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Abstract. Multi-label classification task, where each class can be as-
signed to several labels simultaneously, has been a growing research area
during the last years, due to their ability to deal with many real worlds
problems. Besides deep learning techniques have been extensively used
in that context, where it ith worth highlighting Graph Neural Network
as part of the deep learning specialised to cope with complex data. In the
present work, a novedous multi-label classification technique is presented,
based on using Graph Neural Network to learn the subjacent structure
in multi-label datasets, and it is compared with others well-established
multi-label methods.
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1 Introduction

Many classification problems like medical diagnosis[12], text categorization[20]
or anotation of images[26] can be represented as multi-label classification task
(MLC)[13] where each pattern are associated with more than one label. Formally,
being X = <d a d-dimensional input space, L = {λ1, λ2, ..., λq} an output space
of q labels and S a multi-label training set with m examples {(xi, Yi)|1 ≤ i ≤ m}
where xi ∈ X is a d-dimensional instance which has a set of labels associated
Yi ⊆ L, MLC is the task of learn a classifier that returns Zi ⊆ L as close as
posible to Yi.

MLC problems have been dealt with from two points of view[13]. On the
one hand, transformation methods, which transform a multi-label problem into
single-label problems, on the other hand, adaptation methods imply adapting
clasical classification paradigms to MLC.

Transformation methods obtain single label patterns from an MLC dataset
to use any single-label classification algorithm, so they are independent of the
underlying classification technique. They tend to produce information loss, how-
ever are commonly used because they allow working with well-known classical
classification approaches[13]. Transformation techniques are Binary Relevance
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(BR)[22], that generates one dataset per label, and pairwise methods that cre-
ates a new dataset for combinations of labels like Label Powerset (LP) [22].
Also ensembles, which unifies the answers of multiple classifiers to get a more
robust one, are considered transformation techniques. Between them, it is worth
to foreground RAkEL[18].

Adaptation techniques include many paradigms specifically adapted to deal
with multi-label data without preprocessing. Almost every classification model
has been adapted to be used in a multi-label context. Without the intention to be
exhaustive, we can cite techniques like boosting[20], SVM[11], decision trees[7] ,
lazy classification(ML-kNN) [25], neural networks (BP-MLL) [8] or bioinspired
proposals[1].

Graph Neural networks (GNNs) has been used to generate embedded repre-
sentations of graphs or subgraphs to obtain less complicated depictions of the
data but many works have focused on getting an embedding from a fixed graph
[5]. However, most of the real-world tasks need to deal with dynamically gen-
erated from unseen nodes or edgesso they need inductive learning over graphs.
The GraphSage Algorithm[16] allows generalizing from newly observed subgraph
with the previously generated embeddings.

In the present work, we have developed a multi-label classification method,
called ML-SAGE, based on GraphSage that generates an embedding from the
label-Pattern graph, with is subsequently used to clasify unseen patterns. The
paper is structured as follows: the first time we introduce the graph representa-
tion and the proposed algorithm, next the experimental framework is exposed,
including metrics, datasets and another state of the art proposal used as a base-
line to compare our work, to finish with a discussion of the results and the
conclusions reached in addition with other works to carry on in the future.

2 ML-SAGE

2.1 Graph representation

Modelling dependencies between labels is one of the handicaps to obtaining
accurate multi-label classifiers. The problem has been aborded from several
points of view, including graphs and graph neural networks [10]. In this pa-
per, we have used bipartite graphs where two types of nodes and edges can only
connect different types of nodes, to model the relationship between patterns
and labels. Formally, given a graph G = {V,E}, it is bipartite if and only if
V = V1 ∪ V2, V1 ∩ V2 = ∅ and v1e ∈ V1 while v2e ∈ V2 ∀ e = (v1e , v

2
e) ∈ E [2].

In the present model, a whole multi-label dataset is represented by one bi-
partite graph, called Paterns-labels graph, composed of pattern nodes and label
nodes. Edges in the graph will indicate that one pattern is associated with a
label.

2.2 Proposed method

The proposed method works by creating low dimensional embeddings for pattern
nodes in the Patterns-labels graph by sampling and aggregating features from
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their local neighbourhood. It generalizes by learning an embedding function that
will be applied to unseen pattern nodes to determine which are the probable
label nodes that would be connected with them. In other words, a multi-label
classification task is modelled as an edge prediction problem over the patterns-
labels graph.

During the training phase nodes calculates embeddings for labels and pat-
terns nodes based on the information obtained by a sample of n of their neigh-
bour located at a K distance, using the mean agregation (eq.1 ). Two loops are
made with K = 1 and K = 2, to generates embedded which learns the common
characteristics of patterns with the same label and also allows to learn relations
between labels.

hkv =
1

|Nr(v)|
∑

u∈Nr(v)

Dph
k−1
u (1)

Forward pass through each layer are calculated using eq. 2, being the output
of node v at layer k W k

v and W k
n trainable parameters , hv the embedded

calculated using 1 andDp a random dropout. σ represents the activation function
of the layer.

Outputkv = σ((hk−1v +W k
nh

k
v)) (2)

The neural network architecture is shown in figure 1 where the connections
between layers appear. Two layers calculate node embeddings, to distance 1 and
2 respectively. The node embeddings are used to generate an edge embedding
that feeds a fully connected neural network which generates the classifier results.
The whole net structure is training end to end. Vectors W are actualized using
a back-propagation algorithm and stochastic gradient descent.
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In the inference process, when a new pattern is shown to the classifier, em-
bedded is used to determine which edges fit better with the pattern.

3 Experimental setup

In this section, the main characteristics of the performed experiments are pre-
sented, including metrics, implementation details and used datasets.

The performance of our proposal has been compared to a set of representative
state-of-the-art methods for multi-label classification. All algorithms have been
tested using 10-fold cross-validation on all datasets.

3.1 Parameters and implementation

The proposed algorithm has been developed under the StellarGraph library [9]
that implements several methods of GNN over Keras[6] and Tensorflow [14].
MULAN implementation of the comparation methods later mentioned has been
used [23]. Before the main experimentation, several texts have been carried out
to tune up the algorithm parameter: The optimal parameters are 300 epoch,
dropout of 0.1 batch size 20 and Adam is used as optimizer with learnig ratio
0.01.

3.2 Performance metrics

Performance of trained classifiers has been compared amongs the othes using
Fscore, Accuracy y Hamming Loss Metrics

The Fscore (eq. 3), harmonic mean between precision and recall, gives a good
idea of the overall performace of the classifier. In MLC experiments, there is a
contingency table for each label, so it is necessary to average values in the metric.
In the experiments carried out, the micro approach[21] has been used to calculate
FScore because it is widely used and it gives equal weight to each label.

FScore =

m∑
i=1

∑q
λ=1 tpiλ∑q

λ=1 tpiλ +
1
2 (
∑q
λ=1 fpiλ +

∑q
λ=1 fniλ)

(3)

Accuracy (eq. 4) is the fraction of correctly classified label values. It is worth
noting is irrelevant how it is averaged across labels[22].

Accuracy =
1

q

q∑
λ=1

1

m

m∑
i=1

tpiλ + tniλ
tpiλ + tniλ + fpiλ + fniλ

(4)

Hamming loss (eq. 5), considers both classification errors (predict a wrong
label) and omission errors (label not predicted) definning ∆ as the symmetric
difference between Yi, the set of true labels of the instance i, and Pi, labels
assigned by the classifier.

HammingLoss =
1

m

m∑
i=1

|Yi∆Pi|
q

(5)
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3.3 Datasets

6 datasets have been used to carry out the experiments: birds[4], enron[17],
flags[15], mediamill [24],medical [19] andscene[3]. The datasets include a great
variety of domains like images and audio classification, medical diagnosis or text
classification.

4 Results, conclusions and future work

4.1 Experimental results

Table 1 summarize the results of the proposed algorithm compared with the
others MLC proposals in terms of Accuracy, FScore and Hamming Loss.

The ML-SAGE proposal obtains, broadly speaking, better results for all met-
rics in most of the tested datasets. It gets better results in terms of Accuracy,
FScore and Hamming Loss.

It has better values of accuracy in 3, better FScore in 5 and better Hamming
Loss in 4 of the 6 tested datasets. On top of that, none of the other MLC
proposals are able to defeat it consistently across metrics and datasets.

On the other hand, it is worth noting that less performance is associated
with datasets like medical and enron that have a relatively high number of labels
per patter(high cardinality). It can be explained by the way the embedded are
built, which may make it more difficult to learn representations of relations that
includes more than two labels.

4.2 Conclusions and future work

The current paper presents the ML-SAGE algorithm, a Graph Neural Network
model that deals with MLC classification problems modelling it as an edge pre-
diction task in a bipartite graph. ML-SAGE creates embeddings representations
of the patterns that share the same label and combine it with embedded that
represent relations between labels.

Several experiments have been made to compare the performance of the
proposal with other well established MLC techniques, showing that ML-SAGE
obtains better results in generating MLC classifiers among several application
domains.

Further studies could be carried out to check its functioning with extreme
multi-label learning, the performance of other Neural network topologies and the
parameter sensitivity, especially to label cardinality. In addition, ML-SAGE can
be modified to be used in a map-reduced architecture to apply it in Big Data
contexts.
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Table 1. Experimental results.

BP-MLL ML-kNN BR LP RAkEL ML-SAGE
Accuracy ↑

birds 0.124 0.590 0.125 0.107 0.563 0.649
enron 0.179 0.660 0.406 0.469 0.526 0.491
flags 0.585 0.591 0.593 0.570 0.593 0.750
mediamill 0.512 0.698 0.416 0.485 0.457 0.521
medical 0.068 0.565 0.693 0.735 0.733 0.708
scene 0.499 0.673 0.536 0.588 0.622 0.783

FScore ↑
birds 0.457 0.284 0.379 0.345 0.400 0.315
enron 0.250 0.562 0.483 0.418 0.569 0.661
flags 0.250 0.562 0.483 0.418 0.569 0.807
mediamill 0.487 0.585 0.393 0.545 0.496 0.971
medical 0.120 0.680 0.802 0.755 0.791 0.971
scene 0,631 0.726 0.623 0.629 0.673 0.808

Hamming Loss ↓
birds 0.131 0.051 0.337 0.104 0.057 0.024
enron 0.250 0.047 0.042 0.054 0.041 0.028
flags 0.275 0.289 0.275 0.297 0.275 0.097
mediamill 0.043 0.123 0.047 0.083 0.47 0.020
medical 0.312 0.015 0.010 0.012 0.009 0.021
scene 0.141 0.085 0.156 0.127 0.102 0.169
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