​ Quantifying safety of operation during poor conditions, 
emergency and malfunction. 

Figure 7:​ Ability to mapping of scenarios to models gives rise to 
the need for a model selector. 
 

4.0 Multi-Mod​e​l Training, Testing and Validation 
A typical training dataset comprises of a stream of video 
frames or images associated with ground truth data.  In 
many cases these streams describe multiple scenarios.  As 
such, there is a need to identify the time-intervals of each 
scenario, and extract the images relevant to each scenario.  

    Fig 7 depicts an approach for extracting scenarios from a 
dataset stream.  The dataset is fed into a scenario detector, 
which groups images according to the applicable scenarios. 
The scenario detector can be used to determine the 
distribution of scenarios in a dataset, which when combined 
with failure data, can be used to quantify the confidence 
output of the validator from Fig 1. 

    Emergency situations, such as failure of the braking 
system, would be represented by a separate physical 
vehicle model, and trained on a separate CNN and DQN. 
This gives rise to the a generalized model matrix depicted 
in Fig 7, whereby for each scenario a model selector 
associates a specific physical model, a specific perception 
CNN and a specific DQN reasoner.  The model selection 
rules can be handcrafted, or may be learned automatically.  

     Each of the CNNs, and possibly the DQNs, in the model 
matrix of Fig 7 is a DAG following the failover model in 
Figs 3,4.  The input images need to be partitioned 
according to the applicable models.  Each of the stages can 
be decoupled from the other stages for the purpose of 
training and testing, further partitioning the images.  

    In summary, the overall partitioning of the training and 
testing images is performed over: a) scenarios, b) models in 
the matrix, c) and stages for each model.  It is desirable to 
decrease exponentially the overall failure rates by adding 
stages.  Using the DAG failover model, the total number 
partitions required, and the number of images and labels 
needed within each partition, grows linearly with the 
number of stages, rather than exponentially. 
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5.0 Regression Testing  
Software development practices typically use regression 
testing and other means to regularly test functionality after 
revisions are made.  It is common to find that functional 
regressions are introduced by changes.  We therefore 
propose extending the state of the art training algorithms to 
accommodate regression testing, and continuous integration 

    For the purpose of the definitions berlow, we represent a 
system as a model, and thus a system revision reduces to a 
model revision.  

Definition 2:​ Given a capability ​C​ and a scenario ​s​, Model 
revision M​2​ is regressed relative to M​2​ if and only if  

M​1​⇒​Cs​ and​ M​2​⇏​Cs       ​(regression) 

To avoid regressive driving agents, we propose a new 
learning task, which reduces loss (to improve mAP or 
F-score) without “unlearning” correct behavior identified 
critical for specific capabilities and scenarios.  

Definition 3:​ (avoid-unlearning) Given an initial set of 
parameters 𝚹​init​ and a training data set ​D​ comprising of 
samples and ground truths, find a new set of parameters 
𝚹​new​ which minimize loss, but does not modify the 
classification of a subset ​D’​⊂ D.  

    The initial set of parameters 𝚹​init​ represents a pre-trained 
model.  The subset ​D’​⊂ D represents the regression tests. 
The learning task is to minimize loss (and improve 
accuracy), but without breaking the regression tests. 

    Next, assuming that the safety testing of a revision M​1​ is 
valid, we need to ensure that the same automated procedure 
can be used for safety testing of a subsequent revision M​2​.  

Definition 4:​ Model M​2​ is ​safety-test-regressive​ (​STR​) 
compared to M​1​ if and only if M​2​ requires additional 
scenarios for validation as compared to M​1​, namely it is ​not 
possible to satisfy  

∀ C,f,p  scenarios(C,M​2​,f,p) ​ ​⊈​  ​scenarios(C,M​1​,f,p) 

The premise of preventing STR is to prevent the need to 
change the (automated) safety testing procedures.  

Hypothesis:​ It is possible to identify a wide range of 
system revision types which do not cause STR. 

The intuition behind this hypothesis is that small changes, 
such as weight initialization and adjustments to training 
data, should not introduce STR.  It should be possible to 
add new sensors and add classifier stages without 
introducing STR.  If should further be possible to change 
physical characteristics of a vehicle, such as engine and  

tires, without introducing STR, if the physical system is 
encapsulated by an appropriate trajectory control model. 

6.0 Conclusion  
We propose to enable quantification of safety by 
formalizing scenario specifications.  We further suggest to 
organize the scenarios according to the capabilities they are 
used to validate.  As an example, the scenarios needed to 
quantify safety of lane changes are different from the 
scenarios needed to quantify safety of self parking.  
    We introduce a simple failover model, leading to a 
simple conceptual safety pass/fail decision.  We argue that 
classifier failure rate reduces exponentially as stages are 
added.  We then introduce a DAG failure model show how 
to reduce the number of scenarios needed to quantify safety 
from an exponential to linear in the number of stages along 
a path in the DAG. 
    Even after such reductions, quantifying safety requires 
processing of a large number of scenarios to ensure 
coverage of a wide range of rare events.  For a given 
scenario, we argue that training and testing on synthetic 
data is an effective alternative to training on real data.  We 
describe methods of training using dataset comprising 
multiple scenarios, and how partitioning can be used to 
train and test a model matrix when simulating emergencies 
and operation during poor conditions or failures. 
    Finally, we stress that identifying and avoiding 
regression is critical.  Regressive behavior of learning 
agents occurs when a previously passing scenario fails. We 
propose a new learning task whereby loss is minimized 
without breaking regression tests.   We further propose to 
focus on avoiding Safety Testing Regression (STR), which 
would invalidate the set of scenarios used for quantifying 
safety.  Finally, we hypothesise that for a broad class of 
revisions would not cause STR. 
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