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Abstract

There has been a historic assumption that the biometrics of an individual are
statistically uncorrelated. We test this assumption by training Bi-Encoder networks
on three verification tasks, including fingerprint-to-fingerprint matching, iris-to-
iris matching, and cross-modal fingerprint-to-iris matching using 274 subjects
with ∼100k fingerprints and 7k iris images. We trained ResNet-50 and Vision
Transformer backbones in Bi-Encoder architectures such that the contrastive loss
between images sampled from the same individual is minimized. The iris ResNet
architecture reaches 91 ROC AUC score for iris-to-iris matching, providing clear
evidence that the left and right irises of an individual are correlated. Fingerprint
models reproduce the positive intra-subject suggested by prior work in this space.
This is the first work attempting to use Vision Transformers for this matching.
Cross-modal matching rises only slightly above chance, which suggests that more
data and a more sophisticated pipeline is needed to obtain compelling results.
These findings continue challenge independence assumptions of biometrics and
we plan to extend this work to other biometrics in the future. Code available:
https://github.com/MatthewSo/bio_fingerprints_iris

1 Introduction

Biometric traits such as fingerprints, voice, iris texture, hand geometry, and face have a history of
being assumed to be statistically independent when sampled from a single individual. Even modern
security systems and forensic workflows explicitly encode this assumption in their decision rules
and probabilistic models (Daugman, 2004; Hollingsworth et al., 2011; Risch and Devlin, 1992).
Recent evidence, however, questions this assumption. Guo et al. reported statistically significant
intra-subject patterns in fingerprints and proposed a ResNet-style architecture that predicts same
subject fingerprint pairs with better than random chance (Guo et al., 2024). This result has generated
substantial interest across the biometrics community (Starr, 2024; Baily, 2024).

A similiar independence assumption has persisted in the iris recognition space. Daugman’s founda-
tional work framed the left and right irises of an individual as fundamentally random and uncorrelated
(Daugman and Downing, 2001), and Hollingsworth et al. reaffirmed that the left and right irises
of the same person have uncorrelated irises when they assert, “it is generally accepted that the left
and right irises of the same person have uncorrelated iris codes” (Hollingsworth et al., 2011). In
(Fang et al., 2019), researchers experiment with matching genetically identical irises using grayscaled
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versions of the images on different channels of a CNN. They were able to demonstrate the predictive
power of CNNs to match the irises of matching vs non-matching individuals.

In this paper we extend the empirical investigation of intra subject biometric dependence in three key
ways:

1. We attempt to replicate the fingerprint study of Guo et al. under a low-data regime, while
also evaluating additional deep learning architectures.

2. We conduct an analysis of potential correlations between an individual’s two irises using
contrastive loss with bi-encoder networks.

3. We examine cross-biometric correlation, and propse a framework to learn the extent to
which patterns in fingerprints and irises can indicate a shared origin.

Together, these efforts are aimed toward the development of a more nuanced understanding of
biometric uniqueness. The work here is a jumping-off point for further research that will have direct
implications for the design and security analysis of next generation biometric systems.

2 Problem Formulation and Approach

Fundamentally, the problem we are trying to solve is determining if two images (two fingerprints,
two irises, one iris/one fingerprint) come from the same individual or come from two different
individuals. Formally, we treat biometric verification as a binary decision task. Given two images
x1 ∈ X1, x2 ∈ X2 (X1 may be the same, in the case of iris-to-iris matching, or different, in the case
of fingerprint-to-iris matching, from X2), the goal is to estimate

f : X1 ×X2 −→ {0, 1},

where f(x1, x2) = 1 denotes a valid pair and 0 an invalid pair. Bi-Encoder (also known as Siamese
networks) networks are excellent model candidates for this type of matching problem on images, and
a similar approach was taken in Guo et al (Malhotra, 2023).

In classic Bi-Encoder architectures, we train a network that takes in two images (generally in the same
representational space) and learns embeddings of the images (Koch et al., 2015). During training,
one calculates the loss using a Contrastive Loss function that calculates a distance metric between the
embeddings and then penalizes matching pairs with high distances and non-matching pairs with low
distances. The contrastive loss in our formulation is calculated as:

L(x1, x2, y) = (1− y) ∥g(z1)− g(z2)∥22 + y
[
max(0, m− ∥g(z1)− g(z2)∥2)

]2
where g is the embedding network, m is the margin and y is the true label for x1 and x2

This results in embeddings that should be similar for matching pairs and far apart for non-matching
pairs.

In attempting to create networks to predict whether two random irises belong to the same individual
(iris-to-iris) or two random fingerprints belong to the same individual (fingerprint-to-fingerprint), we
used a traditional Bi-Encoder architecture. In tackling the one iris and one fingerprint problem, our
first attempt involved a naive Bi-Encoder/Two Tower hybrid network approach that involved training
two networks simultaneously, both of which had not previously seen fingerprint or iris data during
pre-training. We also attempted to use the pretrained Bi-Encoder models from the iris-to-iris and
fingerprint-to-fingerprint specific task models.

3 Methodology

3.1 Dataset

We use a de-identified multi-biometric dataset collected by West Virginia University and Clarkson
University, which links records via subject identifiers and enables cross-trait analysis while preserving
privacy (Crihalmeanu et al.). For this study we selected subjects with both fingerprint and iris data,
yielding 274 individuals with ∼100k fingerprint images and 7k iris images.
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Table 1: Principal training configs. All models use ImageNet-1K initialization; † indicates towers
pretrained from i1/f1.

ID Task Backbone Batch GPUs LR

i1 Iris–Iris RN50 50 7 3e-4
i2 Iris–Iris ViT-B/16 16 3 3e-4
i3 Iris–Iris ViT-L/32 16 2 3e-4
f1 Fingerprint–Fingerprint RN50 50 7 3e-4
f2 Fingerprint–Fingerprint ViT-B/16 16 3 3e-4
c1 Iris–Fingerprint 2×RN50 50 7 3e-4
c2 Iris–Fingerprint 2×RN50† 50 7 5e-5

† Towers initialized from i1 (iris) and f1 (fingerprint).

3.2 Data Preparation

All images were grouped by subject and split at the subject level into train/val/test sets
(80%/10%/10%), preventing identity leakage across splits. For each task we constructed balanced
(1:1) positive/negative pair sets within each split:

• Iris–iris: all left–right iris combinations from the same subject (label 1); negatives were
left–right pairs from different subjects in the same split (label 0).

• Fingerprint–fingerprint: pairs of different fingers from the same subject (label 1); negatives
drawn from different subjects (label 0).

• Iris–fingerprint: each iris of a subject paired with each fingerprint of the same subject
(label 1); negatives paired with fingerprints from randomly sampled other subjects (label 0).

Because image counts per subject vary, we normalized subject frequency by additional sampling of
under-represented identities so that each individual contributes equally to training. When comparing
multiple backbones, the exact same subject lists for train/val/test were reused across models to avoid
cross-model leakage.

3.3 Training

We train Bi-Encoder models with ResNet-50 and Vision Transformer backbones (He et al., 2015;
Dosovitskiy et al., 2020). The final classification layer is replaced by a projection head (fully
connected + batch normalization) producing the embedding. Models are optimized with Adam
(initial LR 3 × 10−4) and a step-decay scheduler (step size = 5 epochs, γ = 0.1). We apply light
augmentations (color jitter, small rotations, normalization) during training and disable augmentation
at test time. Early stopping is based on validation performance, and decision thresholds for binary
classification are selected on the validation set.

4 Results and Discussion

We evaluate three verification tasks using ROC AUC as the primary metric and report complementary
accuracy, precision, and recall (Fig.1,3,4,5).

4.1 ROC AUC Performance

Figure 1 aggregates our ROC AUC scores alongside two fingerprint baselines from Guo et al. (Guo
et al., 2024). Overall, iris-iris achieves the strongest separability; fingerprint-fingerprint reproduces
the positive intra-subject signal from prior work; cross-modal iris-fingerprint remains weak.

4.2 Iris-to-Iris

The ResNet-50 bi-encoder attains ROC AUC 0.91, indicating that contralateral irises are not statis-
tically independent. Qualitative inspection of errors suggests many false negatives stem from poor
image quality, eyelid/eyelash occlusion, or specular reflections. Vision Transformers (ViT-B/16,
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Figure 1: ROC AUC (including Guo et al. results).

ViT-L/32) exceed chance but plateau in the mid-to-high 0.80s; with limited data, CNN inductive
biases appear advantageous relative to ViTs trained from scratch.

4.3 Fingerprint-to-Fingerprint

We reproduce the qualitative conclusion of Guo et al. that fingerprints from the same subject ex-
hibit intra-subject signal, though our ROC AUC does not match their best report. Likely factors
include fewer participants (∼3× fewer), less extensive pretraining (e.g., synthetic data), and archi-
tectural/training differences. Notably, ViT-B/16 outperforms ResNet-50 in our setting, suggesting
transformer backbones can be competitive when enough fingerprint data are available.

4.4 Fingerprint-to-Iris (Cross-Modal)

Cross-modal verification yields only slight gains over chance, even with our strongest two-tower
configurations. This suggests a weaker measurable correlation between fingerprint and iris traits
under our data and training regime; larger datasets, cross-modal pretraining, or stronger alignment
objectives may be required to uncover robust signal.

5 Interpretability

To explore the internal representations learned by the networks, we adopted a DeepDream-style
open-source CNN visualisation code of Ozbulak (Ozbulak, 2019) as was done by Guo et al.. For
select CNN layers, we perform gradient ascent on an initial image comprised of noise to see what
features in the input image the layer is responding to. This gives intuitive insight into the visual
patterns that affect the results.

Early-layer features. Figures 2a and 2c present the resultant images for the first convolutional
block of the fingerprint and iris ResNet50 architectures, respectively. The networks for both tasks
seem to be learning the core structures of fingerprints and irises.
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Deep-layer features. In deeper layers (Figures 2b and 2d), the images contain more complex
representations of the patterns found on fingerprints and irises. For fingerprints, the network appears
to focus on minutiae-like patterns, including swirls, ridges and bifurcations, that may be used to
identify an individual. The iris network, on the other hand, seems to demonstrate patterns of the
stoma of the iris. The notable differences between early and late layers suggest that the Bi-Encoder
architecture learns a sequential hierarchy from coarse structural features to complex patterns.

(a) DeepDream visualisations from Layer 1 of the
fingerprint ResNet-50. The results resemble course
fingerprint patterns.

(b) DeepDream visualisations from Layer 4 of the
fingerprint ResNet-50. Later filters capture complex
minutiae-like ridge patterns.

(c) DeepDream visualisations from Layer 1 of the iris
ResNet-50. Filters the core patterns of irises.

(d) DeepDream visualisations from Layer 4 of the iris
ResNet-50. Later filters seem to respond to complex
patterns found in irises.

6 Future Work

The main areas of future work are: (i) systematic hyperparameter and architecture search with scaling
studies; (ii) automated image-quality scoring and filtering of low-quality samples, complemented by
targeted augmentations; (iii) domain-specific pretraining (e.g., synthetic biometrics, self-supervised
objectives) and exploration of alternative contrastive losses/margins and alignment objectives; and
(iv) broader cross-modal studies on larger, more diverse datasets, including voice, vein patterns, and
hand geometry.

7 Conclusion

This work revisits the independence assumption for biometric traits using bi-encoder contrastive
learning. Under a tighter data budget, we replicate fingerprint intra-subject effects and, in a large
left-right iris study, observe substantial signal (ROC AUC 0.91 with ResNet-50). Vision Transformers
are competitive for fingerprints but lag on irises in this data regime, and cross-modal iris–fingerprint
verification remains only slightly above chance. Feature visualizations indicate the models capture
meaningful ridge and iris-texture patterns from low- to high-level representations. These findings
motivate re-examining multi-trait fusion methods that assume independence and scaling cross-modal
studies with larger datasets.
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A Appendix

Figure 3: Accuracy on the held-out test set.
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Figure 4: Precision on the held-out test set.

Figure 5: Recall on the held-out test set.
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