
Published as a conference paper at ICLR 2017

DSD: DENSE-SPARSE-DENSE TRAINING FOR DEEP
NEURAL NETWORKS

Song Han∗, Huizi Mao, Enhao Gong, Shijian Tang, William J. Dally†
Stanford University
{songhan,huizi,enhaog,sjtang,dally}@stanford.edu

Jeff Pool∗, John Tran, Bryan Catanzaro
NVIDIA
{jpool,johntran,bcatanzaro}@nvidia.com

Sharan Narang∗, Erich Elsen‡
Baidu Research
sharan@baidu.com

Peter Vajda, Manohar Paluri
Facebook
{vajdap,mano}@fb.com

ABSTRACT

Modern deep neural networks have a large number of parameters, making them
very hard to train. We propose DSD, a dense-sparse-dense training flow, for
regularizing deep neural networks and achieving better optimization performance.
In the first D (Dense) step, we train a dense network to learn connection weights
and importance. In the S (Sparse) step, we regularize the network by pruning the
unimportant connections with small weights and retraining the network given the
sparsity constraint. In the final D (re-Dense) step, we increase the model capacity
by removing the sparsity constraint, re-initialize the pruned parameters from zero
and retrain the whole dense network. Experiments show that DSD training can
improve the performance for a wide range of CNNs, RNNs and LSTMs on the
tasks of image classification, caption generation and speech recognition. On
ImageNet, DSD improved the Top1 accuracy of GoogLeNet by 1.1%, VGG-16 by
4.3%, ResNet-18 by 1.2% and ResNet-50 by 1.1%, respectively. On the WSJ’93
dataset, DSD improved DeepSpeech and DeepSpeech2 WER by 2.0% and 1.1%.
On the Flickr-8K dataset, DSD improved the NeuralTalk BLEU score by over
1.7. DSD is easy to use in practice: at training time, DSD incurs only one extra
hyper-parameter: the sparsity ratio in the S step. At testing time, DSD doesn’t
change the network architecture or incur any inference overhead. The consistent
and significant performance gain of DSD experiments shows the inadequacy of the
current training methods for finding the best local optimum, while DSD effectively
achieves superior optimization performance for finding a better solution. DSD
models are available to download at https://songhan.github.io/DSD.

1 INTRODUCTION

Deep neural networks (DNNs) have shown significant improvements in many application domains,
ranging from computer vision (He et al. (2015)) to natural language processing (Luong et al. (2015))
and speech recognition (Amodei et al. (2015)). The abundance of powerful hardware makes it easier
to train complicated DNN models with large capacities. The upside of complicated models is that
they are very expressive and can capture the highly non-linear relationship between features and
output. The downside of such large models is that they are prone to capturing the noise, rather than
the intended pattern, in the training dataset. This noise does not generalize to new datasets, leading to
over-fitting and a high variance.

∗Indicates equal contribution
†Also at NVIDIA
‡Now at Google Brain. eriche@google.com

1

https://songhan.github.io/DSD

Published as a conference paper at ICLR 2017

Dense

Pruning

Sparsity Constraint

Sparse

Increase Model Capacity

 Re-Dense

Dense

Figure 1: Dense-Sparse-Dense Training Flow. The sparse training regularizes the model, and the final
dense training restores the pruned weights (red), increasing the model capacity without overfitting.

Algorithm 1: Workflow of DSD training

Initialization: W (0) with W (0) ∼ N(0,Σ)
Output :W (t).
———————————————– Initial Dense Phase ———————————————–
while not converged do

W (t) = W (t−1) − η(t)∇f(W (t−1);x(t−1));
t = t+ 1;

end
————————————————— Sparse Phase —————————————————-
// initialize the mask by sorting and keeping the Top-k weights.
S = sort(|W (t−1)|); λ = Ski

; Mask = 1(|W (t−1)| > λ);
while not converged do

W (t) = W (t−1) − η(t)∇f(W (t−1);x(t−1));
W (t) = W (t) ·Mask;
t = t+ 1;

end
————————————————- Final Dense Phase ————————————————–

while not converged do
W (t) = W (t−1) − η(t)∇f(W (t−1);x(t−1));
t = t+ 1;

end
goto Sparse Phase for iterative DSD;

In contrast, simply reducing the model capacity would lead to the other extreme, causing a machine
learning system to miss the relevant relationships between features and target outputs, leading to
under-fitting and a high bias. Bias and variance are hard to optimize at the same time.

To solve this problem, we propose a dense-sparse-dense training flow (DSD), a novel training strategy
that starts from a dense model from conventional training, then regularizes the model with sparsity-
constrained optimization, and finally increases the model capacity by restoring and retraining the
pruned weights. At testing time, the final model produced by DSD still has the same architecture
and dimension as the original dense model, and DSD training doesn’t incur any inference overhead.
We experimented DSD training on 7 mainstream CNN / RNN / LSTMs and found consistent
performance gains over its comparable counterpart for image classification, image captioning and
speech recognition.

2 DSD TRAINING FLOW

Our DSD training employs a three-step process: dense, sparse, re-dense. Each step is illustrated in
Figure 1 and Algorithm 1. The progression of weight distribution is plotted in Figure 2.

Initial Dense Training: The first D step learns the connection weights and importance via normal
network training on the dense network. Unlike conventional training, however, the goal of this D step
is not only to learn the values of the weights; we are also learning which connections are important.
We use a simple heuristic to quantify the importance of the weights using their absolute value.

2

Published as a conference paper at ICLR 2017

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Dense (D)

(a)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Pruning the Network

(b)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Sparse (S)

(c)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Recover Zero Weights

(d)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Dense (D)

(e)

Figure 2: Weight distribution of a layer of GoogLeNet at different points in DSD training: the original
GoogLeNet (a), pruned (b), after retraining with the sparsity constraint (c), ignoring the sparisty
constraint and recovering the zero weights (d), and after retraining the dense network (e).

Sparse Training: The S step prunes the low-weight connections and trains a sparse network. We
applied the same sparsity to all the layers, thus there’s a single hyper parameter: the sparsity, the
percentage of weights that are pruned to 0. For each layer W with N parameters, we sorted the
parameters, picked the k-th largest one λ = Sk as the threshold where k = N ∗ (1− sparsity), and
generated a binary mask to remove all the weights smaller than λ. Details are shown in Algorithm 1 .

We remove small weights because of the Taylor expansion. The loss function and its Taylor expansion
are shown in Equation (1)(2). We want to minimize the increase in Loss when conducting a hard
thresholding on the weights, so we need to minimize the first and second terms in Equation 2.
Since we are zeroing out parameters, ∆Wi is actually Wi − 0 = Wi. At the local minimum where
∂Loss/∂Wi ≈ 0 and ∂2Loss

∂W 2
i

> 0, only the second order term matters. Since second order gradient

∂2Loss/∂W 2
i is expensive to calculate andWi has a power of 2, we use |Wi| as the metric of pruning.

Smaller |Wi| means a smaller increase to the loss function.

Loss = f(x,W1,W2,W3...) (1)

∆Loss =
∂Loss

∂Wi
∆Wi +

1

2

∂2Loss

∂W 2
i

∆Wi
2 + ... (2)

Retraining while enforcing the binary mask in each iteration, we converted a dense network into a
sparse network that has a known sparsity support and can fully recover or even increase the original
accuracy of initial dense model under the sparsity constraint. The sparsity is the same for all the
layers and can be tuned using validation. We find a sparsity value between 25% and 50% generally
works well in our experiments.

Final Dense Training: The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and the entire network is retrained
with 1/10 the original learning rate (since the sparse network is already at a good local minima).
Hyper parameters like dropout ratios and weight decay remained unchanged. By restoring the pruned
connections, the final D step increases the model capacity of the network and makes it possible to
arrive at a better local minima compared with the sparse model from the S step.

To visualize the DSD training flow, we plotted the progression of the weight distribution in Figure 2.
The figure is plotted using GoogLeNet’s inception_5b3x3 layer, and we found this progression of
weight distribution very representative for VGGNet and ResNet as well. The original distribution
of weight is centered on zero with tails dropping off quickly. Pruning is based on absolute value so
after pruning the large center region is truncated away. The un-pruned network parameters adjust
themselves during the retraining phase, so in (c), the boundary becomes soft and forms a bimodal
distribution. In (d), at the beginning of the re-dense training step, all the pruned weights come back
again and are reinitialized to zero. Finally, in (e), the pruned weights are retrained together with the
un-pruned weights. In this step, we kept the same learning hyper-parameters (weight decay, learning
rate, etc.) for pruned weights and un-pruned weights. Comparing Figure (d) and (e), the un-pruned
weights’ distribution almost remained the same, while the pruned weights became distributed further
around zero. The overall mean absolute value of the weight distribution is much smaller. This
is a good phenomenon: choosing the smallest vector that solves the learning problem suppresses
irrelevant components of the weight vector (Moody et al. (1995)).

3

Published as a conference paper at ICLR 2017

Table 1: Overview of the neural networks, data sets and performance improvements from DSD.

Neural Network Domain Dataset Type Baseline DSD Abs. Imp. Rel. Imp.
GoogLeNet Vision ImageNet CNN 31.1%1 30.0% 1.1% 3.6%

VGG-16 Vision ImageNet CNN 31.5%1 27.2% 4.3% 13.7%
ResNet-18 Vision ImageNet CNN 30.4%1 29.2% 1.2% 4.1%
ResNet-50 Vision ImageNet CNN 24.0%1 22.9% 1.1% 4.6%
NeuralTalk Caption Flickr-8K LSTM 16.82 18.5 1.7 10.1%

DeepSpeech Speech WSJ’93 RNN 33.6%3 31.6% 2.0% 5.8%
DeepSpeech-2 Speech WSJ’93 RNN 14.5% 3 13.4% 1.1% 7.4%

1 Top-1 error. VGG/GoogLeNet baselines from the Caffe Model Zoo, ResNet from Facebook.
2 BLEU score baseline from Neural Talk model zoo, the higher the better.
3 Word error rate: DeepSpeech2 is trained with a portion of Baidu internal dataset with only max

decoding to show the effect of DNN improvement.

3 RELATED WORK

Dropout and DropConnect: DSD, Dropout (Srivastava et al. (2014)) and DropConnnect (Wan et al.
(2013)) can all regularize neural networks and prevent over-fitting. The difference is that Dropout and
DropConnect use a random sparsity pattern at each SGD iteration, while DSD training learns with a
deterministic data driven sparsity pattern throughout sparse training. Our experiments on VGG16,
GoogLeNet and NeuralTalk show that DSD training can work together with Dropout.

Distillation: Model distillation (Hinton et al. (2015)) is a method that can transfer the learned
knowledge from a large model to a small model, which is more efficient for deployment. This is
another method that allows for performance improvements in neural networks without architectural
changes.

Model Compression: Both model compression (Han et al. (2016; 2015)) and DSD training use
network pruning (LeCun et al. (1990); Hassibi et al. (1993)). The difference is that the focus of
DSD training goes beyond maintaining the accuracy. DSD is able to further improve the accuracy by
considerable margins. Another difference is that DSD training doesn’t require aggressive pruning. A
modestly pruned network (50%-60% sparse) can work well. However, model compression requires
aggressively pruning the network to achieve high compression rates.

Sparsity Regularization and Hard Thresholding: the truncation-based sparse network has been
theoretically analyzed for learning a broad range of statistical models in high dimensions (Langford
et al. (2009); Yuan & Zhang (2013); Wang et al. (2014)). A similar training strategy with iterative
hard thresholding and connection restoration is proposed by Jin et al. (2016) during the same time
period as, but independently from, DSD. Sparsity regularized optimization is heavily applied in
Compressed Sensing (Candes & Romberg (2007)) to find optimal solutions to the inverse problems
in highly under-determined systems based on the sparsity assumption.

4 EXPERIMENTS

We applied DSD training to different kinds of neural networks in different domains. We found that
DSD training improved the accuracy for all these networks compared to the baseline networks that
were not trained with DSD. The neural networks are chosen from CNN, RNN and LSTMs; the
datasets covered image classification, speech recognition, and caption generation. For networks
trained for ImageNet, we focus on GoogLeNet, VGG and ResNet, which are widely used in research
and production. An overview of the networks, dataset and accuracy results are shown in Table 1. For
the convolutional networks, we do not prune the first layer during the sparse phase, since it has only 3
channels and is very sensitive to pruning. The sparsity is the same for all the other layers, including
convolutional and fully-connected layers. We do not change any other training hyper-parameters, and
the initial learning rate at each stage is decayed the same as conventional training. The epochs are
decided by when the loss converges. When the loss no longer decreases, we stop the training.

4

Published as a conference paper at ICLR 2017

4.1 GOOGLENET

We experimented with the BVLC GoogLeNet (Szegedy et al. (2015)) model obtained from the Caffe
Model Zoo (Jia (2013)). It has 13 million parameters and 57 convolutional layers. We pruned each
layer (except the first) to 30% sparsity. Retraining the sparse network gave some improvement in
accuracy due to regularization, as shown in Table 2. After the final dense training step, GoogLeNet’s
error rates were reduced by 1.12% (Top-1) and 0.62% (Top-5) over the baseline.

We compared DSD v.s. conventional training for the same number of epochs by dropping the learning
rate upon "convergence" and continuing to learn. The result is shown as LLR (lower the learning
rate). The training epochs for LLR is equal to that of Sparse+re-Dense as a fair comparison. LLR can
not achieve the same accuracy as DSD.

Table 2: DSD results on GoogLeNet

GoogLeNet Top-1 Err Top-5 Err Sparsity Epochs LR
Baseline 31.14% 10.96% 0% 250 1e-2
Sparse 30.58% 10.58% 30% 11 1e-3
DSD 30.02% 10.34% 0% 22 1e-4
LLR 30.20% 10.41% 0% 33 1e-5

Improve (abs) 1.12% 0.62% - - -
Improve (rel) 3.6% 5.7% - - -

4.2 VGGNET

We explored DSD training on VGG-16 (Simonyan & Zisserman (2014)), which is widely used in
detection, segmentation and transfer learning. The baseline model is obtained from the Caffe Model
Zoo (Jia (2013)). Similar to GoogLeNet, each layer is pruned to 30% sparsity. DSD training greatly
reduced the error by 4.31% (Top-1) and 2.65% (Top-5), detailed in Table 3. DSD also wins over the
LLR result by a large margin.

Table 3: DSD results on VGG-16

VGG-16 Top-1 Err Top-5 Err Sparsity Epochs LR
Baseline 31.50% 11.32% 0% 74 1e-2
Sparse 28.19% 9.23% 30% 1.25 1e-4
DSD 27.19% 8.67% 0% 18 1e-5
LLR 29.33% 10.00% 0% 20 1e-7

Improve (abs) 4.31% 2.65% - - -
Improve (rel) 13.7% 23.4% - - -

4.3 RESNET

Deep Residual Networks (ResNets, He et al. (2015)) were the top performer in the 2015 ImageNet
challenge. The baseline ResNet-18 and ResNet-50 models are provided by Facebook (2016). We
prune to 30% sparsity uniformly, and a single DSD pass for these networks reduced top-1 error by
1.26% (ResNet-18) and 1.12% (ResNet-50), shown in Table 4. A second DSD iteration can further
improve the accuracy. As a fair comparison, we continue train the original model by lowering the
learning rate by another decade, but can’t reach the same accuracy as DSD, as shown in the LLR row.

Table 4: DSD results on ResNet-18 and ResNet-50

ResNet-18 ResNet-50
Top-1 Err Top-5 Err Top-1 Err Top-5 Err Sparsity Epochs LR

Baseline 30.43% 10.76% 24.01% 7.02% 0% 90 1e-1
Sparse 30.15% 10.56% 23.55% 6.88% 30% 45 1e-2
DSD 29.17% 10.13% 22.89% 6.47% 0% 45 1e-3
LLR 30.04% 10.49% 23.58% 6.84% 0% 90 1e-5

Improve (abs) 1.26% 0.63% 1.12% 0.55% - - -
Improve (rel) 4.14% 5.86% 4.66% 7.83% - - -

5

Published as a conference paper at ICLR 2017

Baseline: a man and
a woman are sitting
on a bench.

Sparse: a man is
sitting on a bench
with his hands in the
air.
DSD: a man is sitting
on a bench with his
arms folded.

Baseline: two
dogs are playing
together in a field.

Sparse: two dogs
are playing in a
field.

DSD: two dogs are
p l a y i n g i n t h e
grass.

Baseline: a boy
in a red shirt is
climbing a rock
wall.
Sparse: a young
girl is jumping off
a tree.

DSD: a young girl
in a pink shirt is
s w i n g i n g o n a
swing.

Baseline: a
basketball player in
a red uniform is
playing with a ball.
Sparse: a basketball
player in a blue
uniform is jumping
over the goal.
DSD: a basketball
player in a white
uniform is trying to
make a shot.

Baseline: a person in
a red jacket is riding a
b i k e t h r o u g h t h e
woods.
Sparse: a car drives
through a mud puddle.

DSD: a car drives
through a forest.

�1

Figure 3: Visualization of DSD training improving the performance of image captioning.

Table 5: DSD results on NeuralTalk

NeuralTalk BLEU-1 BLEU-2 BLEU-3 BLEU-4 Sparsity Epochs LR
Baseline 57.2 38.6 25.4 16.8 0 19 1e-2
Sparse 58.4 39.7 26.3 17.5 80% 10 1e-3
DSD 59.2 40.7 27.4 18.5 0 6 1e-4

Improve(abs) 2.0 2.1 2.0 1.7 - - -
Improve(rel) 3.5% 5.4% 7.9% 10.1% - - -

4.4 NEURALTALK

We evaluated DSD training on RNN and LSTM beyond CNN. We applied DSD to NeuralTalk
(Karpathy & Fei-Fei (2015)), an LSTM for generating image descriptions. It uses a CNN as an image
feature extractor and an LSTM to generate captions. To verify DSD training on LSTMs, we fixed
the CNN weights and only train the LSTM weights. The baseline NeuralTalk model we used is the
flickr8k_cnn_lstm_v1.p downloaded from NeuralTalk Model Zoo.

In the pruning step, we pruned all layers except Ws, the word embedding lookup table, to 80%
sparse. We used a higher sparsity than CNN’s experiments based on the validation set of flickr8k. We
retrained the remaining sparse network using the same weight decay and batch size as the original
paper. The learning rate is tuned based on the validation set, shown in Table 5. Retraining the sparse
network improved the BLUE score by [1.2, 1.1, 0.9, 0.7]. After getting rid of the sparsity constraint
and retraining the dense network, the final results of DSD further improved the BLEU score by [2.0,
2.1, 2.0, 1.7] over baseline.

The BLEU score is not the sole criteria measuring auto-caption system. We visualized the captions
generated by DSD training in Figure 3. In the first image, the baseline model mistakes the girl with a
boy and the girl’s hair with a rock wall; the sparse model can tell that it’s a girl; and the DSD model
can further identify the swing. In the the second image, DSD training can more accurately tell the
player is in a white uniform and trying to make a shot, rather than the baseline just saying he’s in
a red uniform and playing with a ball. The performance of DSD training generalizes beyond these
examples; more image caption results generated by DSD training are provided in the Appendix.

4.5 DEEPSPEECH

We explore DSD training on speech recognition tasks using both Deep Speech 1 (DS1) and Deep
Speech 2 (DS2) networks (Hannun et al. (2014); Amodei et al. (2015)).

The DS1 model is a 5 layer network with 1 Bidirectional Recurrent layer, as described in Table 6.
The training dataset used for this model is the Wall Street Journal (WSJ), which contains 81 hours of

6

http://cs.stanford.edu/people/karpathy/neuraltalk/

Published as a conference paper at ICLR 2017

Table 6: Deep Speech 1 Architecture

Layer ID 0 1 2 3 4 5
Type Conv FC FC Bidirectional Recurrent FC CTCCost

#Params 1814528 1049600 1049600 3146752 1049600 29725

Table 7: DSD results on Deep Speech 1: Word Error Rate (WER)

DeepSpeech 1 WSJ ’92 WSJ ’93 Sparsity Epochs LR
Dense Iter 0 29.82 34.57 0% 50 8e-4
Sparse Iter 1 27.90 32.99 50% 50 5e-4
Dense Iter 1 27.90 32.20 0% 50 3e-4
Sparse Iter 2 27.45 32.99 25% 50 1e-4
Dense Iter 2 27.45 31.59 0% 50 3e-5

Baseline 28.03 33.55 0% 150 8e-4
Improve(abs) 0.58 1.96 - - -
Improve(rel) 2.07% 5.84% - - -

speech. The validation set consists of 1 hour of speech. The test sets are from WSJ’92 and WSJ’93
and contain 1 hour of speech combined. The Word Error Rate (WER) reported on the test sets for the
baseline models is different from Amodei et al. (2015) due to two factors. First, in DeepSpeech2,
the models were trained using much larger data sets containing approximately 12,000 hours of
multi-speaker speech data. Secondly, WER was evaluated with beam search and a language model in
DeepSpeech2; here the network output is obtained using only max decoding to show improvement in
the neural network accuracy, and filtering out the other parts.

The first dense phase was trained for 50 epochs. In the sparse phase, weights are pruned in the
Fully Connected layers and the Bidirectional Recurrent layer only (they are the majority of the
weights). Each layer is pruned to achieve the same 50% sparsity and trained for 50 epochs. In the
final dense phase, the pruned weights are initialized to zero and trained for another 50 epochs. For
a fair comparison of baseline, we used Nesterov SGD to train, reduce the learning rate with each
re-training, and keep all other hyper parameters unchanged. The learning rate is picked using our
validation set.

We first wanted to compare the DSD results with a baseline model trained for the same number of
epochs. The first 3 rows of Table 7 shows the WER when the DSD model is trained for 50+50+50=150
epochs, and the 6th line shows the baseline model trained by 150 epochs (the Same #Epochs as
DSD). DSD training improves WER by 0.13 (WSJ ’92) and 1.35 (WSJ ’93) given the same number
of epochs as the conventional training.

Given a second DSD iteration, accuracy can be further improved. In the second DSD iteration,
each layer is pruned away 25% of the weights. Similar to the first iteration, the sparse model and
subsequent dense model are further retrained for 50 epochs. The learning rate is scaled down for each
re-training step. The results are shown in Table 7. Compared with the fully trained and converged
baseline, the second DSD iteration improves WER by 0.58 (WSJ ’92) and 1.96 (WSJ ’93), a relative
improvement of 2.07% (WSJ ’92) and 5.84% (WSJ ’93). So, we can do more DSD iterations
(DSDSD) to further improve the performance. Adding more DSD iterations has a diminishing return.

4.6 DEEPSPEECH 2

To show how DSD works on deeper networks, we evaluated DSD on the Deep Speech 2 (DS2)
network, described in Table 8. This network has 7 Bidirectional Recurrent layers with approximately
67 million parameters, around 8 times larger than the DS1 model. A subset of the internal English
training set is used. The training set is comprised of 2,100 hours of speech. The validation set is
comprised of 3.46 hours of speech. The test sets are from WSJ’92 and WSJ’93, which contain 1 hour
of speech combined.

Table 9 shows the results of the two iterations of DSD training. For the first sparse re-training,
similar to DS1, 50% of the parameters from the Bidirectional Recurrent Layers and Fully Connected

7

Published as a conference paper at ICLR 2017

Table 8: Deep Speech 2 Architecture

Layer ID 0 1 2 3 - 8 9 10
Type 2DConv 2DConv BR BR FC CTCCost

#Params 19616 239168 8507840 9296320 3101120 95054

Table 9: DSD results on Deep Speech 2 (WER)

DeepSpeech 2 WSJ ’92 WSJ ’93 Sparsity Epochs LR
Dense Iter 0 11.83 17.42 0% 20 3e-4
Sparse Iter 1 10.65 14.84 50% 20 3e-4
Dense Iter 1 9.11 13.96 0% 20 3e-5
Sparse Iter 2 8.94 14.02 25% 20 3e-5
Dense Iter 2 9.02 13.44 0% 20 6e-6

Baseline 9.55 14.52 0% 60 3e-4
Improve(abs) 0.53 1.08 - - -
Improve(rel) 5.55% 7.44% - - -

Layers are pruned. The Baseline model is trained for 60 epochs to provide a fair comparison with
DSD training. The baseline model shows no improvement after 40 epochs. With one iteration of
DSD training, WER improves by 0.44 (WSJ ’92) and 0.56 (WSJ ’93) compared to the fully trained
baseline.

Here we show again that DSD can be applied multiple times or iteratively for further performance
gain. A second iteration of DSD training achieves better accuracy as shown in Table 9. For the second
sparse iteration, 25% of parameters in the Fully Connected layer and Bidirectional Recurrent layers
are pruned. Overall DSD training achieves relative improvement of 5.55% (WSJ ’92) and 7.44%
(WSJ ’93) on the DS2 architecture. These results are in line with DSD experiments on the smaller
DS1 network. We can conclude that DSD re-training continues to show improvement in accuracy
with larger layers and deeper networks.

5 DISCUSSION

Dense-Sparse-Dense training changes the optimization process and improves the optimization perfor-
mance with significant margins by nudging the network with pruning and re-densifying. We conjecture
that the following aspects contribute to the efficacy of DSD training.

Escape Saddle Point: Based on previous studies, one of the most profound difficulties of optimizing
deep networks is the proliferation of saddle points (Dauphin et al. (2014)). Advanced optimization
methods have been proposed to overcome saddle points. For a similar purpose but with a different
approach, the proposed DSD method overcomes the saddle points by pruning and re-densifying
framework. Pruning the converged model perturbs the learning dynamics and allows the network
to jump away from saddle points, which gives the network a chance to converge at a better local or
global minimum. This idea is also similar to Simulated Annealing (Hwang (1988)). While Simulated
Annealing randomly jumps with decreasing probability on the search graph, DSD deterministically
deviates from the converged solution achieved in the first dense training phase by removing the
small weights and enforcing a sparsity support. Similar to Simulated Annealing, which can escape
sub-optimal solutions multiple times in the entire optimization process, DSD can also be applied
iteratively to achieve further performance gains, as shown in the Deep Speech results.

Significantly Better Minima: After escaping saddle point, DSD achieved better minima. We
measured both the training loss and validation loss, DSD training decreased the loss and error on
both the training and the validation sets on ImageNet. We have also validated the significance of the
improvements compared with conventional fine-tuning by t-test, shown in the appendix.

Regularized and Sparse Training: The sparsity regularization in the sparse training step moves the
optimization to a lower-dimensional space where the loss surface is smoother and tend to be more
robust to noise. More numerical experiments verified that both sparse training and the final DSD
reduce the variance and lead to lower error (shown in the appendix).

8

Published as a conference paper at ICLR 2017

Robust re-initialization: Weight initialization plays a big role in deep learning (Mishkin & Matas
(2015)). Conventional training has only one chance of initialization. DSD gives the optimization a
second (or more) chance during the training process to re-initialize from a more robust sparse training
solution. We re-densify the network from the sparse solution which can be seen as a zero initialization
for pruned weights. Other initialization methods are also worth trying.

Break Symmetry: The permutation symmetry of the hidden units makes the weights symmetrical,
thus prone to co-adaptation in training. In DSD, pruning the weights breaks the symmetry of the
hidden units associated with the weights, and the weights are asymmetrical in the final dense phase.

6 CONCLUSION

We introduce DSD, a dense-sparse-dense training framework that regularizes neural networks by
pruning and then restoring connections. Our method learns which connections are important during
the initial dense solution. Then it regularizes the network by pruning the unimportant connections
and retraining to a sparser and more robust solution with same or better accuracy. Finally, the pruned
connections are restored and the entire network is retrained again. This increases the dimensionality
of parameters, and thus model capacity, from the sparser model.

DSD training achieves superior optimization performance. We highlight our experiments using
GoogLeNet, VGGNet, and ResNet on ImageNet; NeuralTalk on Flickr-8K; and DeepSpeech-1&2
on the WSJ dataset. This shows that the accuracy of CNNs, RNNs, and LSTMs can be significantly
improved with DSD training. Our numerical results and empirical tests show the inadequacy of
current training methods for which we have provided an effective solution.

9

Published as a conference paper at ICLR 2017

REFERENCES

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen,
Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-to-end speech recognition in
english and mandarin. arXiv preprint arXiv:1512.02595, 2015.

Emmanuel Candes and Justin Romberg. Sparsity and incoherence in compressive sampling. Inverse problems,
23(3):969, 2007.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In Advances
in neural information processing systems, pp. 2933–2941, 2014.

Facebook. Facebook.ResNet.Torch. https://github.com/facebook/fb.resnet.torch, 2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural
network. In Advances in Neural Information Processing Systems, pp. 1135–1143, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. International Conference on Learning Representations, 2016.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev
Satheesh, Shubho Sengupta, Adam Coates, and Andrew Ng. Deep speech: Scaling up end-to-end speech
recognition. arXiv, preprint arXiv:1412.5567, 2014.

Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, pp. 164–164, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Chii-Ruey Hwang. Simulated annealing: theory and applications. Acta Applicandae Mathematicae, 12(1):
108–111, 1988.

Yangqing Jia. BVLC caffe model zoo. http://caffe.berkeleyvision.org/model_zoo, 2013.

Xiaojie Jin, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Training skinny deep neural networks with iterative
hard thresholding methods. arXiv preprint arXiv:1607.05423, 2016.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient. In Advances in neural
information processing systems, pp. 905–912, 2009.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in Neural Information
Processing Systems, pp. 598–605. Morgan Kaufmann, 1990.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:1508.04025, 2015.

Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422, 2015.

J Moody, S Hanson, Anders Krogh, and John A Hertz. A simple weight decay can improve generalization.
Advances in neural information processing systems, 4:950–957, 1995.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. JMLR, 15:1929–1958, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural networks using
dropconnect. In ICML, pp. 1058–1066, 2013.

Zhaoran Wang, Quanquan Gu, Yang Ning, and Han Liu. High dimensional expectation-maximization algorithm:
Statistical optimization and asymptotic normality. arXiv preprint arXiv:1412.8729, 2014.

Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems. The Journal of
Machine Learning Research, 14(1):899–925, 2013.

10

Published as a conference paper at ICLR 2017

A. APPENDIX: SIGNIFICANCE OF DSD IMPROVEMENTS

DSD training improves the baseline model performance by consecutively pruning and re-densifying the network
weights. We conducted more intensive experiments to validate that the improvements are significant and not due
to any randomness in the optimization. In order to evaluate the significance, we repeated the baseline training,
DSD training (retraining on baseline) and conventional fine-tuning (retraining on the same baseline) multiple
times. The statistical significance of DSD improvements are quantified on the Cifar-10 dataset using ResNet.

1. SIGNIFICANT IMPROVEMENTS ON CIFAR-10 USING RESNET-20

Cifar-10 is a smaller image recognition benchmark with 50,000 32x32 color images for training and 10,000 for
testing. Training on Cifar-10 is fast enough that it is feasible to conduct intensive experiments within a reasonable
time to evaluate DSD performance. The baseline models were trained with the standard 164 epochs and initial
LR of 0.1 as recommended in the released code (Facebook, 2016). After 164 epochs, we obtained the model with
a 8.26% top-1 testing error that is consistent with the Facebook result. Initialized from this baseline model, we
repeated 16 times of re-training using DSD training and 16 times using conventional fine-tuning. The DSD used
sparsity of 50% and 90 epochs (45 for sparse training and 45 for re-densing training). As a fair comparison, the
conventional fine-tuning is also based on the same baseline model with the same hyper-parameters and settings
(90 epochs, 45 LR of 0.001 and 45 LR of 0.0001).

Detailed results are listed below. On Cifar-10 and using ResNet-20 architecture, the DSD training on average
achieved Top-1 testing error of 7.89%, which is a 0.37% absolute improvement (4.5% relative improvement)
over the baseline model and relatively 1.1% better than the conventional fine-tuning. The experiment also shows
that DSD training can reduce the variance of learning: the trained models after the sparse training and the final
DSD training both have lower standard deviation of errors compared with their counterparts using conventional
fine-tuning.

Table 10: Validation of DSD on Cifar10 data using ResNet-20

ResNet-20 Avg. Top-1 Err SD. Top-1 Err Sparsity Epochs LR
Baseline 8.26% - 0% 164 1e-1

Direct Finetune (First half) 8.16% 0.08% 0% 45 1e-3
Direct Finetune (Second half) 7.97% 0.04% 0% 45 1e-4

DSD (Fist half, Sparse) 8.12% 0.05% 50% 45 1e-3
DSD (Second half, Dense) 7.89% 0.03% 0% 45 1e-4
Improve from baseline(abs) 0.37% - - - -
Improve from baseline(rel) 4.5% - - - -

We used t-test (unpaired) to compare the top-1 testing error rate of the models trained using DSD and conventional
methods. The results demonstrate the DSD training achieves significant improvements from both the baseline
model (p<0.001) and conventional fine tuning (p<0.001).

Figure 4: Significance of DSD improvements over baseline and fine-tune

Based on the results above, DSD significantly improves conventional baseline training and is also significantly
better and more robust than conventional fine-tuning.

11

Published as a conference paper at ICLR 2017

B. APPENDIX: MORE EXAMPLES OF DSD TRAINING IMPROVES THE CAPTIONS
GENERATED BY NEURALTALK (IMAGES FROM FLICKR-8K TEST SET)

Baseline: a man in a red shirt and
jeans is riding a bicycle down a street.
Sparse: a man in a red shirt and a
woman in a wheelchair.
DSD: a man and a woman are riding on
a street.

Baseline: two girls in bathing suits are
playing in the water.
Sparse: two children are playing in the
sand.
DSD: two children are playing in the
sand.

Baseline: a group of people are
standing in front of a building.
Sparse: a group of people are standing
in front of a building.
DSD: a group of people are walking in a
park.

Baseline: a dog runs through the grass.
Sparse: a dog runs through the grass.
DSD: a white and brown dog is running
through the grass.

Baseline: a group of football players in
red uniforms.
Sparse: a group of football players in a
field.
DSD: a group of football players in red
and white uniforms.

Baseline: a group of people sit on a
bench in front of a building.
Sparse: a group of people are
standing in front of a building.
DSD: a group of people are standing
in a fountain.

Baseline: a man in a black jacket and a
black jacket is smiling.
Sparse: a man and a woman are standing
in front of a mountain.
DSD: a man in a black jacket is standing
next to a man in a black shirt.

Baseline:a young girl in a red dress is
holding a camera.
Sparse: a little girl in a pink dress is
standing in front of a tree.
DSD: a little girl in a red dress is
holding a red and white flowers.

Baseline: a man in a red jacket is
standing in front of a white building.
Sparse: a man in a black jacket is
standing in front of a brick wall.
DSD: a man in a black jacket is
standing in front of a white building.

Baseline: a man in a red shirt is
standing on a rock.
Sparse: a man in a red jacket is
standing on a mountaintop.
DSD: a man is standing on a rock
overlooking the mountains.

Baseline: a group of people are sitting in
a subway station.
Sparse: a man and a woman are sitting
on a couch.
DSD: a group of people are sitting at a
table in a room.

Baseline: a soccer player in a red and
white uniform is running on the field.
Sparse: a soccer player in a red uniform
is tackling another player in a white
uniform.
DSD: a soccer player in a red uniform
kicks a soccer ball.

Baseline: a young girl in a swimming
pool.
Sparse: a young boy in a swimming
pool.
DSD: a girl in a pink bathing suit
jumps into a pool.

Baseline: a soccer player in a red
and white uniform is playing with a
soccer ball.
Sparse: two boys playing soccer.
DSD: two boys playing soccer.

Baseline: a girl in a white dress is
standing on a sidewalk.
Sparse: a girl in a pink shirt is
standing in front of a white building.
DSD: a girl in a pink dress is walking
on a sidewalk.

Baseline: a boy is swimming in a pool.
Sparse: a small black dog is jumping
into a pool.
DSD: a black and white dog is swimming
in a pool.

A. Supplementary Material: More Examples of DSD Training Improves the Performance of
NeuralTalk Auto-Caption System

�1
12

Published as a conference paper at ICLR 2017

Baseline: a snowboarder flies through
the air.
Sparse: a person is snowboarding
down a snowy hill.
DSD: a person on a snowboard is
jumping over a snowy hill.

Baseline: two young girls are posing
for a picture.
Sparse: a young girl with a blue shirt
is blowing bubbles.
DSD: a young boy and a woman smile
for the camera.

Baseline: a man in a red shirt is
sitting in a subway station.
Sparse: a woman in a blue shirt is
standing in front of a store.
DSD: a man in a black shirt is
standing in front of a restaurant.

Baseline: a surfer is riding a wave.
Sparse: a man in a black wetsuit is
surfing on a wave.
DSD: a man in a black wetsuit is surfing
a wave.

Baseline: a man in a red shirt is
standing on top of a rock.
Sparse: a man in a red shirt is
standing on a cliff overlooking the
mountains.
DSD: a man is standing on a rock
overlooking the mountains.

Baseline: a group of people sit on a
bench.
Sparse: a group of people are sitting
on a bench.
DSD: a group of children are sitting
on a bench.

Baseline: a little boy is playing with
a toy.
Sparse: a little boy in a blue shirt is
playing with bubbles.
DSD: a baby in a blue shirt is playing
with a toy.

Baseline: a brown dog is running
through the grassy.
Sparse: a brown dog is playing with
a ball.
DSD: a brown dog is playing with a
ball.

Baseline: a boy in a red shirt is
jumping on a trampoline.
Sparse: a boy in a red shirt is
jumping in the air.
DSD: a boy in a red shirt is jumping
off a swing.

Baseline: a man is standing on the
edge of a cliff.
Sparse: a man is standing on the
shore of a lake.
DSD: a man is standing on the shore
of the ocean.

Baseline: two people are riding a
boat on the beach.
Sparse: two people are riding a wave
on a beach.
DSD: a man in a yellow kayak is
riding a wave.

Baseline: a black and white dog is
running on the beach.
Sparse: a black and white dog
running on the beach.
DSD: a black dog is running on the
beach.

Baseline: a man and a dog are
playing with a ball.
Sparse: a man and a woman are
playing tug of war.
DSD: a man and a woman are
playing with a dog.

Baseline: a group of people are
standing in a room.
Sparse: a group of people gather
together.
DSD: a group of people are posing
for a picture.

Baseline: a man in a red jacket is
riding a bike through the woods.
Sparse: a man in a red jacket is
doing a jump on a snowboard.
DSD: a person on a dirt bike jumps
over a hill.

Baseline: a man in a red jacket and
a helmet is standing in the snow.
Sparse: a man in a red jacket and a
helmet is standing in the snow.
DSD: a man in a red jacket is
standing in front of a snowy
mountain.

�2

13

	Introduction
	DSD Training Flow
	Related Work
	Experiments
	GoogLeNet
	VGGNet
	ResNet
	NeuralTalk
	DeepSpeech
	DeepSpeech 2

	Discussion
	Conclusion

