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ABSTRACT

Referring expression comprehension (REC) aims to localize the object in an im-
age described by natural language. Referring expressions often specify objects
through diverse attributes and structured relations, but weakly supervised mod-
els often reduce these rich linguistic cues with coarse anchor features extracted
from pre-trained detectors. The asymmetry between the expressive power of lan-
guage and the limited granularity of visual features remains the core challenge for
weakly supervised REC. Existing methods attempt to enrich anchors with auxil-
iary cues, which cannot capture diverse attributes or consistently improve instance
distinctiveness. More importantly, they align text with individual anchors, which
are unstructured representations unable to encode relational semantics. Captur-
ing such structural cues requires explicitly modeling interactions among anchors.
To address these limitations, we propose the Attribute—Relation guided Compo-
sitional Alignment (ARCA) framework. The proposed ARCA framework con-
sists of two key components: (i) An attribute enhancer that introduces learnable
attribute prototypes and, guided by subject noun chunks (e.g., “a small wooden
chair”), enables anchors to naturally and effectively cover diverse attribute se-
mantics. (ii) A relation encoder that models inter-anchor relation representations
and aligns them with full sentence embeddings, enabling the capture of structured
relational cues. These two components establish a compositional alignment mech-
anism that enables the visual features to better match the richness and structure
of language. Extensive experiments on RefCOCO, RefCOCO+, and RefCOCOg
show that the proposed ARCA achieves state-of-the-art performance, demonstrat-
ing the effectiveness of compositional alignment for WREC

1 INTRODUCTION

Referring Expression Comprehension (REC), also known as visual grounding, aims to localize in
an image the object that corresponds to a given natural language description. This task is cen-
tral to many real-world applications such as human-robot interaction and visual navigation. While
supervised REC methods have achieved remarkable performance, they rely on dense bounding-
box annotations for training. These, however, are costly to collect at scale and limit adaptability
across domains. To alleviate annotation burdens, recent works Jin et al.| (2023)) have shifted towards
weakly-supervised REC (WREC), which leverages only paired image—text data for supervision.

Recent advances [Jin et al. (2023); [Luo et al.| (2024); |Chen et al. (2025) in WREC have fo-
cused on one-stage anchor-based frameworks, which reformulate the task as anchor-text match-
ing optimized through contrastive learning. These methods iteratively select top-ranked anchor-
text pairs as pseudo-positives and update model parameters by reinforcing these matches via con-
trastive loss. They effectively perform latent assignment over region proposals in an Expectation-
Maximization |Dempster et al.| (1977) (EM)-like optimization process. This progressively refines
regional vision-language alignment without box-level annotations. While existing methods frame
WREC as an anchor-text matching problem, the inherent asymmetry between the visual and lin-
guistic modalities poses a fundamental challenge. Referring expressions are often diverse, com-
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Figure 1: Comparison between existing WREC frameworks|Jin et al.|(2023);Luo et al.[(2024); Chen
et al.| (2025) and the proposed framework. (a) Existing WREC frameworks rely on flat alignment,
aligning text with individual anchors, APL |Luo et al.|(2024) enriched anchors by several manually-
defined attributes. In contrast, (b) we propose a compositional alignment framework, where anchors
are enhanced by learnable attributes and then aligned with subject noun chunks (e.g., “The black
chair”), while relation features are explicitly constructed and aligned with full sentences.

positional, and context-dependent, even for the same object instance. However, anchor features,
extracted from pre-trained detection backbones, are semantically limited. These anchors generally
encode category-level semantics defined by a fixed label space (e.g., COCO classes|Lin et al.[(2014)),
lacking both instance-specific discriminative power and the capacity to capture fine-grained visual
attributes or contextual cues. As a result, the semantic richness of language is often inadequately
grounded in the anchor space, limiting alignment accuracy under weak supervision.

Existing approaches |[Luo et al.| (2024); (Chen et al|(2025) have primarily focused on enriching in-
dividual anchor features to improve alignment. While such enrichment can benefit attribute-level
grounding, most strategies rely on implicit cues (e.g., features transferred from visual foundation
models) |Chen et al.| (2025); |Cheng et al.| (2025) or limited manual priors (e.g., spatial coordinates,
category, or color) Luo et al.| (2024). These signals neither comprehensively capture the diverse
range of attributes nor consistently improve instance-level distinctiveness. More critically, a notable
gap in existing approaches lies in their reliance on individual anchors to match textual descrip-
tions, as illustrated in Figure |1| (a). A single anchor representation is suitable for aligning simple
attribute-level descriptions, but insufficient for relational expressions that rely on interactions be-
tween objects. Relations are often directed and asymmetric. Such structural semantics cannot be
captured by flat feature enrichment of individual anchors. Instead, they require explicit modeling of
inter-anchor interactions to align with diverse and compositional referring expressions.

Motivated by these limitations, we propose an attribute—relation guided compositional alignment
framework that explicitly enhances intra-anchor attributes and models inter-anchor relations, en-
abling multi-level compositional alignment beyond single anchor-text matching. More specifically,
as illustrated in Figure [1] (b), at the attribute level, we propose an attribute enhancer that leverages
a set of learnable attribute prototypes to enrich anchors by adaptively aggregating prototype signals
according to their semantic relevance. The attribute-enhanced anchors are designed to align with
the subject noun chunk through contrastive learning. This enables attribute learning to be guided by
object-level linguistic units rather than coarse full-sentence semantics. Since noun chunks inherently
encode diverse attributes, such as color, size, or material, they provide a natural and efficient super-
visory signal that eliminates the need to manually enumerate attribute categories. A diversity con-
straint is further imposed on the prototypes, encouraging them to cover diverse and complementary
attributes. At the relation level, we propose an anchor relation encoder to explicitly model pairwise
interactions among anchors, capturing contextual dependencies and directional relations between
objects. In contrast to existing approaches that align individual anchors with entire expressions, the
proposed framework performs multi-level alignment: attribute-enhanced anchors are aligned with
subject noun chunks, while relation features are aligned with full-sentence embeddings. This en-
ables the model to simultaneously acquire discriminative and fine-grained intra-instance semantics
and structured inter-instance relations, providing a compositional alignment mechanism that better
matches the richness and structure of natural language.

The main contributions are summarized as follows: (i) We propose an attribute—relation guided
compositional alignment (ARCA) framework for WREC, moving beyond flat anchor—text match-
ing toward compositional alignment, addressing the gap between coarse anchor features and the
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structured semantics of natural language. (ii) We propose an attribute enhancer that enriches an-
chor features via a set of learnable attribute prototypes. Guided by subject noun chunks, the en-
hanced anchors naturally capture fine-grained attribute semantics, thereby improving instance-level
distinctiveness. (iii) We propose an anchor relation encoder that explicitly models pairwise anchor
interactions by combining semantic and geometric cues. The resulting relation features are aligned
with full-sentence embeddings, enabling the model to capture structured relational semantics. (iv)
The proposed framework achieves the state-of-the-art performance on RefCOCO, RefCOCO+, and
RefCOCOg, demonstrating the effectiveness of the proposed compositional alignment.

2 RELATED WORK

Referring Expression Comprehension (REC). REC aims to localize objects in an image based
on natural language descriptions. Early supervised approaches |Yang et al.| (2019) relied on region-
based pipelines that encode visual regions and language queries, then perform matching via joint
embeddings or attention mechanisms |Yu et al.|(2018). More recent transformer-based models Deng
et al.[(2021) have further improved performance by leveraging large-scale pretraining or finetuning
on large vision language models (LVLMs) Ma et al.|(2024). Despite their success, these supervised
methods require dense annotations at the bounding box or pixel level. This significantly limits scal-
ability to new datasets and domains, motivating the development of weakly supervised alternatives.

Weakly Supervised Learning (WSL). WSL has been extensively studied to reduce annotation
costs across both vision-only and vision-language tasks. In vision-only tasks, Weakly Super-
vised Semantic Segmentation (WSSS) Xu et al.|(2022) and Weakly Supervised Object Localization
(WSOL) Zhang et al.[(2021) methods use only image-level labels to generate pixel-level masks or
bounding boxes via class activation maps [Zhou et al.| (2016) and refinement strategies |Ahn et al.
(2019). In vision—-language tasks, researchers have explored Weakly Supervised Referring Expres-
sion Comprehension (WREC) Jin et al.|(2023) and Weakly Supervised Referring Expression Seg-
mentation (WRES) Kim et al.| (2023). These methods assume only paired images and referring
expressions are available during training, without any box or mask annotations. Some approaches
adopt pseudo-label generation Dai & Yang|(2024) or adapting to|Liu et al.|(2023) LVLMs.

Weakly Supervised Referring Expression Comprehension (WREC). Early works Datta et al.
(2019); |Akbar1 et al.| (2019) on WREC typically used a Multiple Instance Learning (MIL) frame-
work [Ilse et al.| (2018), where all region proposals in an image were treated as a bag and instance-
level representations are aggregated into bag-level representations commonly through max- or
attention-pooling. A contrastive or ranking loss was then applied at the bag-text level, implic-
itly encouraging the model to connect the referring expression with the correct region. Some ap-
proaches [Liu et al.| (2019); Sun et al.| (2021) introduced text reconstruction objectives, using the
aggregated bag representations to reconstruct the expression. Despite effective to some extent, these
methods were limited by indirect supervision to region-text correspondence or struggled by noisy
negative sampling. Subsequent methods |Gupta et al.| (2020); Zhang et al.| (2020) shifted from bag-
text alignment to direct region-text contrastive learning, where highly ranked region-text pairs were
leveraged in an EM-like optimization process to progressively refine alignment. This also gave
rise to one-stage anchor-text frameworks [Jin et al.| (2023), which reformulate WREC as anchor-
text matching. While one-stage frameworks improved efficiency, anchors extracted from pretrained
detection models often lack instance-level distinctiveness. This has motivated research on anchor
feature enrichment. APL [Luo et al.| (2024) explicitly incorporates auxiliary information, such as
category labels and spatial coordinates, obtained from the pretrained detection model, embedding
these cues into the anchor feature space. DViN |Chen et al.|(2025) further leverages a set of foun-
dation models (e.g., CLIP, DINO) and employs a dynamic routing mechanism to adaptively fuse
multi-source visual features into each anchor, aiming to enrich the semantic diversity and contex-
tual awareness of the anchors. A recent work, WeakMCN |Cheng et al.| (2025)), takes a task-level
perspective by jointly optimizing WREC and WRES, allowing the two tasks to provide mutual su-
pervision and promote more consistent alignment between textual and visual modalities. In contrast
to existing WREC frameworks which adopt a flat alignment strategy, where diverse expressions are
all matched to individual anchors which lack the capacity to capture structured semantics, we pro-
pose a compositional alignment that separately aligns anchors with their own attribute-related text
spans, and explicitly construct inter-anchor relation features to align with the full sentence, enabling
structured matching that better reflects the compositional nature of language.
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Figure 2: Overview of the proposed framework. Given an input image and referring text, a pretrained
visual encoder extracts anchor features and their bounding boxes, while a text encoder produces sen-
tence and subject noun chunk embeddings. The Attribute Enhancer enriches anchors via learnable
attribute prototypes with a diversity loss, and the Anchor Relation Encoder captures pairwise se-
mantic—geometric interactions to form relation features. A compositional alignment is performed
by aligning the attribute-enhanced anchors with noun chunks and relation features with sentence
embeddings through Contrastive Learning (CL). The anchor with the highest alignment score is se-
lected and passed to a detection head for localization.

3 METHOD

Overview. As illustrated in Figure [2] the proposed framework first encodes the visual and textual
modalities. The visual encoder of a pre-trained detection model is used to generate anchor-level
features, while a lightweight language encoder is used to extract both subject noun chunk embed-
dings and full-sentence embeddings to represent local and global linguistic cues. We propose an
attribute enhancer to enrich the anchor features by projecting them onto a set of learnable attribute
prototypes, yielding attribute-sensitive representations that capture discriminative appearance cues.
We also propose a relation encoder to model pairwise interactions among anchors, producing rela-
tion features that encode contextual dependencies between objects. Finally, we perform composi-
tional alignment between the enriched anchor features, relation features, and language embeddings.
Attribute-enhanced anchors are aligned with subject noun chunks, while relation features are aligned
with full-sentence embeddings through contrastive learning. This dual alignment strategy encour-
ages anchors to simultaneously capture local attribute semantics and global relational structures.

During inference, a referring expression is compared with anchor representations through two com-
plementary similarity measures: subject chunks with attribute-enhanced anchors and the full sen-
tence with relation-enriched features. The combined similarity determines the most relevant anchor,
whose bounding box is then decoded by the detection head. Through this design, the proposed
ARCA framework provides enriched anchor features that incorporate both attribute-level discrimi-
nation and relation-level context, thereby bridging the gap between concise and complex referring
expressions across datasets.

3.1 FEATURE EXTRACTION BACKBONE

We use two encoders to extract visual and textual representations: a frozen YOLOV3 backbone for
anchor-level visual features and a lightweight recurrent—attention encoder for textual embeddings.
To further improve anchor representation, we enrich YOLOV3 features with auxiliary visual cues
from visual foundation models through a dynamic routing mechanism.
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Visual Encoder. Given an input RGB image I € R3***W 'we adopt the pre-trained DarkNet-53

backbone from YOLOv3 and take anchor-level features from the detection head, which provides
multi-scale anchor representations. Following prior work Jin et al.| (2023), we select the top K
anchors with the highest objectness scores and denote their features as A = {aj,ag,...,ax},
where a; € R?. Motivated by prior works [Chen et al.| (2025); |Cheng et al.| (2025), we incorporate
additional visual features F = {fy, ... fas}, where f; € R¢, from foundation models such as DINO
v2|0quab et al.| (2024) and Depth Anything v2|Yang et al.| (2024) to enhance the expressiveness of
A. Each anchor a; is enriched by dynamically routing information from F":

a +—§§ £ exp ((w; 21)) (1)
a; = ag Qi Ly, Quy = )
A ! Z;w 1 €Xp ((WTal))

where o;; denotes the routing weights, and w; € R is a learnable projection vector associated with

the j-th foundation feature. The resulting enriched anchors are denoted as A= {a1,...,aK}.
Textual Encoder. Given a referring expression, e.g., “the young man standing by the table”, we
first tokenize it and map tokens into embeddings E = {e,...,er}, where e; € R%. These
embeddings are passed through an LSTM to obtain contextualized representations:

ht :LSTM(ehht,l), t= 17...,L. (2)

To capture higher-order dependencies, we apply several layers of self-attention:

z; = SelfAttn(h;, H), H={hy,...,h}. 3)

From the contextualized sequence {z;}~_;, we derive two levels of textual embeddings. First, a
token-level attention pooling layer produces the global sentence embedding s € R%:

eXp(WT tanh(sz
) N 4
o Yoy exp(w ! tanh(Wzy)) Z Bizt. (4)

Second, we extract the embedding of the subject noun chunk (i.e., “the young man”) by pooling the
token representations: s, = 1/(e — b+ 1) Y_7_, z;, where (b, ¢) corresponds to the chunk span.

3.2 ATTRIBUTE-RELATION GUIDED COMPOSITIONAL ALIGNMENT

To enable anchors with fine-grained attribute sensitivity and relational awareness, we introduce two
complementary components: the Astribute Enhancer, which enriches each anchor feature with learn-
able attribute prototypes, and the Anchor Relation Encoder, which captures pairwise dependencies
among anchors. The resulting features are aligned with different levels of linguistic representations
through contrastive objectives.

Attribute Enhancer. Given the set of enriched anchor features A = {a;,...,ax} obtained from

the backbone, we introduce N learnable attribute prototypes P = {p1,...,p N} to further enhance

the awareness of the attributes that are shared by the entire dataset, where pj € R?. For each anchor

a;, we compute its similarity to the prototypes as weights ;; and derive its specific attribute features
a?™ via as a weighted combination of prototypes:

exp(p; &)
attr Z’YU Pj, Yij = 1 (5)
YNy exp(p]a;)

The attribute-enhanced anchors A = {ai1,...,ax} are obtained by adaptively combining the orig-
inal anchors and their attribute features via a gated fusion:

éi = g ® a';}llr + (1 — gz) ® éi, g = U(MLP([&, || a;‘m])), (6)
where o(-) denotes the sigmoid activation and [-|| -] represents concatenation. The attribute-

enhanced anchors are finally processed by a layer normalization. To encourage the prototypes to
capture diverse attribute directions, we regularize them with an orthogonality constraint:

Lay=|BBT —1||2, (7
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where B = normalize(P, ¢5), I denotes the identity matrix, and || - || 7 denotes the Frobenius norm.

Anchor Relation Encoder. While attribute enhancement improves intra-anchor discrimination, it
does not capture relations among objects. We thus construct pairwise relation features r;; between
anchors based on their semantic and geometric features. For any anchor pair (7, j), we define

ri; = wij - MLP([a; || &; (| 0;]).  &i; = MLP(gy;), (8)
where g;; denotes an 8-dimensional geometric descriptor encoding relative position, scale, over-
lap, and orientation: [Az, Ay, log(w;/w;),log(h;/h;),1oU,d, cos8,sinf]. The learnable weight

w;; = o (MLP([a; || &, || 6;;])) adaptively modulates the strength of each relation feature, suppress-
ing noisy while preserving meaningful interactions.

Compositional Alignment. We align the two enhanced feature sets with different levels of textual
representations. More specifically, attribute-enhanced anchors are aligned with the subject noun
chunk embedding s., while the relation features are aligned with the global sentence embedding s.
The alignment is optimized with InfoNCE contrastive objectives:

exp(als./T
Lur = —log —o22c5e/T)_ ©)
> i—1 €xp(a; s./7)
=T
L = — log 25/ T) (10)

521 exp(e['s/7)
where ¢* denotes the pseudo ground-truth anchor index during training, and 7 is a temperature
parameter. We also enforce a hierarchical consistency between subject-level and sentence-level
matching. To encourage the anchors that are highly ranked by subject-level alignment to be also
assigned high probability by relation-level alignment, we penalize when relation scores fall outside
the subject top-k set. The consistency loss is then defined as:

Lons =—logm, m= > sp(i), (11)
1€TopK(s4)

where s, € RX denote the similarity scores between anchors and the subject embedding s,., and
sr € RX denote the similarity scores between relation-enriched anchors and the full sentence
embedding s. The overall training objective loss function is:

L= £attr + Crel + Ediv + £cons- (12)

3.3 GROUNDING INFERENCE

Given a referring expression, we predict the target object by aligning it with both relation-aware and
attribute-enhanced visual anchors. The inference process consists of three steps: a relation-based
anchor filtering stage, an attribute-based re-ranking, and final prediction.

(1) Relation-based anchor filtering. We first match the full-sentence embedding s with the pairwise
relation features {r;;}. A symmetric similarity score for each anchor is computed as:

1
Sim!® = 3 log Z exp(r;;-s) + logZexp(r;—s) . (13)
J J

This yields a confidence distribution over anchors based on their contextual interactions. We select
the top-k anchors with the highest relation-based scores for further refinement.

(2) Attribute-based re-ranking. For each of the top-k anchors, we compute its similarity to the
subject noun chunk embedding s, using the attribute-enhanced anchor features {&; }:

M —als.. (14)

Sim;

We then fuse the two similarity measures:

Score; = o - Sim'®! + 3 - Sim?" (15)

7
where o = 0.6, 5 = 0.4 balance the contributions of contextual and attribute cues.

(3) Final prediction. The anchor with the highest fused score is selected as the target. Its bounding
box is decoded via the detection head to produce the final grounding output.



Under review as a conference paper at ICLR 2026

RefCOCO RefCOCO+ RefCOCOg

Task Methods Sup. val testA  testB val testA  testB val
SimVG-B |Dai et al.|(2024) B 87.63 90.22 84.04 78.65 83.36 71.82 78.81
REC  OneRef-B|Xiao et al.[(2024) B 88.75 9095 85.34 8043 86.46 74.26 83.68
RefFormer-B|Wang et al.|(2024) B 86.52 90.24 8142 76.58 83.69 67.38 77.80
ARN Liu et al.|(2019) T 32.17 3525 3028 32.78 3435 32.13 33.09
IGN Zhang et al.[(2020) T 3478 37.64 3259 3429 3691 33.56 34.92
DTWREG Sun et al.[(2021) T 38.35 39.51 37.01 38.19 3991 37.09 42.54
WREC RefCLIPJin et al. (2Q23jb T 60.36 58.58 57.13 4039 4045 38.86 47.87
APL|Luo et al.|(2024) T 64.51 6191 63.57 4270 42.84 39.80 50.22
WeakMCN |Cheng et al.|(2025) T 69.20 69.88 62.63 5190 57.33 43.10 54.62
DViN Chen et al.[(2025) T 67.67 7090 59.39 52.54 57.52 45.31 55.04
ARCA (ours) T 71.06 72.60 65.55 54.17 60.22 44.63 56.99

Table 1: Performance comparison with the state-of-the-art methods in REC and WREC on Ref-
COCO, RefCOCO+, and RefCOCOg. B and T denote bounding box and text supervision (Sup.),
respectively. The best and the second best results are bold and underlined.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Following the common practice [Jin et al.| (2023)); |[Luo et al.| (2024)); |Chen et al.| (2025)),
we evaluate our method on three widely used referring expression comprehension benchmarks: Re-
fCOCO [Yu et al.|(2016), RefCOCO+ |Yu et al.| (2016), and RefCOCOg [Nagaraja et al.[(2016), all
derived from the MSCOCO dataset|Lin et al. (2014)) with object-level referring expressions. We use
the standard splits for fair comparison. More dataset details are provided in the Appendix.

Evaluation metric. IoU@0.5 is used to measure the accuracy of the predicted bounding boxes
whose Intersection over Union (IoU) with the ground-truth bounding boxes are above 0.5.

Implementation details. Following prior work [Jin et al.|[(2023); |Chen et al.| (2025); |Cheng et al.
(2025), we adopt YOLOV3 as the detection backbone, and use DINOv2 |Oquab et al.| (2024)) and
Depth Anything v2|Yang et al.|(2024) as additional visual features. Text embeddings are initialized
with GloVe |Pennington et al.|(2014). More details are provided in the Appendix.

4.2 COMPARISON WITH STATE-OF-THE-ART

Table [T] reports the state-of-the-art results under both fully supervised REC and weakly supervised
REC (WREC). While fully supervised methods achieve the highest scores, thanks to box-level an-
notations, the proposed ARCA, trained without such supervision, shows competitive results (e.g.,
71.06% and 72.60% on RefCOCO val and testA), narrowing the gap between supervised and weakly
supervised paradigms. Compared to DViN, the strongest WREC method, the proposed ARCA con-
sistently outperforms or achieves comparable results across all splits of three datasets, particularly
showing significant gains of +3.39% on RefCOCO val, +6.61% on RefCOCO testB, +2.70% on
RefCOCO+ festA, and +1.95% on RefCOCOg val. The proposed ARCA surpasses WeakMCN, a
strong multi-task learning method, by notable margins of +2.72% and +2.93% on RefCOCO ftestA
and festB, +2.27% and +2.89% on RefCOCO+ val and festA, and +2.37% on RefCOCOg val. These
robust gains confirm the effectiveness and generalization ability of the proposed ARCA for WREC.

4.3 ABLATION STUDY

Effect of Attribute Enhancer and Relation Encoder. As shown in Table 2] adding either the
attribute enhancer or the relation encoder consistently improves performance over the baseline. On
RefCOCO, where expressions are often short, the attribute enhancer brings strong improvements
(e.g., +3.34% on val and +4.36% on testB). In contrast, on RefCOCQOg, which contains long and
unconstrained descriptions, relation modeling is more beneficial (+3.23% gain on val), reflecting
the importance of capturing inter-object relations in free-form language. On RefCOCO+, where
referring expressions are longer and less position-driven, single modules bring only modest gains,
but combining them yields larger improvements. Similar trends are observed across RefCOCO and
RefCOCOg, with the largest boost (+5.91%) is achieved when both modules are combined on the
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. RefCOCO RefCOCO+ RefCOCOg

Methods Align. val testA testB val testA testB val

Baseline (DINO + Depth) FA 66.59 69.10 59.94 51.22 5828 41.62 51.08
+ AttrEnhancer FA 69.93 71.52 6430 53,50 58.52 43.08 53.31
+ AnchorRel CA 69.22 7198 6347 5245 58.89 4197 54.31
+ AttrEnhancer + AnchorRel CA 71.06 72.60 65.55 54.17 60.22 44.63 56.99
A - 1447 1350 71561 1295 1194 13.01 15.91
Baseline (DINO + CLIP) FA 63.71  65.25 56.09 4898 54.16 40.15 50.53
+ AttrEnhancer + AnchorRel CA 6890 70.14 60.43 52777 58.71 42.46 53.82
A - 1519 1489 1434 1379 1455 1231 13.29
WeakMCN* |Cheng et al.|(2025) FA 68.55 70.78 62.00 5148 5692 41.75 53.44
+ AttrEnhancer + AnchorRel CA 7112 7216 66.10 53.79 59.12 43.94 55.92
A - 1257 1138 1410 1231 71220 71219 1 2.48
WeakMCNT [Cheng et al.[(2025) FA 69.20 69.88 62.63 5190 57.33 43.10 54.62
+ AttrEnhancer + AnchorRel CA 70.54 7143 64.89 53.23 59.57 44.04 55.94
A - 1134 1155 1226 1133 71224 710.96 11.32

Table 2: Effect of the proposed ARCA framework and its main components. Align.: alignment
type. FA: flat alignment. CA: compositional alignment. A: performance gain of the proposed
method compared to the baseline and WeakMCN |Cheng et al.| (2025)), following which we report
results using ViT-tiny- and ViT-small- based SAM models denoted by * and t, respectively.

RefCOCO RefCOCO+ RefCOCOg
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64 64 100
Number of attributes Number of attributes
Figure 3: Effect of varying the number of attribute prototypes.

RefCOCOg val set. These results suggest that attributes and relations play complementary roles,
and their synergy is particularly important for handling longer, composition-heavy expressions.

Compositional Alignment v.s. Flat Alignment. Table [2| also shows that when the proposed two
modules are combined under Compositional Alignment (CA), the gains are further improved. CA
achieves the best results across all datasets, outperforming Flat Alignment (FA) by a substantial mar-
gin (up to +5.91% on the val set of RefCOCOg). Importantly, this trend holds even when integrating
our modules into WeakMCN |(Cheng et al.|(2025), a recent multi-task method: CA consistently yields
higher accuracy than FA. These results demonstrate that the proposed method provides a general and
complementary improvement, enabling effective grounding performances.

Baseline Analysis. Motivated by DViN |Chen et al.| (2025) and WeakMCN |Cheng et al.| (2025),
we enrich the original anchor features with additional representations extracted from visual founda-
tion models via a dynamic routing mechanism. By default, we use DINOv2 features, which have
been widely demonstrated to be semantically rich. We also introduce DepthAnything features to
provide depth cues. Table [2 shows that our proposed modules consistently bring significant gains
across different baselines, e.g., +5.61% and +4.34% with “DINO+Depth” and “DINO+CLIP”, re-
spectively, on RefCOCO festB. Comparing two baselines, “DINO+Depth” is consistently stronger
than “DINO+CLIP”. This suggests that geometric depth cues provide more complementary infor-
mation to DINO’s semantic features than CLIP’s visual embeddings, which are semantically aligned
but less effective in capturing fine-grained structural distinctions under weak supervision.

Effect of the Number of Attribute Prototypes. Figure |3| shows the effect of varying the number
of attribute prototypes in the attribute enhancer. The performance generally improves as the number
of attribute prototypes increases across all datasets up to 100, suggesting that richer prototype sets
capture more diverse and fine-grained attributes. The gains are most noticeable on RefCOCOg with
the longer and more descriptive expressions, where capturing subtle attributes is crucial. However,
the performance declines on most datasets when learning beyond 100 prototypes. This is likely due
to the redundancy and overfitting. Overall, a moderate prototype size (e.g., 100, as used in our main
experiments) provides the best balance between diversity and distinctiveness.
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the bowl with thel white stuff in it

Figure 4: Qualitative results. From left to right, each column corresponds to the baseline, baseline
with AttrEnhancer, baseline with AnchorRel, and the full ARCA model, respectively. Red boxes:
predictions. Green boxes: GT. More visualizations are provided in the Appendix.

Effect of different regularization losses. As Table 3: Effect of different regularization losses.
shown in Table [3] applying diversity loss (Laiy) RefCOCO RefCOCO+
alone improves performance from 64.59% to  Lav  Leons (oA testB  tesiA  testB
65.48% on RefCOCO testB, which contains more
non-human related expressions compared to other
spl%ts.that are.d(')ml.nated by human—'centrllc de- V7021 6446 5948 4439
scriptions. This indicates that promoting diverse v v 7260 6555 6022 44.63
attribute prototypes is especially beneficial for : : : :
handling broader and less familiar categories. In contrast, the consistency loss (Lcons), Which en-
forces alignment consistency between anchor—noun and relation—sentence matching, is particularly
effective on RefCOCO+ (i.e.,, from 48.47% to 59.48% on testA and from 43.58% to 44.39% on
testB), where expressions are longer and rich in relational semantics. Combining these two reg-
ularizations achieves the best results across all datasets. This demonstrates their effectiveness in
strengthening the generalization ability of the framework across diverse linguistic scenarios.

71.88 64.59 5847 43.58
v 71.75 6548 59.27 4351

Qualitative Results. Figure [ shows how the proposed modules contribute to grounding perfor-
mance under different types of referring expressions. For expressions that primarily describe the
object itself, the attribute enhancer significantly improves localization accuracy by enlarging the an-
chors’ instance-level distinctiveness with learned attribute cues, e.g., in the first example “a black
cow with white stripe”, it helps the model focus on the cow with the distinctive stripe. In con-
trast, when expressions emphasize relations between objects (e.g., the second row, “cop bike clos-
est suv”), the Anchor Relation module proves highly effective, correctly disambiguating the target
“bike” among multiple visually similar candidates by explicitly modeling inter-anchor dependen-
cies. The full ARCA model, which integrates both modules, achieves the most precise localization
by capturing both attribute-level cues and inter-object relations.

5 CONCLUSION

We proposed ARCA, an attribute-relation guided compositional alignment framework, for weakly
supervised referring expression comprehension. Unlike prior approaches that focus on intra-anchor
enrichment and align them directly with full expressions, the proposed ARCA explicitly disentan-
gles semantics into attributes and relations, aligning attribute-enhanced anchors with subject noun
chunks and explicitly constructed anchor relation features with full sentences, respectively. Through
this design, ARCA effectively bridges the structural gap between visual anchors and the diverse and
relational semantics of natural language. Extensive experiments on RefCOCO, RefCOCO+, and Re-
fCOCOg demonstrate that the proposed ARCA consistently outperforms existing WREC methods,
highlighting the effectiveness of compositional alignment in the weakly supervised setting.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

Dataset Details. RefCOCO contains 142,210 expressions referring to 50,000 objects in 19,994 im-
ages. It contains relatively short and direct expressions, which include more spatial descriptions.
RefCOCO+ includes 141,564 expressions referring to 49,856 objects in 19,992 images, but explic-
itly discourages the use of spatial terms during annotation, thus having more appearance-based de-
scriptions. RefCOCOg incudes 104,560 expressions, which are longer and more complex than those
in RefCOCO and RefCOCO+. It covers 54,822 objects in 26,711 images, with more compositional
descriptions about both appearance and spatial information.

Implementation Details. Following prior work [Jin et al.| (2023); [Chen et al.| (2025)); |Cheng et al.
(2025), we used the pretrained YOLOV3 as the detection network. Following DViN |Chen et al.
(2025) and WeakMCN |Cheng et al.| (2025)), we incorporate pretrained visual foundation models to
enrich anchor features. More specifically, we use DINOv2-base Oquab et al.| (2024) model, and for
baseline comparisons, we the CLIP ViT-base Radford et al.| (2021) vision encoder. We additionally
use the Depth Anythingv2-small [Yang et al.|(2024) model. We initialize the text embeddings with
GloVe |Pennington et al.| (2014)) pretrained weights and set the maximum sequence length to 15. We
use the SpaCy python library to extract the subject noun chunk in each referring expression. The
training image size is set to 416 x 416. The training starts with a 3-epoch warm-up step, with the
learning rate linearly increasing from le-4 to le-3. After the warm-up, the learning rate starts at
le-3 with a cosine decay schedule. The model is trained for a total of 25 epochs. All experiments
are conducted on a single NVIDIA RTX 3090 GPU.

A.2 ADDITIONAL QUALITATIVE RESULTS.

Figure[S|provides additional qualitative examples to illustrate the effect of the proposed modules. For
attribute-focused descriptions (e.g., “white donut”, “cup filled with beverage”, “brownie with white
top”), the Attribute Enhancer consistently improves localization by enabling anchors to be more
discriminative with respect to fine-grained attributes, whereas the baseline often confuses the target
with visually similar instances. For relation-based expressions (e.g., “the man on the skateboard” and
the action-oriented “kid stealing treats’), the Anchor Relation module correctly localizes the target
instance by modeling inter-object dependencies, while the baseline or adding Attribute Enhancer
tends to mis-cover nearby or co-occurring objects. In a more complex case of “green plant behind
a table visible behind a lady”, the baseline mislocalizes the table, the Attribute Enhancer identifies
a plant but not the correct instance, while the Anchor Relation module correctly localizes the target
plant, as does the full model. These results highlight that attributes and relations play complementary
roles, and their integration enables robust performance across diverse expression types.

A.3 USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (ChatGPT) solely as a writing assist tool to polish the grammar,
clarity, and readability of the manuscript. The conceptualization of the research, technical develop-
ment, experimental design, implementation, and analysis were carried out entirely by the authors.
The authors take full responsibility for all content in this paper.
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(1) Referring expression: white donut

white donut white donut white donut white donut

T

Figure 5: Qualitative results. From left to right, each column corresponds to the baseline, baseline
with AttrEnhancer, baseline with AnchorRel, and the full ARCA model, respectively. Red boxes:
predictions. Green boxes: GT.
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