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ABSTRACT

Electrostatics solvers relate an imposed voltage to a corresponding charge den-
sity. Current classical methods require fine discretization and scale poorly due
to the construction of a large linear system of equations. We recast the problem
using neural networks and introduce neural electrostatics, a hybrid 3D boundary
element method (BEM). By using the boundary element form, we are able to
overcome many shortcomings of previous neural solvers, such as learning trivial
solutions and balancing loss terms between the domain and boundary, at the cost
of introducing a large integral containing a singular kernel. We handle this sin-
gularity by locally transforming the integral into polar coordinates and applying a
numerical quadrature. We also show that previous neural solver sampling methods
are unable to minimize the physics-informed residual, and propose a variational
adaptive sampling method. This technique is able to reduce mean absolute error
by 5 times, while keeping training time constant. Extensive scaling and ablation
studies are performed to justify our method. Results show that our method learns
a charge distribution within 1.2 pC/m2 of mean absolute error from a classical
BEM solver, while using 25 times fewer rectangular elements.

1 INTRODUCTION

The computational modeling of electrostatics, relating electric fields to charge density, is critical in
the design and application of a wide range of modern technologies. Simulation of capacitor and
battery design (Zhan et al., 2017) relates the storage and release of electrical energy to material and
environmental properties, leading to improved storage solutions. Capacitive touch sensors, found
in smartphones and tablets, rely on simulations to adjust sensitivity and responsiveness reaching to
changes in electric fields (Zhou et al., 2020). As we shrink mechanical designs and electrical circuits,
the electromagnetic forces dominate and their simulation is required for micro-electro-mechanical
systems compatibility (Muhkopadhyay & Majumdar, 2006) and static electric discharge protection
(Voldman & Gross, 1994). The advancement of computational tools for electrostatic field modeling
is a requirement for future technologies, allowing for greater accuracy, efficiency, and innovation.

The last 80 years has seen the proliferation of computational electrostatics methods, from explicit
methods like the finite difference method (FDM) (Burden et al., 2016) to implicit methods like
the finite element method (FEM) (Burden et al., 2016) and the boundary element method (BEM)
(Brenner & Scott, 2003). BEM is typically referred to as the method of moments (MoM) (Harring-
ton, 1993; Gibson, 2014) in the electrical engineering literature. Each method has its strengths and
weaknesses, but they all fail to extend to large computational domains because of discretization and
memory requirements. Even BEM, which reduces the dimensionality of the problem, struggles to
scale to domains of practical interest, such as rooms or large vehicles. Techniques such as the multi-
level fast multipole method (Song, 1997) or the adaptive cross approximation Zhao et al. (2005)
can be applied to aid in scaling, but are still limited by the discretization and roots in classical tech-
niques. We seek to address this scaling problem instead by reformulating the method of moments
as a function regression problem using neural networks and stochastic gradient descent (Kiefer &
Wolfowitz, 1952).
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The growing field of scientific machine learning combines the advances of modern machine learn-
ing with classical techniques for solving partial differential equations (PDE). The straightforward
application of these principles is the physics-informed neural network (PINN) (Raissi et al., 2017;
Cuomo et al., 2022; Wang et al., 2023). PINNs leverage the automatic differentiation of neural net-
works to apply differential operators on the network and build a loss between the mapped network
and the forcing function at sampled points in the domain and boundary. The PINN method, how-
ever, often learns trivial solutions, is slow, and does not scale outside its original training domain.
Many variations of the original PINN method have been proposed (Lu et al., 2019; Ramabathiran &
Ramachandran, 2021), but meaningful extensions are difficult. A promising approach is variational
PINNs (Kharazmi et al., 2021; 2020) and the combination of FEM theory with deep learning (Gao
et al., 2022; Yu, 2017; Aylwin et al., 2023). By introducing a test function set, the PDE is recast
into a weak form, trading additional network evaluations for reduced regularity requirements on the
network. The variational form even reduces memory, as only lower order derivatives are necessary.
These applications, however, are normally evaluated in 1D or 2D domains, and do not immediately
remove the possibility of trivial solutions. By using a boundary element method and recasting the
problem with the method of moments, we are able to solve the electrostatics equation on arbitrary
3D geometry and reconstruct the field anywhere in space. By combining the classical methods with
deep learning, we present a flexible and easy to evaluate basis function in the form of a feed forward
neural network. Specifically, we make the following contributions:

• We present a novel 3D boundary element solver that uses a neural network basis function to
represent the charge density along a boundary. By formulating the problem in this manner,
we avoid learning trivial zero solutions to the PDE and only need to minimize a single loss
function, as there is no separation between domain and boundary. Once solved, the charge
density can be used to compute the electric field anywhere in an infinite domain.

• We develop and empirical demonstrate a singularity removal technique. By locally trans-
forming the integral into polar coordinates, we robustly handle the 1

r term that arises in the
boundary element form of the Poisson equation. Though this singularity is well explored in
classical methods, we show that similar methods can be applied to neural solvers without
hindering backpropagation.

• We introduce a variational adaptive sampling technique that decreases error without in-
creasing training time. In our experiments, the mean absolute error, as compared to the
finely discretized classical BEM solver, is decreased by 5 times as compared to existing
loss functions, while training time is held constant.

• We validate our method on the standard problem of a flat metal plate held at a constant
voltage. We perform both scaling and ablation studies to both justify our decisions and
show that the number of test functions is decoupled from the size of the network. Our
baseline solution is able to represent the charge density within 1.2 pC/m2 of mean absolute
error from a reference BEM solver with 25 times the rectangular elements. Training to a
reasonable error on this problem takes approximately 1 hour, while inference of the charge
density is incredibly fast. This fast inference time is important as we must integrate the
network to compute fields at any point in space.

2 RELATED WORK

Since the original work of Harrington (1993), the method of moments has been the de facto standard
for high fidelity solvers in electromagnetics. Assuming isotropic materials, the method is able to
reduce PDEs from 3D volumes to 2D surface integrals. When the domain is large, or in many cases
infinite, this method is invaluable. The surface integral equations can then be solved by standard
BEM methods (Brenner & Scott, 2003), first by expanding the current or charge density by a set
of basis functions and then enforcing boundary conditions through a set of test functions. MoM, in
its standard form, produces a dense matrix which grows quadratically with the discretization of the
basis functions. Therefore, large objects require large matrices, often producing matrices so large
they cannot fit in system memory. Multiple techniques seek to address this scaling issue by discretiz-
ing space, recognizing that fields die off with increasing distance. The Multi-level Fast Multipole
Method (MLFMM) (Song, 1997) interacts these grids iteratively in a hierarchical structure. These
interactions must be derived for the underlying equation. The Adaptive Cross Approximation (ACA)
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(Zhao et al., 2005), in contrast, is a purely linear algebra technique that takes advantage of low rank
sub-blocks. ACA also requires no iteration and can be solved directly using block lower-upper (LU)
Decomposition (Burden et al., 2016). These scaling method are difficult to implement, and though
scaling is greatly improved, very large geometries (i.e., room scales) are computationally infeasible.
Instead of improving the linear solve, we seek to replace the basis function set with a neural network
that can easily adapt to arbitrary geometry.

Reducing the 3D problem to a 2D problem comes at the cost of a newly introduced singularity
encountered during integration. If the singularity it not properly handled, training will not converge
and the solver will often produce NaNs. Singular kernels have been extensively addressed in the
classical literature but are relatively unexplored in the context of neural basis functions. Previous
work has simply ignored the singularity (Ruocco et al., 2023), which allows training to converge,
but introduces error. In contrast, classical singularity removal techniques separate the integral into
far and near terms and include the contribution of the singularity and the surrounding region. Monte
Carlo integration is theoretically robust to point singularities: the probability that the singular point
is sampled is zero. In practice, samples close to the singularity can produce NaNs, so at the cost add
bias, a small exclusion region is introduced around the singularity. Instead of working around the
singularity, other method seek to remove it from the integral. The near term can be specially treated
(Taylor, 2003; Ylä-Oijala & Taskinen, 2003), while the far term integral can be easily integrated
with a numerical quadrature. The simplest method casts the integral into polar coordinates, which
introduces a radial term canceling out the singularity. We investigate the Monte Carlo exclusion
and coordinate transform techniques applied to a neural network basis and derives bounds for their
approximation error.

Engineers have begun tackling electrostatics problems with scientific machine learning, but none
have yet to address the boundary element formulation or domain scaling. A straightforward appli-
cation of machine learning techniques to electrostatics was through FDM, and its electrodynamics
parallel the finite difference time domain (FDTD) method (Tang et al., 2017; Guo et al., 2019; Yao
& Jiang, 2018). Adjacent work on BEM based PINNs (Lin et al., 2021; Nagy-Huber & Roth, 2024;
Sun et al., 2023) only considered 2D domains and a boundary integral derived from potential the-
ory not used in electrostatics problems. Just like their classical counterparts, the machine learning
based finite different methods required rigid grids and suffered from stability issues. Practitioners
then turned towards variational methods in the same vein as FEM, BEM, and MoM (Key & No-
taros, 2020; 2021). These methods mirror the classical methods and build off the more general
VPINN (Kharazmi et al., 2019), Deep Ritz (Yu, 2017), and Deep Galerkin methods (Sirignano &
Spiliopoulos, 2018), by casting the PDE in a weak formulation. The weak form reduces the reg-
ularity requirements on the neural network and makes the solution more stable at the expense of
more network evaluations and more difficult convergence. We extend these variational methods to
the electrostatics problem on an arbitrary boundary in 3D.

3 BACKGROUND AND NOTATION

We briefly highlight the notation (following Goodfellow et al. (2016)) used in the rest of the paper, as
well as provide the necessary background in electrostatics and physics-informed neural network for
understanding our contributions. We deviate slightly from this notation when discussing the electric
field, E. This is a vector not a matrix, but we want to follow the common notation in physics and
electrical engineering. Ω denotes a region, while Γ is a boundary. We commonly refer to r and r′.
These are points in Euclidean space. The non-primed coordinate is referred to as a test point, where
the field is measure, whereas the primed coordinate is a source point.

3.1 ELECTROSTATICS

Electrostatics relates an electric field, E, to a charge density, ρe, at individual points in space. When
the fields are not time varying, the electric and magnetic fields decouple, and the curl of the electric
field becomes zero. An irrotational vector field can be further simplified to a scalar function, which
we will denote ϕ by convention. This scalar function is called the voltage and is related to the electric
field by E = −∇ϕ. Plugging the voltage equation into Gauss’s Law, which equates the divergence
of the electric field with the scaled charge density, we get the equation of interest in electrostatics,
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∇2ϕ(r) = −ρe(r)

ϵ0
. (1)

ϵ0 is a physical constant representing the permittivity of free space. Unlike common applications
with the Poisson equation, where ϕ is unknown and ρe is known, the electrostatics problems flips
this, as we can more easily measure voltage than charge density. The differential form of Equation
1 can be converted to an integral form using the Green’s function (Appendix B), giving

ϕ(r) =

∫∫∫
Ω

G(r, r′)
ρe(r

′)

ϵ0
dr′ =

∫∫∫
Ω

ρe(r
′)

4πϵ0|r− r′|
dr′. (2)

We focus our work on the exterior problem, where the boundary condition is that the field goes to 0
at infinity. This is trivially satisfied by the fundamental solution of the Laplace operator.

3.2 VARIATIONAL PHYSICS-INFORMED NEURAL NETWORK

Assume L is a differential operator, f is the forcing, Ω is the domain, and g is a Dirichlet condition
imposed on the boundary Γ. PINNs solve equations of the form

Lu(r) = f(r) ; r ∈ Ω with u(r) = g(r) ; r ∈ Γ (3)

by modeling u(r) as a neural network, uθ(r). The training dataset is then built up from samples
ri ∈ Ω. Care needs to be taken to adequately sample both the domain and the boundary (Wang
et al., 2023). For Variational Physics-Informed Neural Networks, we recast the problem to its weak,
or variational, form by introducing a set of test functions, {v1, . . . , vN}. Training then swaps random
point sampling with integration across the set of test functions. The loss functions are then given by

LΩ =
1

NΩ

NΩ∑
i=1

||⟨vi, Luψ(ri)⟩ − ⟨vi, fθ(ri)⟩|| and LΓ =
1

NΓ

NΓ∑
j=1

||uθ(rj)− g(rj)||. (4)

The regularity requirements place on uθ in Equation 3 are reduced by the variational form through
the application of integration by parts. This reduction improves memory requirements and alleviates
differentiability requirements on the activation function.

4 NEURAL ELECTROSTATICS

4.1 LEARNING PROBLEM FORMULATION

If we cast the electrostatics problem in the original PINN methodology, we would need two neural
networks: one for the voltage and one for the charge density. These two networks would then be
trained at known boundary points to enforce the PDE. The singularity in Equation 2 would not be
present, but needing to train two networks simultaneously increases the complexity of the problem.
This problem formulation also imposes additional constraints on the network representing the volt-
age, ϕ(r). First, the activation function used needs to be three times differentiable, twice for the
Laplace operator and once more for backpropagation. This means that ReLU activation cannot be
used. Training of the voltage network is also computationally expensive, as the third derivative is
needed. As such, the memory needed to update the weights grows as the size of the network cubed.
This problem formulation also tends towards the trivial case, where both networks learn the zero
solution everywhere. Instead, we cast the Poisson equation in its boundary element form and define
the variational residual loss (details in Appendix C), setting vi as a rectangular test function, gives

ri = ⟨vi(r), ϕ(r)⟩ − ⟨vi(r),
∫∫

Γ

ρe(r
′)

4πϵ0|r− r′|
dr′⟩. (5)
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Figure 1: We propose neural electrostatics in this diagram. Samples from across the 3D mesh
are passed into the MLP, which predicts the corresponding charge density. Using the variational,
rectangular test functions, integrals are approximated using these points. A test function, green, is
randomly selected. The singularity removal, orange, is performed in the near term, whereas the far
term, blue, is handled with no special treatment. All integrals are performed using either Gauss-
Legendre or Newton-Cotes quadratures. Test functions are adaptively drawn to help decrease error
where it is highest.

vi(r) is defined as 1 when r ∈ Γi and 0 otherwise. Different loss functions can be formed from this
residual. We use mean squared error loss, giving

L =
1

N

N∑
i=1

||ri||2. (6)

A key benefit of this approach is that there is no separation between domain and boundary samples,
as the entire problem is restricted to the boundary. Therefore, we do not need to consider loss
balancing schemes typically found in PINNs.

4.2 COORDINATE TRANSFORM SINGULARITY REMOVAL

In boundary element methods for the Laplace (and the similar Helmholtz operator), the singularity
that arises is often a point of difficulty. There have been many techniques developed in the FEM
literature (Colton & Kress, 2013); however, their extension to PINN like problems has not been well
established. We emphasize that the point singularity is purely a property of the Green’s function
and is not present in either ϕ or ρe. This fact is important because the network itself does not need
to represent this singularity, but rather the training algorithm must be robust to it. We provide the
stability by separating the integral into near and far domains and then transforming the near integral
into a frame where the singularity is no longer a problem.

The integrals presented so far are in the typical Euclidean frame. By converting to polar coordinates
centered at the singularity, the change of variables will introduce a radius term in the numerator. The
integral then becomes

∫∫
Γ

ρe(r
′)

4πϵ0|r− r′|
dr′ =

∫∫
Γ◦

ρe(r
′)

4πϵ0|r− r′|
|r− r′|drdθ =

∫∫
Γ◦

ρe(r
′)

4πϵ0
drdθ. (7)

The transformed integral appears to be much easier to deal with, but it has a major drawback. Instead
of integrating over the surface in a Euclidean coordinate system, we must now integrate over the
bounds in the polar coordinate system. These bounds are more difficult to determine for complex
geometries, whereas the original form can easily be evaluated from a triangular or quadrilateral
mesh. To alleviate this issue, we separate the integral into two domains: one near and one far. We
note the near domain with ϵ. We can view the near domain as locally planar and integrate over a
small square of side length 2ϵ centered at the singularity. This recasting gives
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∫∫
Γ

ρe(r
′)

4πϵ0|r− r′|
dr′ =

∫∫
ϵ

ρe(r
′)

4πϵ0|r− r′|
dr′ +

∫∫
Γ−ϵ

ρe(r
′)

4πϵ0|r− r′|
dr′

=

∫∫
ϵ

ρe(r
′)

4πϵ0
drdθ +

∫∫
Γ−ϵ

ρe(r
′)

4πϵ0|r− r′|
dr′. (8)

As the neural network has no closed form integral, we evaluate the near domain with a quadrature
rule and leave the evaluation of the far integral to the next section. We chose the Gauss-Legendre
quadrature Burden et al. (2016) in our work, as it is a common choice in numerical applications.
Because we consider a square domain, to integrate in polar coordinates, we must separate the inte-
gral again into 4 quadrants. The near integral now takes on a form that can be implemented on a
computer:

∫∫
ϵ◦

ρe(r
′)

4πϵ0
drdθ ≈ 1

4πϵ0

4∑
q=1

Nθ∑
i=1

Nr∑
j=1

wiwjρe(r
′ + α̃ji[cos(α̃i), sin(α̃i)]) (9)

More details on the evaluation of this integral is found in Appendix D.

4.3 INTEGRATION

With the singularity mitigated, we now consider how to evaluate the integral still present in the loss
term (Equation 5).

Far Term. A composite Newton-Cotes quadrature (Burden et al., 2016) is well suited to evaluations
on a fixed grid, like a mesh would provide. To expand to large domains, adaptive quadratures can
be used. The quadrature order can be decreased as the distance between the source and test points
grows. In the present work, we only consider a fixed quadrature of 0 order. This is equivalent to
the midpoint rule taught when first learning calculus. We consider the open form of the quadrature,
as it does not require evaluation of the function along the boundary. This is important, as sharp
discontinuities, such as edges on a flat plate, cannot be evaluated. The far term integral, thus, takes
the form

∫∫
Γ

ρe(r
′)

4πϵ0|r− r′|
dr′ =

N∑
i=1

∫∫
Ai

ρe(r
′)

4πϵ0|r− r′|
dr′ ≈ ∆A

4πϵ0

N∑
i=1

ρe(ci)

|r− ri|
. (10)

Where ci is the center of each rectangle and ∆A is the corresponding area. As all evaluations of the
network during training need this integral, these points can be evaluated a single every epoch, given
there is enough memory available. The near terms can then be masked off and their contribution
replaced by the coordinate transform.

Test Function. With the use of a rectangular test function, another surface integral needs to be per-
formed. With no closed form solution for the inner, singular kernel integral, we perform a quadrature
on the outer test function. Due to the simple nature of the rectangular test function, we apply a com-
posite midpoint Newton-Cotes quadrature to approximate. This evaluation gives,

⟨vi(r),
∫∫

Γ

ρe(r
′)

4πϵ0|r− r′|
dr′⟩ ≈ wh

Nw∑
i=1

Nh∑
j=1

∫∫
Γ

ρe(r
′)

4πϵ0|c+ ŵαi + ĥαj − r′|
dr′. (11)

w and h are the width and height of each subdivision, while c is the center of the rectangular
basis function. ŵ and ĥ are tangent unit vectors along the width and height, respectively. The
quadrature points, αi,j are evenly spaced along each dimension going from [−w2 + w

2Nw
, w2 −

w
2Nw

]

and [−h2 + h
2Nh

, h2 −
h

2Nh
] along the width and the height. More sample efficient methods could be

used, such as Gauss-Legendre quadrature; however, this was found to be unnecessary in the present
application. By using this grid structure, it made calculation of the far term easier, as the singular
region radius could be set to min( w

2Nw
, h
2Nh

).
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4.4 VARIATIONAL ADAPTIVE SAMPLING

PINN methods can often struggle to minimize the PDE residual loss with mean squared error (MSE)
alone. MSE forces the network to obey the PDE on average; however, the PDE requires exactness
or else a nearby erroneous solution will be learned. L1 loss can help, but is a more difficult loss
function due to discontinuous derivatives at 0. Other works have used a hybrid loss function that
combines MSE and L∞. The MSE term minimizes the residual overall, while the L∞ applies a soft
constraint to outliers. This adds additional complexity because the loss terms need to be balanced.
Also, L∞ only penalizes the largest outlier, reducing efficiency of the approach. Instead, We propose
an adaptive sampling scheme that uses MSE while additionally decreasing loss without increasing
training time.

Taking inspiration from the residual adaptive resampling (Lu et al., 2019) algorithm, we improve
loss by sampling where the error is the highest; however, instead of gradually increasing the data
set (and, therefore, increasing the training time), we temporarily remove the test functions with the
lowest error (below a hyperparameter δ) and train for a set number of epochs. After which, we
reintroduce all the test functions back into the training set. This continual contraction and expansion
of the training set allows the network to adapt to the regions with the largest error.

This error calculation requires little additional computation and no extra evaluations of the network,
as it leverages the output directly from the training step. We also only reduce the training set every
Nd epoch, so the small computation is amortized across the whole training run. By reducing the
training dataset, the training time temporarily decreases as fewer evaluations are required until Nr

when we add back the removed test functions. This is especially important as each evaluation
requires integrating across the entire domain. The full algorithm is highlighted in Appendix G.

5 RESULTS

5.1 PROBLEM AND METRICS

For evaluation, we consider the problem of a 2-meter by 2-meter flat plate at constant voltage.
The plate lies in the XY Plane centered at [0, 0, 0], with the normal facing along the positive z-
axis. Though simple, this problem poses a difficult challenge for other PINN formulations, as it
requires integration through a singular kernel. We validate our results using a textbook BEM solver
(Gibson, 2014) (Figure 2a), both at a fine “ground truth” discretization of 50 by 50 elements and a
discretization matching that used in the neural electrostatics algorithm. The comparison at coarser
discretization allows us to compare our method against the BEM solver at a set discretization. Both
evaluations are calculated as the average L1 distance between the solutions at the center of each
rectangular function. We estimate PDE residual error at each test function. We compute the absolute
error between the voltage inner product and the charge density inner product. To obey the physical
relationship, we want the error between the left and right hand terms of Equation 5 to be as small
and low variance as possible. For a good solution, we want to perform well on both metrics, as
performing well on only one, could mean we found an incorrect, non-physical nearby solution to
the PDE instead. We present additional evaluation in Appendix I.

5.2 SCALING STUDY

In this section, we seek to understand how the size of the network and number of rectangular test
functions influences our results. 9 network sizes are considered with hidden layer depths of 1, 2,
or 3 and hidden layer widths of 32, 64, 128. The number of test functions are also varied from 25
to 100 to 225. We compare the performance of each evaluation against the BEM results shown in
Figure 2a. For every evaluation, the test function quadrature order is set to 3 along both x and y.
The grid integration scheme matches this sampling and aligns itself with the test functions. The near
term singularity then uses a 2 point quadrature along r and θ in each quadrant.

From Figure 2b, we find that the performance of the method in this problem is largely independent
of the size of the network. Therefore, we are able to keep the network small and still accurately
represent the solution. Small networks also mean faster evaluations and training. The number of test
functions, however, does impact performance. We see a large decrease in error when moving from
25 to 100 test functions. There is then a much smaller decrease in error moving from 100 to 225
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(a) BEM Solutions at 100 and 2500 test functions. (b) Scaling sweeps across basis network size.

Figure 2: This figure shows both the reference BEM solution used for comparison (a) and the scaling
analysis results (b). For scaling, the x-axis represents the increasing size of the network. The colors
map to different counts of rectangular test functions. The solid line is the error relative to the truth,
while the dotted line is the error relative to the BEM solver at the same discretization. From this
plot, we find that the problem is not sensitive to the size of the problem. Rather, the number of
test functions dictates the final error. This means that we can keep the network small for faster
evaluation.

Figure 3: Baseline results computed using neural electrostatics for comparision in ablation studies.
Hyperparameter details are found in Table 1. The left shows the distribution of errors across test
functions. The middle figure plots the charge density sampled at the same intervals used during
sampling. The right is finely sampled to compare with the ground truth solution.

test functions, showing diminishing returns as the number of test functions is increased. Comparing
Figures 2a and 3, we see that even with 100 test functions, the charge density is well characterized.
We notice a slight increase in error between the 225 and 100 test functions. It is believed that this is
because there are more sample points near the boundary discontinuity, which is inherently difficult
to characterize in any numerical solver. There is a fundamental decoupling of the basis function
and test function sizes in our method that allows one to scale independently of the other, whereas
classical techniques require an equal number of test and basis functions to construct a full rank
matrix. Future work could leverage this decoupling to solve larger problems with far fewer basis
and test elements than is traditionally needed.

5.3 ABLATION STUDIES

Baseline. The scaling study showed that the error is largely independent of the basis network size.
So, we select the median network test with a width of 64 and hidden layer depth of 2. 100 rectangular
test functions are used, as 100 had a large improvement over 25 but was only marginally worse than
225. 100 was selected as a representative middle ground. We include other training parameters in
Table 1.

Test Function. We compare three classes of test functions: collocation, point matching, and the
baseline rectangular. Collocation is what is typically used in PINNs, including the previous BEM
formulations (Sun et al., 2023; Lin et al., 2021; Nagy-Huber & Roth, 2024). The method enforces
the residual to be equal at discrete, random points over the domain. In our test, we use the residual
adaptive resampling (RAR) (Lu et al., 2019) method. RAR importance samples the residual function
by adding points with the highest error to the training set. Point matching is similar to both the
collocation method and the rectangular test function used in our baseline. Instead of testing at
random locations, point matching evaluates the residual on a discrete grid.
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(a) Test Function (b) Integration and Singularity Removal

Figure 4: Ablation studies for test function (a) and the combination of integration and singularity
removal (b). The collocation method and Monte Carlo integration techniques are unable to learn the
rough shape of the solution and have high mean absolute errors. The collocation method also shows
wide variance, so the errors are not uniformly minimized. Point matching performs better than
the collocation method, but is unable to capture the large discontinuities around the edges. Point
matching then has low variance, but high MAE. Lastly, the exclusion technique is able to capture
the rough shape but adds too much bias to the integral. This results in high variance, but low MAE.
Our baseline, outperforms all of these techniques with both low variance and low MAE.

Figure 4a shows that the collocation method is unable to learn the correct charge distribution and
does not show the expected cup shape. This is corroborated by our metrics. The error distribution
for the collocation technique has a mean far from 0 and a wide variance, meaning that the method
was not able to optimize the PDE residual. Similarly, we see large reported mean absolute errors
as compared to the BEM solver. Compared to our baseline, for a similar number of data points, we
find that the variational scheme is able to reduce the PDE error more effectively. We also note that
RAR continually adds points to the dataset, which can drastically impact training, as these additional
points require a singularity removal and integrating across the boundary. Our variational adaptive
sampling method instead reduces the number of evaluations while also decreasing error.

The point matching technique performs better than the collocation method and is able to produce
the characteristic cup shape of the charge density. The residual distribution is also close to 0 and has
a small variance; however, we see that there is a large mean absolute error with the reference solver.
This is because the point matching technique is unable to capture the sharp spikes at the edge of the
plate, and the overall range is only 4 picocoulombs per square meter. The rectangular test function
in the baseline solver is able to both learn the correct cup shape and capture the sharp rise at the
edges. This results in a favorable residual error distribution and lower mean absolute error than the
other techniques.

Singularity Removal and Integration. We compare our singularity removal technique against a
Monte Carlo exclusion method (Appendix F) and combined coordinate transform and Monte Carlo
integration method (Appendix E), with cutoff distances of ϵ = 0.001 and ϵ = 0.05, respectively.
Figure 4b shows that neither of these methods are able to produce a network that captures the charge
density. The disc and Monte Carlo integration technique is the worst performer, as it is unable to
even represent the cup shape of the charge density. In our metrics, this technique has a low residual
variability and 0 mean, but its mean absolute error is very high. We believe that this is due partly
to the random sampling in the technique, as the network needs to characterize that noise as well.
Samples close to the edge of the plate could also cause problems, as there is step discontinuity in
the voltage.

The exclusion region method produces a qualitatively better solution, but there is obvious deforma-
tion in the charge density function. The cup shape is there, but there is no symmetry or expected
smoothness. Our metrics reflect this. The technique has a low mean absolute error (even rivaling
our baseline), but the residual distribution varies highly and non-uniformly. The network is better
able to represent the stochasticity, but the bias of removing the singularity’s contribution leads to an
incorrect solution.

9
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Figure 5: Results for ablation study on different loss functions. We see that all three loss functions
produce similar results. The rough shape of the charge distribution is captured, but the large discon-
tinuities on the edge of the plate are missed. The adaptive sampling technique, in the baseline, is
able to better capture this discontinuity, resulting in lower error variance and smaller mean absolute
error (bottom).

Loss Function. Finally, we compare our variational adaptive training scheme to common loss func-
tions found in PINNs. We compare our method against mean squared error (MSE), mean L1 dis-
tance, and a combined MSE and L∞ distance. Details can be found in the past section on the
variational adaptive training method. Figure 5 shows that all loss functions are able to qualitatively
match the shape of the charge density; however, they all suffer from the same problem as the point
matching test function: they do not capture the sharp peaks along the edges. Our metrics reflect this
fact, as the mean absolute error for all three loss functions are larger than the baseline. We also see
that the residual error distributions have larger variance and drift farther from a 0 mean. Our adap-
tive training scheme, therefore, makes training more accurate, while also reducing the necessary
computations by gradually reducing the training dataset.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We propose a novel scientific machine learning technique leveraging a boundary element formula-
tion of the Poisson equation to solve electrostatics problems. The method includes robust handling
of the singularity introduced by the Green’s function and an integration scheme that can easily be
applied to quadrilateral meshes for solving arbitrary geometries. We study how the method scales
and demonstrate that, unlike classical methods, the neural network basis is decoupled from the prob-
lem discretization, allowing the method to potentially scale to larger domains. This is a key benefit
of PINN formulations, which leverage nonlinear mappings and gradient based optimization to cir-
cumvent the dense linear algebra solve that drive computation time. Ablation studies show that our
choice of test function, singularity removal, and novel variational adaptive training scheme produce
the strongest results. Neural electrostatics shows promise in solving general electrostatics problems,
but it can still be optimized and improved to better rival classical methods. Training time of the
technique is orders of magnitude longer than the BEM solver, as it uses highly optimized linear
algebra solvers. There is also more to explore in test function design, such as using higher order
polynomials. The collocation method could also be revisited with the residual-based adaptive dis-
tribution (RAD) (Wu et al., 2023) method, which improves upon RAR, but was out of scope for the
current evaluations. Though Monte Carlo integration performed poorly in our tests, advanced tech-
nique such as control variates or importance sampling could be used to improve performance. We
also emphasize that the proposed methods are insightful to a wide range of computational physics
problems by adopting similar singularity removals or variational forms. Our method improves on
previous learning approaches to 3D problems and develops a promising method for overcoming
shortcomings of both classical and previous PINN methods.
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A TRAINING

Training was done using RTX A5000 gpus on a compute cluster. Training averaged about 1 hour in
length for each realization. Initial learning rates and batch sizes were determined using the Optuna
(Akiba et al., 2019) tuner. Runs were trained for 1000 epochs using the PyTorch (Paszke et al.,
2019) library.

B GREEN’S FUNCTION

Equation 1 is defined in 3D space and has no general closed form solution. Because the Poisson
equation is linear, we can transform the PDE into an integral equation by convolving the impulse
response of the Laplace operator with the forcing function, −ρeϵ0 . This impulse response is known
as the Green’s function and it is found by solving

∇2G(r, r′) = −δ(r− r′). (12)

For the Laplacian in a 3D open domain, G(r, r′) = 1
4π|r−r′| , with the boundary condition that the

field must go to 0 at an infinite boundary. Applying the Green’s function to Equation 1, we arrive at
Equation 2. Sadly, this integral is often difficult and, in the general case, intractable. For one thing,
ρe(r) is unknown everywhere, while ϕ(r) is known only on a subset of the domain. If we are able
to compute the charge density, then we can extend the voltage to anywhere in space using 2. The
Green’s function also contains a singularity when the field point, r, approaches the source point, r′.
Luckily, this is a weak singularity (Colton & Kress, 2013) as its order is less than the dimensionality
of the integral, so a solution can be found; however, it needs to be treated carefully as it can easily
cause large errors in the solution.

C NEURAL STATICS BOUNDERY DERIVATION

Assume that we have a conducting surface, Γ, in free space. We are able to easily measure the
voltage across the plate, however, we would like to characterize the electric field anywhere in space.
Equation 1, at first glance, seems suitable for this problem; however, we do not know the charge
density and only know the voltage along the conducting surface. We take inspiration from the clas-
sical boundary element method by using the Green’s function and variational form simultaneously to
restrict our problem to just that of the surface boundary. Equation 12 becomes a 2D surface integral
given by

ϕ(r) =

∫∫
Γ

ρe(r
′)

4πϵ0|r− r′|
dr′. (13)

We chose to approximate the unknown function ρe(r) along the plate by a feed forward neural net-
work, fθ(r), with ReLU activation functions. As ϕ(r) is known across the plate, we could randomly
sample points and seek to equate the left and right hand sides through backpropagation. This formu-
lation would create a flexible solver as only discrete samples from the surface are needed; however,
as we show empirically in the results section, this results in a worse solution as the boundary con-
dition is enforced only at these discrete points. Instead, we apply a rectangular testing function to
enforce the boundary condition across the entire surface. This testing function is suitable for simple
voltage functions and is used frequently in the classical method. It is easily represented by a quadri-
lateral mesh. The size of these quads are determined by the complexity of both the voltage function
and the geometry.

D GAUSSIAN QUADRATURE AND CHANGE OF INTERVALS

In this section, we address two complications with evaluating Equation 9: the change of intervals
and integrating a square. First, the Gauss-Legendre quadrature is defined on an interval from -1 to
1. To use this quadrature on other domains, the abscissas, α, must be transformed using the change
of interval formula. This simple formula is given by
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α̃ =
b− a

2
α+

a+ b

2
. (14)

Where, a and b are the left and right integral bounds, respectively.

Now we consider the integration over the square and why we use the notation α̃ji in the main paper.
To integrate a square in polar coordinates, it needs to be broken into 4 separate integral, where θ
sweeps through 90 degrees at a time. The quadrants are defined along the diagonal cuts of the square
(i.e., [−π4 ,

π
4 ] and so on). Each integral then rotates this section by 90 degrees counterclockwise. The

radius is then from 0 to r sec(θ) (for left and right quadrants) or r csc(θ) for the top and bottom. As
the radius depends on θ, the change of interval formula needs to be applied at every evaluated angle
in the quadrature, hence α̃ji. By combining the contribution from each quadrant, we can compute
the singularity and its surrounding domain in the near term integral.

The error associated with this approach is isolated to the Gauss-Legendre quadrature, which inte-
grates the first 2N − 1 terms in a Taylor expansion exactly. For hyperbolic tangent, this can be
found in closed form, but ReLU makes this intractable; however, if the near term is contained within
a single activation region of the ReLU network, the error will be very small as the quadrature needs
to fit a straight line. The quadrature is not exact in this case due to the square boundary in a polar
frame.

E MONTE CARLO FAR TERM INTEGRATION

Monte Carlo integration is best suited for a near term that takes on a circular shape, as it can easily
integrate the surface minus the disc around the singularity by resampling points that are in the near
region. This technique suffers from the same problems stated in the singularity removal section: the
error converges as the square root of the number of samples, and the network needs to learn the noise
introduced by the estimate. These deficiencies, however, could be outweighed for more complicated
models, but would most likely require importance sampling techniques to improve convergence. The
Monte Carlo technique is also easy to implement and would make mesh free algorithms possible. In
this form, the far integral becomes

∫∫
Γ−ϵ

ρe(r
′)

4πϵ0|r− r′|
dr′ = Er′∼σ′

ρe(r
′)

4πϵ0|r− r′|
≈ 1

N

N∑
i=1

ρe(r
′
i)

4πϵ0|r− r′i|
· 1

P(ri)
. (15)

σ′ is a distribution over Γ − ϵ and can be sampled easily using rejection sampling. P(r′i) is the
probability of sampling that point in σ′. For uniform sampling, the probability is constant and the
inverse of the surface area.

F MONTE CARLO SINGULARITY EXCLUSION

The Monte Carlo integration technique first recasts the integration in the form of an expectation,
giving

∫∫
Γ

ρe(r
′)

4πϵ0|r− r′|
dr′ = Er′∼σ

ρe(r
′)

4πϵ0|r− r′|
. (16)

σ is any distribution on Γ and can be tailored to the specific surface geometry. In our work, we
assume σ to be a uniform distribution over the surface. It is important to remember that r is held
fixed for each evaluation of the integral. Mathematically, the Monte Carlo form of the integral should
be robust to the singularity, as the probability that the source and test point are the same during
evaluation is zero. In practice, the expectation is still too singular to evaluate on a computer and some
estimates will produce NaNs. The instability is mitigated by introducing a small exclusion radius,
α ∈ R+. If a sample is drawn within this disc, it is rejected and redrawn until it is sufficiently far
from the singular point. This trick improves the stability of the estimation at the cost of introducing
bias; thus, we seek to decrease the size of this exclusion region as much as possible while still
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disallowing NaNs. The bias error is the difference between the exact integral, I , and the Monte
Carlo approximation, I ′. The difference is the integral of the disc of radius α. By multiplying by
the maximum value of the network on the disc, f(ξ), the error is bounded from above, giving

|I − I ′| ≤ 2παfθ(ξ). (17)

Though easy to implement – there are many existing methods for sampling from a surface – the
Monte Carlo technique has two downsides: its slow convergence and the stochasticity of its estimate.
Monte Carlo techniques are known to decrease error as the square root of the number of samples. For
example, to halve the error, we must compute quadruple the number of samples. Techniques such as
control variates and importance sampling can improve the convergence, but they are more difficult to
implement and must be tailored to specific geometries and problems. As each sample needs to be fed
through the network and then backpropagated, the increased sampling requirement can quickly make
the memory requirements prohibitively expensive. The stochasticity further complicates training by
introducing noise into each evaluation of the integral. Though neural networks are robust to this
type of noise, the randomness places more strain on the network as it has to learn both ρe and the
noise distribution.
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G VARIATIONAL ADAPTIVE SAMPLING ALGORITHM

Algorithm 1 Variational Adaptive Sampling
epoch← 1
model← INITIALIZE( )
data← INITIALIZE( )
while epoch ≤ Nstop do

output, expected← EVAL(model, data)
loss← COMPUTELOSS(output, expected)
BACKPROPAGATE( )
if epoch mod Nd is 0 then

data← REMOVE(data, |output− expected| ≤ δ) ▷ Remove data with smallest error
end if
if epoch mod Nr is 0 then

data← INITIALIZE( ) ▷ Switch back to full dataset
end if
epoch← epoch+ 1

end while

H HYPERPARAMETERS

Optimization Adaptive Sampling Singularity / Test
Depth Width lr Batch δ Nr Nd Integration Samples

2 64 0.0033 20 1e-6 15 90 Transform + Grid 100

Table 1: Hyperparameters used by the ablation baseline in the main paper. These are used as baseline
parameters for ablations, which only seek to modify one of these values. If a column is not present
in a future table, then all rows have the same value for that parameter, which can be found in this
table. The singularity uses 2 by 2 quadrature points for each quarter of the subdivided square. The
far terms are integrated in 10 by 10 squares with 3 by 3 samples points for Newton-Cotes quadrature.

Optimization Adaptive Sampling Solver
lr Batch δ Nr Nd N Integration Singularity Test ϵ

5.879e-6 5 1e-6 — 677 20 Monte Carlo Transform Collocation 0.00103
0.0033 20 1e-6 15 90 — Grid Transform Point ∼ 0.1

Table 2: Hyperparameters used by the ablation study on different test functions. Most studies used
MSE for the loss function and trained for 1000 epochs on a network with two hidden layers of
width 64 each. The singularity removal transform uses a 2 by 2 quadrature on each of the four
quadrants. The Monte Carlo integration uses 165 samples for the far integral. These samples are
drawn randomly for each singular integration point. RAR was used to sample the points in the
collocation case, and Optuna (Akiba et al., 2019) was used to find the hyperparameters, as the
standard values did not converge well.

I COMPLEX EVALUATION

We include additional evaluations to show performance of more complex imposed voltages. In
the first setting (Figure 6), we apply a sine and cosine to the x,y coordinate. The cosine has an
amplitude of 1, an angular frequency of π radians/s, and no phase offset. The sine has an amplitude
of 0.5, an angular frequency of 7.2 radians/s, and a phase offset of 0.1 radians. There is also a
DC component of 1 that raise the value at all points. These results demonstrate our work’s ability
to learn a basis function that is able to capture oscillations of multiple frequencies. Due to the
spectral bias problem of low dimensional neural networks (Wang et al., 2020), we apply a Gaussian
Fourier feature encoding (Tancik et al., 2020) to the input to aid in training. The dimension of this
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(a) Reference 100 Samples (b) Reference 2500 Samples (c) Neural Solution

(d) Training Error

Figure 6: We compare our neural solver to the BEM solver (Gibson, 2014) with a more complex
imposed voltage containing multiple oscillatory frequencies. We see that our method is till able to
capture the structure of the solution without increasing the number of testing functions.

embedding is 16 along each input coordinate, for a total of 32. The network size is the same as
baseline, and Optuna (Akiba et al., 2019) is used to adjust training parameters, which minimized
the error with: lr of 0.001248, batch size of 34, δ of 0.0009634, Nr of 19, and Nd set to 72. We
find that our method is able to match the shape of the solution, but there are some issues with the
discontinuities around the edges, where the charge density does not increase enough.

In our second problem (Figure 7), we consider a ramp function for the voltage along the x-axis.
This creates a non-differentiable discontinuity in the imposed voltage, which can cause difficulties
in numerical solvers. Again, we use the Fourier feature encoding, and demonstrate that our method
is able to handle these difficult problems. The network size is the same as baseline, and Optuna
(Akiba et al., 2019) is used to adjust training parameters. The resulting values were: lr of 0.001563,
batch size of 39, δ of 0.003376, Nr of 13, and Nd of 49.
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(a) Reference 100 Samples (b) Reference 2500 Samples (c) Neural Solution

(d) Training Error

Figure 7: We again compare the reference solution from the BEM solver (Gibson, 2014) to the
results of our neural solver. We consider an imposed voltage in the shape of a triangle along the x-
axis. The voltage is zero at x equal to -1 and 1, and 1 at x equal to 0. This creates a non-differentiable
discontinuity in the domain, which can cause difficulties in numerical solvers. Our method is able
to capture the shape of the solution even in this difficult case.
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