
Published as a conference paper at ICLR 2020

MIXED PRECISION DNNS:
ALL YOU NEED IS A GOOD PARAMETRIZATION

Stefan Uhlich∗, Lukas Mauch∗, Fabien Cardinaux∗, Kazuki Yoshiyama
Javier Alonso García, Stephen Tiedemann, Thomas Kemp
Sony Europe B.V., Germany
firstname.lastname@sony.com

Akira Nakamura
Sony Corporate, Japan
akira.b.nakamura@sony.com

ABSTRACT

Efficient deep neural network (DNN) inference on mobile or embedded devices typically involves
quantization of the network parameters and activations. In particular, mixed precision networks
achieve better performance than networks with homogeneous bitwidth for the same size constraint.
Since choosing the optimal bitwidths is not straight forward, training methods, which can learn
them, are desirable. Differentiable quantization with straight-through gradients allows to learn the
quantizer’s parameters using gradient methods. We show that a suited parametrization of the quantizer
is the key to achieve a stable training and a good final performance. Specifically, we propose to
parametrize the quantizer with the step size and dynamic range. The bitwidth can then be inferred
from them. Other parametrizations, which explicitly use the bitwidth, consistently perform worse. We
confirm our findings with experiments on CIFAR-10 and ImageNet and we obtain mixed precision
DNNs with learned quantization parameters, achieving state-of-the-art performance.

1 INTRODUCTION

Quantized DNNs apply quantizers Q : R → {q1, ..., qI} to discretize the weights and/or activations
of a DNN (Han et al., 2015; Zhou et al., 2017; Li et al., 2016; Liu & Mattina, 2019; Cardinaux
et al., 2018; Jain et al., 2019; Bai et al., 2018). They require considerably less memory and have a
lower computational complexity, since discretized values {q1, ..., qI} can be stored, multiplied and
accumulated efficiently. This is particularly relevant for inference on mobile or embedded devices
with limited computational power.

However, gradient based training of quantized DNNs is difficult, as the gradient of a quantization
function vanishes almost everywhere, i.e., backpropagation through a quantized DNN almost always
returns a zero gradient. Different solutions to this problem have been proposed in the literature:
A first possibility is to use DNNs with stochastic weights from a categorical distribution and to
optimize the evidence lower bound (ELBO) to obtain an estimate of the posterior distribution of
the weights. As proposed in (Jang et al., 2016; Maddison et al., 2016; Louizos et al., 2019), the
categorical distribution can be relaxed to a concrete distribution – a smoothed approximation of the
categorical distribution – such that the ELBO becomes differentiable under reparametrization.
A second possibility is to use the straight through estimator (STE) (Bengio et al., 2013). STE allows
the gradients to be backpropagated through the quantizers and, thus, the network weights can be
adapted with standard gradient descent (Hubara et al., 2016). Compared to STE based methods,
stochastic methods suffer from large gradient variance, which makes training of large quantized
DNNs difficult. Therefore, STE based methods are more popular in practice.

More recent research (Jain et al., 2019; Esser et al., 2019; Wang et al., 2018; Elthakeb et al., 2018)
focuses on methods which can also learn the optimal quantization parameters, e.g., the stepsize,
dynamic range and bitwidth, in parallel to the network weights. This is a promising approach as
DNNs with learned quantization parameters almost always outperform DNNs with handcrafted ones.

∗Equal contribution.

1

Published as a conference paper at ICLR 2020

Recently, and in parallel to our work, (Jain et al., 2019) explored the use of STE to define the gradient
with respect to the quantizers’s dynamic range. The authors applied a per-tensor quantization and
used the dynamic range as an additional trainable parameter also learned with gradient descent.
Similarly, (Esser et al., 2019) learned the stepsize using gradient descent. However, neither of them
learned the optimal bitwidth of the quantizers.
One approach was proposed in (Wang et al., 2018; Elthakeb et al., 2018). They learn the bitwidth
with reinforcement learning, i.e., they learn an optimal bitwidth assignment policy. Their experiments
show that a DNN with a learned and heterogeneous bitwidth assignment outperforms quantized
DNNs with a homogeneous bitwidth assignment. However, such methods have a high computational
complexity as the bitwidth policy must be learned, which involves training many quantized DNNs.

In this paper, we will use the STE approach and show that the quantizer’s parameters, including the
bitwidth, can be learned with gradient methods if a good parametrization is chosen. Specifically,
we show that directly learning the bitwidth is not optimal. Instead, we propose to learn the stepsize
and dynamic range. The bitwidth can then be inferred from them. Compared to (Wang et al., 2018;
Elthakeb et al., 2018), our method has the advantage that training quantized DNNs has nearly the
same computational complexity as standard float32 training.

The contributions of this paper are:
1. We show that there are three different parametrizations for uniform and power-of-two quantiza-

tion and that, in both cases, one of them has gradients particularly well suited to train quantized DNNs.
The other parametrizations have the problem of yielding gradients with an unbounded gradient norm
and coupled components.

2. Using this parametrization, we are able to learn all quantization parameters for DNNs with
per-tensor quantization and global memory constraints. We formulate the training as a constrained
optimization problem, where the quantized DNN is constrained not to exceed a given overall memory
budget, and show how to solve it in a penalty framework.

3. We confirm our findings with experiments on CIFAR-10 and ImageNet. For example, we train
a heterogeneously quantized MobileNetV2 on ImageNet requiring a total of only 1.65MB to store the
weights and only 0.57MB to store its largest feature map. This is equivalent to a homogenous 4bit
quantization of both weights and activations. However, our network learns to allocate the bitwidth het-
erogeneously in an optimal way. Our MobileNetV2 achieves an error of 30.26% compared to 29.82%
for the floating point baseline. This is state-of-the-art for such a heavily quantized MobileNetV2.

We use the following notation throughout this paper: x, x, X and X denote a scalar, a (column)
vector, a matrix and a tensor with three or four dimensions, respectively; b.c and d.e are the floor and
ceiling operators. Finally, δ(.) denotes the Dirac delta function.

2 CHOOSING A QUANTIZATION PARAMETRIZATION

Let Q(x;θ) be a quantizer with the parameters θ, which maps x ∈ R to discrete values {q1, ..., qI}.
In this section, we compare different parametrizations of Q(x;θ) for uniform quantization and power-
of-two quantization and analyze how well the corresponding straight-through gradient estimates
∂xQ(x;θ) and ∇θQ(x;θ) are suited to optimize the quantizer parameters θ. Our key result is, that
the training of quantized DNNs which learns both, the optimal quantized weights and the optimal
quantization parameters θ, is very sensitive to the choice of the parametrization of the quantizers.
From an optimization point of view, it is best to parametrize the quantizer Q(x;θ) with the stepsize
d and the dynamic range qmax as it leads to gradients with stable norms. Doing so, we can use
standard gradient descent to learn the quantization parameters and do not need to use stochastic or
reinforcement based algorithms, which are computationally expensive.

2.1 PARAMETRIZATION AND STRAIGHT THROUGH GRADIENT ESTIMATES

A symmetric uniform quantizer QU (x;θ) which maps a real value x ∈ R to one of I = 2k + 1
quantized values q ∈ {−kd, ..., 0, ..., kd} computes

q = QU (x;θ) = sign(x)

{
d
⌊
|x|
d + 1

2

⌋
|x| ≤ qmax

qmax |x| > qmax

, (1)

2

Published as a conference paper at ICLR 2020

2
4

6
8

0

5

0

500

1,000

bd

(a) Case U1: θ = [b, d]T

2

4
0

10

0

2

b qmax

(b) Case U2: θ = [b, qmax]
T

0

10

0

5

0

2

dqmax

(c) Case U3: θ = [d, qmax]
T

Figure 1: Maximum gradient norm maxx‖∇θQU (x;θ)‖. For “U1” and “U2” the maximum gradient
norm can grow exponentially with varying bitwidth b whereas it is bounded for “U3”.

where the parameter vector θ = [d, qmax, b]
T consists of the step size d ∈ R, the maximum value

qmax ∈ R and the number of bits b ∈ N, b ≥ 2 used to encode the quantized values q.

When training quantized DNNs, we want to optimize QU (x;θ) with respect to the input x and the
quantization parameters θ, meaning that we need the gradients ∇xQU (x;θ) and ∇θQ(x;θ). A
common problem is, that the exact gradients are not useful for training. For example, ∂xQU (x;θ) =

d
∑2b−1−2

k=−2b−1+1 δ
(
x− d

(
k + 1

2

))
vanishes almost everywhere. A solution is to define the derivative

using STE (Bengio et al., 2013), which ignores the floor operation in (1). This leads to

∂xQU (x) =

{
1 |x| ≤ qmax

0 |x| > qmax
, (2)

which is non-zero in the interesting region |x| ≤ qmax and which turned out to be very useful to
train quantized DNNs in practice (Yin et al., 2019). In this work, we follow this idea and define the
gradients ∇xQ(x;θ) and ∇θQ(x;θ), using STE whenever we need to differentiate a floor operation.
We refer to this as differentiable quantization (DQ).

An important observation from (1) is that the parameters θ = [d, qmax, b]
T of a quantizer depend

on each other, i.e., qmax = (2b−1 − 1)d. This means, that we can choose from three equivalent
parametrizations of QU (x;θ): Case “U1” with θ = [b, d]T , case “U2” with θ = [b, qmax]

T and case
“U3” with θ = [d, qmax]

T . Interestingly, they differ in their gradients:
Case U1: Parametrization with respect to θ = [b, d]T , using qmax = qmax(b, d) gives

∇θQU (x;θ) =

[
∂bQU (x;θ)
∂dQU (x;θ)

]
=


[
0
1
d

]
(QU (x;θ)− x) |x| ≤ (2b−1 − 1)d[

2b−1 log(2)d

2b−1 − 1

]
sign(x) |x| > (2b−1 − 1)d

(3a)

Case U2: Parametrization with respect to θ = [b, qmax]
T , using d = d(b, qmax) gives

∇θQU (x;θ) =

[
∂bQU (x;θ)
∂qmaxQU (x;θ)

]
=


[
− 2b−1 log 2

2b−1−1
1

qmax

]
(QU (x;θ)− x) |x| ≤ qmax[

0

sign(x)

]
|x| > qmax

(3b)

Case U3: Parametrization with respect to θ = [d, qmax]
T , using b = b(d, qmax) gives

∇θQU (x;θ) =

[
∂dQU (x;θ)
∂qmaxQU (x;θ)

]
=


[
1
d

0

]
(QU (x;θ)− x) |x| ≤ qmax[
0

sign(x)

]
|x| > qmax

(3c)

Fig. 1 shows the maximum gradient norm maxx‖∇θQU (x;θ)‖ for the three parametrizations “U1”
to “U3”. For the parametrizations “U1” and “U2”, maxx‖∇θQU (x;θ)‖ can grow exponentially
with varying bitwidth b as ∂dQU (x;θ) ∈ [−2b−1 − 1, 2b−1 − 1] for “U1” and ∂bQU (x;θ) ∈[
− qmax

2b−1−1
log 2, qmax

2b−1−1
log 2

]
for “U2”. This is not desirable when training quantized DNNs,

because it will lead to large changes of the gradient norm and forces us to use small learning rates to

3

Published as a conference paper at ICLR 2020

qmax

2b−1 − 1

x

∂bQU(x) ∂dQU(x)

(a) Case U1

qmax

1

x

∂bQU(x) ∂qmaxQU(x)

(b) Case U2

qmax

1

x

∂dQU(x) ∂qmaxQU(x)

(c) Case U3

qmax

1

x

∂xQU(x)

(d) Input derivative

Figure 2: Partial derivatives of QU (x;θ) with respect to the input and the quantization parameters
d, qmax and b. Partial derivatives are coupled for “U1” and “U2” but are decoupled for “U3”.

avoid divergence. However, parametrization “U3” does not suffer from such an unbounded gradient
norm as both partial derivatives ∂dQU (x;θ) ∈ [− 1

2 ,
1
2] and ∂qmaxQU (x;θ) ∈ {−1, 1} are bounded.

Fig. 2 shows the gradients for the parametrization “U1” to “U3”. For parametrization “U3”, the
partial derivatives in ∇θQU (x;θ) are decoupled, i.e., ∇θQU (x;θ) is a unit vector, which either
points only in the direction of d if |x| ≤ qmax or only in the direction of qmax, if |x| > qmax. We will
show in Sec. 2.3 that this implies a diagonal Hessian, which results in a better convergence behavior
of gradient descent. In contrast, both parametrizations “U1” and “U2” have partial derivatives that
are coupled. In summary, this implies that parametrization “U3” is the best DQ parametrization.

Similar considerations can be made for the power-of-two quantization QP (x;θ), which maps a
real-valued number x ∈ R to a quantized value q ∈ {±2k : k ∈ Z} by

q = QP (x;θ) = sign(x)


qmin |x| ≤ qmin

2b0.5+log2|x|c qmin < |x| ≤ qmax

qmax |x| > qmax

, (4)

where qmin and qmax are the minimum and maximum absolute values of the quantizer for a bitwidth
of b bit. Power-of-two quantization is an especially interesting scheme for DNN quantization, since a
multiplication of quantized values can be implemented as an addition of the exponents. Using the
STE for the floor operation, the derivative ∂xQP (x;θ) is given by

∂xQP (x) =


0 |x| ≤ qmin
2b0.5+log2|x|c

|x| qmin < |x| ≤ qmax

0 |x| > qmax

. (5)

The power-of-two quantization has the three parameters [b, qmin, qmax] =: θ, which depend on
each other with the relationship qmax = 22

b−1−1qmin. Therefore, we have again three different
parametrizations with θ = [b, qmin], θ = [b, qmax] or θ = [qmin, qmax], respectively. Similarly to the
uniform case, one parametrization (θ = [qmin, qmax]) leads to a gradient of a very simple form

∇θQP (x;θ) =

[
∂qminQU (x;θ)
∂qmaxQU (x;θ)

]
=


[1, 0]T |x| ≤ qmin

[0, 0]T qmin < |x| ≤ qmax

[0, 1]T |x| > qmax

, (6)

which has again a bounded gradient magnitude and independent components and is, hence, best
suited for first order gradient based optimization.

2.2 CONSTRAINTS ON θ

In practice, for an efficient hardware implementation, we need to ensure that the quantization
parameters only take specific discrete values: for uniform quantization, only integer values are
allowed for the bitwidth b, and the stepsize d must be a power-of-two, see e.g. (Jain et al., 2019); for
power-of-two quantization, the bitwidth must be an integer, and the minimum and maximum absolute
values qmin and qmax must be powers-of-two.

We fulfill these constraints by rounding the parameters in the forward pass to the closest integer or
power-of-two value. In the backward pass we update the original float values, i.e., we used again the
STE to propagate the gradients.

2.3 EXPERIMENTAL COMPARISON OF DQ PARAMETRIZATIONS

In the following we compare the parametrizations using two experiments.

4

Published as a conference paper at ICLR 2020

0 500 1,000 1,500 2,000

10−3

10−1

Iteration

M
ea

n
sq

ua
re

d
er

ro
r b, d (U1)

b, qmax (U2)

d, qmax (U3)

(a) Uniform quantization

0 500 1,000 1,500 2,000

10−1

10−0.5

Iteration

M
ea

n
sq

ua
re

d
er

ro
r b, qmax (P1)

b, qmin (P2)

qmin , qmax (P3)

(b) Power-of-two quantization

Figure 3: MSE for quantizing Gaussian data x ∼ N(0, 1) with uniform and power-of-two quantiza-
tion. Parametrizations “U3” and “P3” converge to the lowest MSE without any oscillations.

1) Quantization of Gaussian data In our first experiment we use DQ to learn the optimal quantiza-
tion parameters θ∗ which minimize the mean squared error (MSE) E

[
1
2 (Q(x;θ)− x)2

]
with

gradient descent and compare the convergence speed for three possible parametrizations of a
uniform and power-of-two quantizer. We choose this example as the gradient ∇θQ(x;θ) =
E [(Q(x;θ)− x)∇θQ(x;θ)] is just a scaled version of ∇θQ(x;θ), i.e., the gradient direction de-
pends directly on the parametrization of Q(x;θ) and thus the effects of changing the parametrization
can be observed.

It is interesting to study the Hessian H = ∇θ∇T
θ E

[
(Q(x;θ)− x)2

]
∈ R2×2 of the MSE:

H = E
[
∇θQ(x;θ)∇θQ(x;θ)T + (Q(x;θ)− x)∇θ∇T

θ Q(x;θ)
]
≈ E

[
∇θQ(x;θ)∇θQ(x;θ)T

]
.

Note that we use the outer-product approximation (Bishop, 2006) in order to simplify our con-
siderations. From this equation it is apparent that the Hessian will be diagonal for the case
U3 as ∇θQ(x;θ)∇θQ(x;θ)T only contains an element in either (1, 1) or (2, 2) and, therefore,
E
[
∇θQ(x;θ)∇θQ(x;θ)T

]
is a diagonal matrix. From this, we can see that gradient descent with an

individual learning rate for each parameter is equivalent to Newton’s method and, therefore, efficient.
In general this will not be the case for U1 and U2.

We conduct an experiment, using ADAM to optimize the mean squared quantization error on
artificially generated data, which is generated by drawing 104 samples from N(0, 1). Please note
that the same example was studied in (Jain et al., 2019). The results in Fig. 3 clearly show that
the parametrizations “U3” and “P3” are best suited to optimize the uniform and power-of-two
quantization parameters, respectively. Indeed, these quantizers converge without oscillation to the
lowest MSE. It is interesting to see, that even adaptive gradient methods like ADAM can not solve the
scaling issue described in Sec. 2.1. In the Appendix A.4 we give further empirical evidence to support
this claim and compare the different parametrizations for the training of a quantized ResNet-20 on
CIFAR-10 using ADAM. Note that all cases use the same learning rate. For the interested reader, a
more detailed visualization of the error surfaces over the quantization parameters can be found in
Appendix A.3.

2) CIFAR-10 In our second experiment we train a ResNet-20 (He et al., 2016) with quantized
parameters and activations on CIFAR-10 (Krizhevsky & Hinton, 2009) using the same settings as
proposed by (He et al., 2016). Fig. 4 shows the evolution of the training and validation error during
training for the case of uniform quantization. The plots for power-of-two quantization can be found
in the appendix (Fig. 10). We initialize this network from random parameters or from a pre-trained
float network. The quantized DNNs are trained for 160 epochs, using SGD with momentum 0.9 and
a learning rate schedule starting with 0.01 and reducing it by a factor of 10 after 80 and 120 epochs,
respectively. We use random flips and crops for data augmentation. Each epoch takes about 2.5 min
on a single GTX 1080 Ti.

In case of randomly initialized weights, we use an initial stepsize dl = 2−3 for the quantization
of weights and activations. Otherwise, we initialize the weights using a pre-trained floating point
network and the initial stepsize for a layer is chosen to be dl = 2blog2(max |Wl|/(2b−1−1))c. The
remaining quantization parameters are chosen such that we start from an initial bitwidth of b = 4
bit. This is a reasonable upper limit for b, as in practice no performance degradation can be observed
for b > 4bit. Even simple offline algorithms like min/max quantization result in networks with good
accuracies. We define no memory constraints during training, i.e., the network can learn to use a large
number of bits to quantize weights and activations of each layer. From Fig. 4, we again observe that
the parametrization θ = [d, qmax]

T is best suited to train a uniformly quantized DNN as it converges

5

Published as a conference paper at ICLR 2020

Table 1: Comparison of different DQ parametrizations for ResNet-20 on CIFAR-10.
(validation error with “random”/“float net” initialization)

Quantization Float32 Uniform quantization Power-of-two quantization
θ = [b, d]T θ = [b, qmax]

T θ = [d, qmax]
T θ = [b, qmax]

T θ = [b, qmin]
T θ = [qmin, qmax]

T

Weights 8.50%/7.29% 17.8%/8.18% 8.80%/7.44% 8.50%/7.32% 11.70%/7.90% 53.07%/23.01% 10.61%/7.56%
Weights+Activations 28.9%/9.03% 9.43%/7.74% 9.23%/7.40% 22.91%/11.68% diverging/35.68% 15.10%/9.86%

0 2 4 6 ·104
10−2

10−1

100

Iteration

Tr
ai

ni
ng

er
ro

r

(a) Random initialization

0 2 4 6 ·104
10−1

100

Iteration

V
al

id
at

io
n

er
ro

r

b, d (U1) b, qmax (U2) d, qmax (U3)

0 2 4 6 ·104
10−2

10−1

100

Iteration

Tr
ai

ni
ng

er
ro

r

(b) Pre-trained initialization

0 2 4 6 ·104
10−1

100

Iteration

V
al

id
at

io
n

er
ro

r

Figure 4: ResNet-20 with uniformly quantized weights and activations.

to the best local optimum. Furthermore, we observe the smallest oscillation of the validation error for
this parametrization.

Table 1 compares the best validation error for all parametrizations of the uniform and power-of-two
quantizations. We trained networks either with quantized weights and full precision activations or
with both being quantized. In case of activation quantization with power-of-two, we use one bit
to explicitly represent the value x = 0. This is advantageous as the ReLU nonlinearity will map
many activations to this value. We can observe that training the quantized DNN with the optimal
parametrization of DQ, i.e., using either θ = [d, qmax]

T or θ = [qmin, qmax]
T results in a network with

the lowest validation error. This result again supports our theoretical considerations from Sec. 2.1.

3 TRAINING QUANTIZED DNNS WITH MEMORY CONSTRAINTS

We now discuss how to train quantized DNNs with memory constraints. Such constraints appear in
many applications when the network inference is performed on an embedded device with limited
computational power and memory resources.

A quantized DNN consists of layers which compute

X l = fl(Q(W l;θ
w
l) ∗Q(X l−1;θ

x
l−1) +Q(cl;θ

w
l)) with l = 1, ..., L, (7)

where fl(·) denotes the nonlinear activation function of layer l and Q(·;θ) is a per-tensor quantization
with parameters θ applied separately to the input and output tensors X l−1 ∈ Il and X l ∈ Il, and
also to both the weight tensors W l ∈ Pl and the bias vector cl ∈ RMl .1 For a fully connected
layer, Il−1 = RMl−1 , Il = RMl are vectors, Pl = RMl×Ml−1 are matrices and A ∗ B is a matrix-
vector product. In case of a convolutional layer, Il−1 = RMl−1×Nl−1×Nl−1 , Il = RMl×Nl×Nl ,
Pl = RMl×Ml−1×Kl×Kl are tensors and A ∗ B is a set of Ml−1Ml 2D convolutions, where the
convolution is performed on square-sized feature maps of size Nl−1 × Nl−1 using square-sized
kernels of size Kl ×Kl.

DNNs with quantized weights and activations have a smaller memory footprint and are also com-
putationally cheaper to evaluate since Q(α;θ) · Q(β;θ) for α, β ∈ R requires only an integer
multiplication for the case of uniform quantization or an integer addition of the exponents for power-
of-two quantization. Furthermore, Q(α;θ) +Q(β;θ) for α, β ∈ R only requires an integer addition.
Table 2 compares the computational complexity and the memory footprint of layers which apply
uniform or power-of-two quantization to weights and activations.

We consider the following memory characteristics of the DNN, constraining them during training:
1. Total memory Sw(θw

1 , ...,θ
w
L) =

∑L
l=1 S

w
l (θ

w
l) to store all weights: We use the constraint

g1(θ
w
1 , ...,θ

w
L) = Sw(θw

1 , ...,θ
w
L)− Sw

0 =
∑L

l=1
Sw
l (θ

w
l)− Sw

0 ≤ 0, (8a)

1In this paper, we use “weights” to refer to W and c.

6

Published as a conference paper at ICLR 2020

Table 2: Number of multiplications Cmul
l , additions Cadd

l as well as required memory to store the
weights Sw

l and activations Sx
l of fully connected and convolutional layers.

Layer Quantization Cmul
l Cadd

l Sw
l Sx

l

Fully connected uniform MlMl−1 MlMl−1 Ml(Ml−1 + 1)bwl Mlb
x
lpow-2 0 2MlMl−1

Convolutional uniform MlMl−1N
2
l K

2
l MlMl−1N

2
l K

2
l Ml(Ml−1K

2
l + 1)bwl MlN

2
l b

x
lpow-2 0 2MlMl−1N

2
l K

2
l

to ensure that the total weight memory requirement Sw(θw
1 , ...,θ

w
L) is smaller than a certain maximum

weight memory size Sw
0 . Table 2 gives Sw

l (θ
w
l) for the case of fully connected and convolutional

layers. Each layer’s memory requirement Sw
l (θ

w
l) depends on the bitwidth bwl : reducing Sw

l (θ
w
l)

will reduce the bitwidth bwl .
2. Total activation memory Sx(θx

1 , ...,θ
x
L) =

∑L
l=1 S

x
l (θ

x
l) to store all feature maps: We use the

constraint
g2(θ

x
1 , ...,θ

x
L) = Sx(θx

1 , ...,θ
x
L)− Sx

0 =
∑L

l=1
Sx
l (θ

x
l)− Sx

0 ≤ 0, (8b)

to ensure an upper limit on the total activation memory size Sx
0 . Table 2 gives Sx

l (θ
x
l) for the case

of fully connected and convolutional layers. Such a constraint is important if we use pipelining for
accelerated inference, i.e., if we evaluate multiple layers with several consecutive inputs in parallel.
This can, e.g., be the case for FPGA implementations (Guo et al., 2017).

3. Maximum activation memory Ŝx(θx
1 , ...,θ

x
L) = maxl=1,...,L Sx

l to store the largest feature
map: We use the constraint

g3(θ
x
1 , ...,θ

x
L) = Ŝx(θx

1 , ...,θ
x
L)− Ŝx

0 = max
l=1,...,L

(Sx
l)− Ŝx

0 ≤ 0, (8c)

to ensure that the maximum activation size Ŝx does not exceed a given limit Ŝx
0 . This constraint is

relevant for DNN implementations where layers are processed sequentially.

To train the quantized DNN with memory constraints, we need to solve the optimization problem

min
Wl,cl,θw

l ,θx
l

Ep(X ,Y) [J(XL,Y)] s.t. gj(θ
w
1 , ...,θ

w
L ,θ

x
1 , ...,θ

x
L) ≤ 0 for all j = 1, ..., 3 (9)

where J(XL,Y) is the loss function for yielding the DNN output XL although the ground truth is
Y . Eq. (9) learns the weights W l, cl as well as the quantization parameters θx

l , θw
l . In order to use

simple stochastic gradient descent solvers, we use the penalty method (Bertsekas, 2014) to convert
(9) into the unconstrained optimization problem

min
Wl,cl,θw

l ,θx
l

Ep(X ,Y) [J(XL,Y)] +
∑J

j=1
λj max(0, gj(θ

w
1 , ...,θ

w
L ,θ

x
1 , ...,θ

x
L))

2, (10)

where λj ∈ R+ are individual weightings for the penalty terms. Hence, training with weight and
activation size constraints requires choosing two penalty weightings λj , one for (8a) and one for
either (8b) or (8c).

Note, that the optimization problem (10) does not necessarily give a quantized DNN which fulfills
the memory constraints. The probability to fulfill the constraint gj depends on the choice of λj . In
particular, this probability increases with larger λj . However, choosing a too large λj will yield
a penalty term that dominates over the network loss decreasing the network performance. In our
experiments, we choose λj such that the initial loss and the penalty term have approximately the same
magnitude. Using this simple heuristic, we optained quantized DNNs that reached a high accuracy
and at the same time fulfilled the constraints at the end of training.

4 EXPERIMENTS

In the following, we will use the best parametrizations for uniform and power-of-two DQ, i.e.,
θU = [d, qmax]

T and θP = [qmin, qmax]
T , that we found in Sec. 2. Both parametrizations do not

directly depend on the bitwidth b. Therefore, we compute it by using b(θU) =
⌈
log2

(
qmax
d + 1

)
+ 1

⌉
and b(θP) =

⌈
log2

(
log2

(
qmax
qmin

)
+ 1

)
+ 1

⌉
. All quantized networks use a pre-trained float32

network for initialization and all quantizers are initialized as described in Sec. 2.3. For our experiments
on CIFAR-10, we use the same training setup as described in Sec. 2.3. For the experiments on

7

Published as a conference paper at ICLR 2020

Table 3: Homogeneous vs. heterogeneous quantization of ResNet-20 on CIFAR-10.

Bitwidth qmax Size Uniform quant. Power-of-two quant.
Weight/Activ. Weight/Activ. Weight/Activ.(max)/Activ.(sum) Validation error Validation error

Baseline 32bit/32bit – 1048KB/64KB/736KB 7.29%

Fixed 2bit/32bit fixed/– 65.5KB/64KB/736KB 10.81% 8.99%
TQT (Jain et al., 2019) 2bit/32bit learned/ – 65.5KB/64KB/736KB 9.47% 8.79%
Ours (w/ constr. (8a)) learned/32bit learned/- 70KB/64KB/736KB 8.59% 8.53%

Fixed 2bit/4bit fixed/fixed 65.5KB/8KB/92KB 11.30% 11.62%
TQT (Jain et al., 2019) 2bit/4bit learned/learned 65.5KB/8KB/92KB 9.62% 11.29%
Ours (w/ constr. (8a) and (8b)) learned/learned learned/learned 70KB/ – /92KB 9.38% 11.29%
Ours (w/ constr. (8a) and (8c)) learned/learned learned/learned 70KB/8KB/ – 8.58% 11.23%

ImageNet, we train the quantized DNNs for 50 epochs, using SGD with momentum 0.9 and a
learning rate schedule starting with 0.01 and reducing it by a factor of 10 after 16 and 32 epochs,
respectively. Please note that we quantize all layers opposed to other papers which use a higher
precision for the first and/or last layer.

In our experiments, we noticed that the performance of DQ is not sensitive to the choice of λj in
(10). For the CIFAR-10 experiments, we use λ = 0.1 for both constraints (for sizes in kB). For the
ImageNet experiments, we kept the same regularization level by scaling λj with the square of the
size ratio between the ImageNet model and the CIFAR-10 model. We scale with the square-ratio as
the constraints in (10) are squared penalty terms.

First, in Table 3/top, we train a ResNet-20 on CIFAR-10 with quantized weights and float32 activa-
tions. We start with the most restrictive quantization scheme with fixed qmax and b = 2bit (“Fixed”).
Then, we allow the model to learn qmax while b = 2bit remains fixed as was done in (Jain et al., 2019)
(“TQT”). Finally, we learn both qmax and b with the constraint that the weight size is at most 70KB
(“Ours”), which is just 4.5kB larger that the previous 2Bit networks. This allows the model to allocate
more than two bits to some layers. From Table 3/top, we observe that the error is smallest when we
learn all quantization parameters.

In Table 3/bottom, weights and activations are quantized. For activation quantization, we consider
two cases as discussed in Sec. 3. The first one constrains the total activation memory Sx while
the second constrains the maximum activation memory Ŝx such that both have the same size as a
homogeneously quantized model with 4bit activations. Again, we observe that the error is smallest
when we learn all quantization parameters.

We also use DQ to train quantized ResNet-18 (He et al., 2016) and MobileNetV2 (Sandler et al.,
2018) on ImageNet (Deng et al., 2009) with 4bit uniform weights and activations or equivalent-sized
networks with learned quantization parameters. This is quite aggressive and, thus, a fixed quantization
scheme loses more than 6% accuracy while our quantization scheme loses less than 0.5% compared
to a float32 precision network.

Our results compare favorably to other recent quantization approaches. To our knowledge, the best
result for a 4bit ResNet-18 was reported by (Esser et al., 2019) (29.91% error). This is very close to
our performance (29.92% error). Importantly, (Esser et al., 2019) did not quantize the first and last
layers, meaning that their network is much bigger. Specifically, compared to our quantized ResNet-18,
their model with high precision input and output layers requires 37% more memory to store the
weights. Moreover, (Esser et al., 2019) learns stepsizes which are not restricted to powers-of-two.
As explained in Sec. 2.2, uniform quantization with power-of-two stepsize leads to more efficient
inference, effectively allowing to efficiently compute any multiplication with an integer multiplication
and bit-shift. To our knowledge only (Wang et al., 2018) reported results of MobileNetV2 quantized
to 4bit. They keep the baseline performance constraining the network to the same size as the 4bit
network. However, they do not quantize the activations in this case. In addition, DQ training is
efficient since it is comparable to the training of unquantized network. Specifically, one epoch on
ImageNet takes 37min for MobileNetV2 and 18min for ResNet-18 on four Nvidia Tesla V100.

Fig. 5 shows the weight bitwidth assignment over layers. We observe that small bitwidths are used
for layers with many parameters, i.e., pointwise convolutions and fully connected layers. However,
the resulting bitwidth assignments are complex, meaning that there is no simple heuristic. Therefore,
it is important to learn the optimal bitwidth assignment.

8

Published as a conference paper at ICLR 2020

Table 4: Homogeneous vs. heterogeneous quantization of MobileNetV2 and ResNet-18 on ImageNet.

MobileNetV2 ResNet-18
Bitwidth qmax Size Validation Size Validation

Weight/Activ. Weight/Activ. Weight/Activ(max) Error Weight/Activ(max) Error

Baseline 32bit/32bit – 13.23MB/4.59MB 29.82% 44.56MB/3.04MB 29.72%

Fixed 4bit/4bit fixed/fixed 1.65MB/0.57MB 36.27% 5.57MB/0.38MB 34.15%
TQT (Jain et al., 2019) 4bit/4bit learned/learned 1.65MB/0.57MB 32.21% 5.57MB/0.38MB 30.49%
Ours (w/ constr. (8a) and (8c)) learned/learned learned/learned 1.55MB/0.57MB 30.26% 5.40MB/0.38MB 29.92%

Ours (w/o constr.) learned/learned learned/learned 3.14MB/1.58MB 29.41% 10.50MB/1.05MB 29.34%

2 bit

4 bit

6 bit

8 bit

10 bit

Layer

B
itw

id
th

ResNet-18

2 bit

4 bit

6 bit

8 bit

10 bit

Layer

B
itw

id
th

MobileNetV2

Convolution Affine Depthwise Pointwise

Figure 5: Weight bitwidth assignment over layers for ResNet-18 and MobileNetV2 on ImageNet
with weights constrained to a maximum size of 5.57MB. Our method has learned a heterogeneous
bitwidth distribution, which gives a better performance than a homogeneous one (see Table 4).

5 CONCLUSIONS

In this paper we discussed differentiable quantization and its application to the training of compact
DNNs with memory constraints. In order to fulfill memory constraints, we introduced penalty
functions during training and used stochastic gradient descent to find the optimal weights as well
as the optimal quantization values in a joint fashion. We showed that there are several possible
parametrizations of the quantization function. In particular, learning the bitwidth directly is not
optimal; therefore, we proposed to parametrize the quantizer with the stepsize and dynamic range
instead. The bitwidth can then be inferred from them. This approach is competitive to other recent
quantization methods while it does not require to retrain the network multiple times in contrast to
reinforcement learning approaches (Wang et al., 2018; Elthakeb et al., 2018).

ACKNOWLEDGEMENTS

We would like to thank Masato Ishii for many helpful comments during the preparation of this
manuscript.

REFERENCES

Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via proximal
operators. CoRR, abs/1810.00861, 2018. URL http://arxiv.org/abs/1810.00861.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,
2014.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Fabien Cardinaux, Stefan Uhlich, Kazuki Yoshiyama, Javier Alonso García, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Iteratively training look-up tables for network quantization.
arXiv preprint arXiv:1811.05355, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

9

http://arxiv.org/abs/1810.00861

Published as a conference paper at ICLR 2020

Ahmed T. Elthakeb, Prannoy Pilligundla, Amir Yazdanbakhsh, Sean Kinzer, and Hadi Esmaeilzadeh.
Releq: A reinforcement learning approach for deep quantization of neural networks. CoRR,
abs/1811.01704, 2018. URL http://arxiv.org/abs/1811.01704.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
mendra S. Modha. Learned step size quantization. CoRR, abs/1902.08153, 2019. URL
http://arxiv.org/abs/1902.08153.

Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. A survey of fpga-based
neural network accelerator. arXiv preprint arXiv:1712.08934, 2017.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015. URL
http://arxiv.org/abs/1510.00149.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. CoRR,
abs/1609.07061, 2016. URL http://arxiv.org/abs/1609.07061.

Sambhav R. Jain, Albert Gural, Michael Wu, and Chris Dick. Trained uniform quantization for
accurate and efficient neural network inference on fixed-point hardware. CoRR, abs/1903.08066,
2019. URL http://arxiv.org/abs/1903.08066.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

Zhi-Gang Liu and Matthew Mattina. Learning low-precision neural networks without straight-through
estimator (ste). arXiv preprint arXiv:1903.01061, 2019.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling.
Relaxed quantization for discretized neural networks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HkxjYoCqKX.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. CoRR, abs/1611.00712, 2016. URL http://arxiv.
org/abs/1611.00712.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Sony. Neural Network Libraries (NNabla). https://github.com/sony/nnabla.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: hardware-aware automated
quantization. CoRR, abs/1811.08886, 2018. URL http://arxiv.org/abs/1811.08886.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

10

http://arxiv.org/abs/1811.01704
http://arxiv.org/abs/1902.08153
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1903.08066
https://openreview.net/forum?id=HkxjYoCqKX
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
https://github.com/sony/nnabla
http://arxiv.org/abs/1811.08886

Published as a conference paper at ICLR 2020

A DERIVATION OF THE GRADIENTS FOR DIFFERENTIABLE QUANTIZATION
(DQ)

In the following sections, we will give the derivatives ∂
∂xQ(x;θ) and gradients ∇θQ(x;θ) for the

uniform and the power-of-two quantizers. The results are summarized in Sec. 2.

We use the straight-through gradient estimate whenever we need to differentiate a non-differentiable
floor function, i.e., we assume

∂

∂x
bxc = 1. (11)

A.1 DERIVATIVES OF THE UNIFORM QUANTIZER

Fig. 6(a) shows a symmetric uniform quantizer QU (x;θ) which maps a real value x ∈ R to one of
I = 2k + 1 quantized values q ∈ {−kd, ..., 0, ..., kd} by computing

q = QU (x;θ) = sign(x)

{
d
⌊
|x|
d + 1

2

⌋
|x| ≤ qmax

qmax |x| > qmax

(12)

using the parameters θ = [d, qmax, b]
T where d ∈ R is the stepsize, qmax ∈ R is the maximum value

and b ∈ N is the number of bits that we use to encode the quantized values q. The elements of θ are
dependent as there is the relationship qmax = (2b−1 − 1)d.

A.1.1 CASE U1: PARAMETRIZATION WITH RESPECT TO b AND d

For the parametrization with respect to the bitwidth b and steps size d, (12) is given by

q = QU (x; b, d) = sign(x)d

{⌊
|x|
d + 1

2

⌋
|x| ≤ (2b−1 − 1)d

2b−1 − 1 |x| > (2b−1 − 1)d
(13)

and the derivatives are given by

∂QU (x; b, d)

∂b
= sign(x)

2b−1 log 2

2b−1 − 1

{
0 |x| ≤ (2b−1 − 1)d

(2b−1 − 1)d |x| > (2b−1 − 1)d
, (14a)

∂QU (x; b, d)

∂d
= sign(x)

1

d

{
d
⌊
|x|
d + 1

2

⌋
− |x| |x| ≤ (2b−1 − 1)d

(2b−1 − 1)d |x| > (2b−1 − 1)d
. (14b)

A.1.2 CASE U2: PARAMETRIZATION WITH RESPECT TO b AND qMAX

For the parametrization with respect to the bitwidth b and maximum value qmax, (12) is given by

q = QU (x; b, qmax) = sign(x)qmax

{
1

2b−1−1

⌊
|x| 2

b−1−1
qmax

+ 1
2

⌋
|x| ≤ qmax

1 |x| > qmax

(15)

and the derivatives are given by

∂QU (x; b, qmax)

∂b
= sign(x)

2b−1 log 2

2b−1 − 1

{
− qmax

2b−1−1

⌊
|x| 2

b−1−1
qmax

+ 1
2

⌋
+ β1 |x| ≤ qmax

0 |x| > qmax

, (16a)

∂QU (x; b, qmax)

∂qmax
= sign(x)

1

qmax

{
qmax

2b−1−1

⌊
|x| 2

b−1−1
qmax

+ 1
2

⌋
+ β2 |x| ≤ qmax

qmax |x| > qmax

, (16b)

where β1 = qmax

2b−1 log 2

∂
⌊
|x| 2

b−1−1
qmax

+ 1
2

⌋
∂b = |x| and β2 =

q2max
2b−1−1

∂
⌊
|x| 2

b−1−1
qmax

+ 1
2

⌋
∂qmax

= −|x|, if we use the
straight-through gradient estimate for the floor function.

11

Published as a conference paper at ICLR 2020

d qmax

d

qmax

x

QU (x)

(a) Uniform quantization

qmin qmax

qmin

qmax

x

QP (x)

(b) Power-of-two quantization

Figure 6: Examples of uniform quantizer QU (x) and power-of-two quantizer QP (x) for b = 3 bits

A.1.3 CASE U3: PARAMETRIZATION WITH RESPECT TO d AND qMAX

Eq. (12) gives the quantization with respect to the step size d and maximum value qmax. The
derivatives are

∂QU (x; d, qmax)

∂d
= sign(x)

1

d

{
d
⌊
|x|
d + 1

2

⌋
− |x| |x| ≤ qmax

0 |x| > qmax

, (17a)

∂QU (x; d, qmax)

∂qmax
= sign(x)

1

qmax

{
0 |x| ≤ qmax

qmax |x| > qmax
. (17b)

A.2 DERIVATIVES OF THE POWER-OF-TWO QUANTIZER

Power-of-two quantization QP (x;θ) maps a real-valued number x ∈ R to a quantized value q ∈
{±2k : k ∈ Z} by

q = QP (x;θ) = sign(x)


qmin |x| ≤ qmin

2b0.5+log2|x|c qmin < |x| ≤ qmax

qmax |x| > qmax

, (18)

where qmin and qmax are the minimum and maximum (absolute) values of the quantizer for a bitwidth
of b bits. Fig. 6b shows the quantization curve for this quantization scheme.

Using the STE for the floor operation, the derivative ∂xQP (x;θ) is given by

∂xQP (x) =


0 |x| ≤ qmin
2b0.5+log2|x|c

|x| qmin < |x| ≤ qmax

0 |x| > qmax

. (19)

The power-of-two quantization has the three parameters θ = [b, qmin, qmax], which are dependent on
each other, i.e., qmax = 22

b−1−1qmin. Therefore, we have again three different parametrizations with
θ = [b, qmin], θ = [b, qmax] or θ = [qmin, qmax], respectively. The resulting partial derivatives for each
parametrization are shown in Fig. 7 and summarized in the following sections. Similar to the uniform
case, one parametrization (θ = [qmin, qmax]) leads to a gradient with the nice form

∇θQP (x;θ) =

[
∂qminQU (x;θ)
∂qmaxQU (x;θ)

]
=


[1, 0]T |x| ≤ qmin

[0, 0]T qmin < |x| ≤ qmax

[0, 1]T |x| > qmax

, (20)

which has a bounded gradient magnitude and independent components and is, hence, well suited for
first order gradient based optimization.

A.2.1 CASE P1: PARAMETRIZATION WITH RESPECT TO b AND qMAX

For the parametrization with θ = [b, qmax], (18) is given by

QP (x; b, qmax) = sign(x)


2−2b−1+1qmax |x| ≤ 2−2b−1+1qmax

2b0.5+log2|x|c 2−2b−1+1qmax < |x| ≤ qmax

qmax |x| > qmax

(21)

12

Published as a conference paper at ICLR 2020

x

∂QP (x)
∂b

∂QP (x)
∂qmax

(a) Case P1

x

∂QP (x)
∂b

∂QP (x)
∂qmin

(b) Case P2

x

∂QP (x)
∂qmin

∂QP (x)
∂qmax

(c) Case P3

x

∂QP (x)
∂x

(d) Input derivative

Figure 7: Derivatives for the three different parametrizations of QP (x;θ)

and the partial derivatives are

∂QP (x; b, qmax)

∂b
= sign(x)


−2−2b−1+b(log 2)2qmax |x| ≤ −2−2b−1+1qmax

0 −2−2b−1+1qmax < |x| ≤ qmax

0 |x| > qmax

,

(22a)

∂QP (x; b, qmax)

∂qmax
= sign(x)


2−2b−1+1 |x| ≤ −2−2b−1+1qmax

0 −2−2b−1+1qmax < |x| ≤ qmax

1 |x| > qmax

. (22b)

A.2.2 CASE P2: PARAMETRIZATION WITH RESPECT TO b AND qMIN

For the parametrization with θ = [b, qmin], (18) is given by

QP (x; b, qmin) = sign(x)


qmin |x| ≤ qmin

2b0.5+log2|x|c qmin < |x| ≤ 22
b−1−1qmin

22
b−1−1qmin |x| > 22

b−1−1qmin

(23)

and the partial derivatives are

∂QP (x; b, qmin)

∂b
= sign(x)


0 |x| ≤ qmin

0 qmin < |x| ≤ 22
b−1−1qmin

22
b−1+b−2(log 2)2qmin |x| > 22

b−1−1qmin

, (24a)

∂QP (x; b, qmin)

∂qmin
= sign(x)


1 |x| ≤ qmin

0 qmin < |x| ≤ 22
b−1−1qmin

22
b−1−1 |x| > 22

b−1−1qmin

. (24b)

A.2.3 CASE P3: PARAMETRIZATION WITH RESPECT TO qMIN AND qMAX

Eq. (18) gives the parametrization of Q(x;θ) with respect to the minimum value qmin and maximum
value qmax. The derivatives are

∂QP (x; qmin, qmax)

∂qmin
= sign(x)


1 |x| ≤ qmin

0 qmin < |x| ≤ qmax

0 |x| > qmax

, (25a)

∂QP (x; qmin, qmax)

∂qmax
= sign(x)


0 |x| ≤ qmin

0 qmin < |x| ≤ qmax

1 |x| > qmax

. (25b)

13

Published as a conference paper at ICLR 2020

5
10

15 0

2

0

0.5

1

θ∗

b d

(a) Case U1

5
10

15
5

10

0

0.5

1

θ∗

bqmax

(b) Case U2

0

2 5

10

0

0.5

1

θ∗

d qmax

(c) Case U3

Figure 8: MSE surfaces for uniform quantization. Only U3 reaches the optimum θ∗.

2
4

6
8

5

10

0

0.5

1

θ∗

bqmax

(a) Case P1

2
4

6
8

0

0.5
1

0

0.5

1

θ∗

bqmin

(b) Case P2

0
0.5

1
5

10

0

0.5

1

θ∗

qmin qmax

(c) Case P3

Figure 9: MSE surfaces for power-of-two quantization. Only P3 reaches the optimum θ∗.

A.3 VISUALIZATION OF THE ERROR SURFACE FOR THE QUANTIZATION OF GAUSSIAN DATA

In Sec. 2.3 of the paper, we compared the three different parametrizations of the uniform quantizer
at the example of optimal quantization of Gaussian data. To get a better understanding of Fig 3,
we show how the error surfaces look like for this example problem. The experimental setup is the
same as in Sec. 2.3, i.e., we use DQ to learn the optimal quantization parameters of a uniform and a
power-of-two quantizer, which minimize the expected quantization error minθ E

[
(x−Q(x;θ))

2
]
.

We use three different parametrizations, adapt the quantizer’s parameters with gradient descent and
compare the convergence speed as well as the final quantization error. As an input, we generate 104

samples from N(0, 1).

Fig. 8 shows the corresponding error surfaces for the three different parametrizations of the uniform
quantization. The red curve shows the path through the parameter space taken by gradient descent
in order to optimize the MSE, starting with the initial values b = 2, d = qmax = 1. The optimum
θ∗ is located at b = 16, d/2−13, qmax = 4, since we allow a maximal bitwidth of 16bit and the
largest sample magnitude in our dataset is max{x1, ..., xN} / 4. In each of the cases U1-U3, the
error surface is composed of steep ridges and large flat regions. The steep ridges force us to use small
learning rates to avoid divergence. For cases U1 and U2, the optimal θ∗ can not be reached. However,
for U3, θ∗ lies at the border of a flat region and can be easily reached. Furthermore, case U3 shows
a much faster and more stable convergence without oscillation, since the gradient magnitudes are
bounded and the error surface has fewer steep ridges where gradient descent starts oscillating.

Fig. 9 shows the corresponding error surfaces for the three different parametrizations of the power-of-
two quantization. Again, the optimum θ∗ is not attained for two parametrizations, namely P1 and
P2, as θ∗ is surrounded by a large, mostly flat region. For these two cases, gradient descent tends
to oscillate at steep ridges and tends to be unstable. However, gradient descent converges to a point
close to θ∗ for parametrization P3, where θ = [qmin, qmax].

Finally, we also did a comparison of the different power-of-two quantizations on CIFAR-10. Fig. 10
shows the evolution of the training and validation error if we start from a random or a pre-trained
float network initialization. We can observe that θ = [qmin, qmax] has the best convergence behavior
and thus also results in the smallest validation error (cf. Table 1). The unstable behavior of P2 is
expected as the derivative ∂QP

∂qmin
can take very large (absolute) values.

A.4 FURTHER EXPERIMENTS WITH ADAM

Finally, we did an experiment to verify that the parametrization is important, even if adaptive gradient
descent methods like ADAM are used for optimization. Table 5 gives the results for a ResNet-20
trained on CIFAR-10. We observe, that again U3 and P3 are the best parametrizations.

14

Published as a conference paper at ICLR 2020

0 2 4 6 ·104
10−2

10−1

100

Iteration

Tr
ai

ni
ng

er
ro

r

(a) Random initialization

0 2 4 6 ·104
10−1

100

Iteration

V
al

id
at

io
n

er
ro

r

b, d (U1) b, qmax (U2) d, qmax (U3)

0 2 4 6 ·104
10−2

10−1

100

Iteration

Tr
ai

ni
ng

er
ro

r

(b) Pre-trained initialization

0 2 4 6 ·104
10−1

100

Iteration

V
al

id
at

io
n

er
ro

r

Figure 10: ResNet-20 with power-of-two quantized weights and activations.

Table 5: Error rate of ResNet-20 on CIFAR-10 using different quantization parametrizations. Training
is done either by SGD with momentum or ADAM.

Parametrization SGD momentum ADAM

U1 11.74 7.61
U2 7.44 7.85
U3 7.32 7.36
P1 15.35 7.54
P2 7.74 7.79
P3 7.40 7.40

B IMPLEMENTATION DETAILS FOR DIFFERENTIABLE QUANTIZATION

The following code gives our differentiable quantizer implementation in NNabla (Sony). The source
code for reproducing our results will be published after the review process has been finished.

15

Published as a conference paper at ICLR 2020

B.1 UNIFORM QUANTIZATION

B.1.1 CASE U1: PARAMETRIZATION WITH RESPECT TO b AND d

1 def parametric_fixed_point_quantize_d_b(x, sign,
2 n_init, n_min, n_max,
3 d_init, d_min, d_max,
4 fix_parameters=False):
5 """Parametric version of ‘fixed_point_quantize‘ where the
6 bitwidth ‘b‘ and stepsize ‘d‘ are learnable parameters.
7
8 Returns:
9 ~nnabla.Variable: N-D array.

10 """
11 def clip_scalar(v, min_value, max_value):
12 return F.minimum_scalar(F.maximum_scalar(v, min_value), max_value)
13
14 def broadcast_scalar(v, shape):
15 return F.broadcast(F.reshape(v, (1,) * len(shape), inplace=False), shape=shape)
16
17 def quantize_pow2(v):
18 return 2 ** F.round(F.log(v) / np.log(2.))
19
20 n = get_parameter_or_create("n", (),
21 ConstantInitializer(n_init),
22 need_grad=True,
23 as_need_grad=not fix_parameters)
24 d = get_parameter_or_create("d", (),
25 ConstantInitializer(d_init),
26 need_grad=True,
27 as_need_grad=not fix_parameters)
28
29 # ensure that bitwidth is in specified range and an integer
30 n = F.round(clip_scalar(n, n_min, n_max))
31 if sign:
32 n = n - 1
33
34 # ensure that stepsize is in specified range and a power of two
35 d = quantize_pow2(clip_scalar(d, d_min, d_max))
36
37 # ensure that dynamic range is in specified range
38 xmax = d * (2 ** n - 1)
39
40 # compute min/max value that we can represent
41 if sign:
42 xmin = -xmax
43 else:
44 xmin = nn.Variable((1,), need_grad=False)
45 xmin.d = 0.
46
47 # broadcast variables to correct size
48 d = broadcast_scalar(d, shape=x.shape)
49 xmin = broadcast_scalar(xmin, shape=x.shape)
50 xmax = broadcast_scalar(xmax, shape=x.shape)
51
52 # apply fixed-point quantization
53 return d * F.round(F.clip_by_value(x, xmin, xmax) / d)

16

Published as a conference paper at ICLR 2020

B.1.2 CASE U2: PARAMETRIZATION WITH RESPECT TO b AND qMAX

1 def parametric_fixed_point_quantize_b_xmax(x, sign,
2 n_init, n_min, n_max,
3 xmax_init, xmax_min, xmax_max,
4 fix_parameters=False):
5 """Parametric version of ‘fixed_point_quantize‘ where the
6 bitwidth ‘b‘ and dynamic range ‘xmax‘ are learnable parameters.
7
8 Returns:
9 ~nnabla.Variable: N-D array.

10 """
11 def clip_scalar(v, min_value, max_value):
12 return F.minimum_scalar(F.maximum_scalar(v, min_value), max_value)
13
14 def broadcast_scalar(v, shape):
15 return F.broadcast(F.reshape(v, (1,) * len(shape), inplace=False), shape=shape)
16
17 def quantize_pow2(v):
18 return 2 ** F.round(F.log(v) / np.log(2.))
19
20 n = get_parameter_or_create("n", (),
21 ConstantInitializer(n_init),
22 need_grad=True,
23 as_need_grad=not fix_parameters)
24 xmax = get_parameter_or_create("xmax", (),
25 ConstantInitializer(xmax_init),
26 need_grad=True,
27 as_need_grad=not fix_parameters)
28
29 # ensure that bitwidth is in specified range and an integer
30 n = F.round(clip_scalar(n, n_min, n_max))
31 if sign:
32 n = n - 1
33
34 # ensure that dynamic range is in specified range
35 xmax = clip_scalar(xmax, xmax_min, xmax_max)
36
37 # compute step size from dynamic range and make sure that it is a pow2
38 d = quantize_pow2(xmax / (2 ** n - 1))
39
40 # compute min/max value that we can represent
41 if sign:
42 xmin = -xmax
43 else:
44 xmin = nn.Variable((1,), need_grad=False)
45 xmin.d = 0.
46
47 # broadcast variables to correct size
48 d = broadcast_scalar(d, shape=x.shape)
49 xmin = broadcast_scalar(xmin, shape=x.shape)
50 xmax = broadcast_scalar(xmax, shape=x.shape)
51
52 # apply fixed-point quantization
53 return d * F.round(F.clip_by_value(x, xmin, xmax) / d)

17

Published as a conference paper at ICLR 2020

B.1.3 CASE U3: PARAMETRIZATION WITH RESPECT TO d AND qMAX

1 def parametric_fixed_point_quantize_d_xmax(x, sign,
2 d_init, d_min, d_max,
3 xmax_init, xmax_min, xmax_max,
4 fix_parameters=False):
5 """Parametric version of ‘fixed_point_quantize‘ where the
6 stepsize ‘d‘ and dynamic range ‘xmax‘ are learnable parameters.
7
8 Returns:
9 ~nnabla.Variable: N-D array.

10 """
11 def clip_scalar(v, min_value, max_value):
12 return F.minimum_scalar(F.maximum_scalar(v, min_value), max_value)
13
14 def broadcast_scalar(v, shape):
15 return F.broadcast(F.reshape(v, (1,) * len(shape), inplace=False), shape=shape)
16
17 def quantize_pow2(v):
18 return 2 ** F.round(F.log(v) / np.log(2.))
19
20 d = get_parameter_or_create("d", (),
21 ConstantInitializer(d_init),
22 need_grad=True,
23 as_need_grad=not fix_parameters)
24 xmax = get_parameter_or_create("xmax", (),
25 ConstantInitializer(xmax_init),
26 need_grad=True,
27 as_need_grad=not fix_parameters)
28
29 # ensure that stepsize is in specified range and a power of two
30 d = quantize_pow2(clip_scalar(d, d_min, d_max))
31
32 # ensure that dynamic range is in specified range
33 xmax = clip_scalar(xmax, xmax_min, xmax_max)
34
35 # compute min/max value that we can represent
36 if sign:
37 xmin = -xmax
38 else:
39 xmin = nn.Variable((1,), need_grad=False)
40 xmin.d = 0.
41
42 # broadcast variables to correct size
43 d = broadcast_scalar(d, shape=x.shape)
44 xmin = broadcast_scalar(xmin, shape=x.shape)
45 xmax = broadcast_scalar(xmax, shape=x.shape)
46
47 # apply fixed-point quantization
48 return d * F.round(F.clip_by_value(x, xmin, xmax) / d)

18

Published as a conference paper at ICLR 2020

B.2 POWER-OF-TWO QUANTIZATION

B.2.1 CASE P1: PARAMETRIZATION WITH RESPECT TO b AND qMAX

1 def parametric_pow2_quantize_b_xmax(x, sign, with_zero,
2 n_init, n_min, n_max,
3 xmax_init, xmax_min, xmax_max,
4 fix_parameters=False):
5 """Parametric version of ‘pow2_quantize‘ where the
6 bitwidth ‘n‘ and range ‘xmax‘ are learnable parameters.
7
8 Returns:
9 ~nnabla.Variable: N-D array.

10 """
11 def clip_scalar(v, min_value, max_value):
12 return F.minimum_scalar(F.maximum_scalar(v, min_value), max_value)
13
14 def broadcast_scalar(v, shape):
15 return F.broadcast(F.reshape(v, (1,) * len(shape), inplace=False), shape=shape)
16
17 def quantize_pow2(v):
18 return 2 ** F.round(F.log(F.abs(v)) / np.log(2.))
19
20 n = get_parameter_or_create("n", (),
21 ConstantInitializer(n_init),
22 need_grad=True,
23 as_need_grad=not fix_parameters)
24 xmax = get_parameter_or_create("xmax", (),
25 ConstantInitializer(xmax_init),
26 need_grad=True,
27 as_need_grad=not fix_parameters)
28
29 # ensure that bitwidth is in specified range and an integer
30 n = F.round(clip_scalar(n, n_min, n_max))
31 if sign:
32 n = n - 1
33 if with_zero:
34 n = n - 1
35
36 # ensure that dynamic range is in specified range and an integer
37 xmax = quantize_pow2(clip_scalar(xmax, xmax_min, xmax_max))
38
39 # compute min value that we can represent
40 xmin = (2 ** (-(2 ** n) + 1)) * xmax
41
42 # broadcast variables to correct size
43 xmin = broadcast_scalar(xmin, shape=x.shape)
44 xmax = broadcast_scalar(xmax, shape=x.shape)
45
46 # if unsigned, then quantize all negative values to zero
47 if not sign:
48 x = F.relu(x)
49
50 # compute absolute value/sign of input
51 ax = F.abs(x)
52 sx = F.sign(x)
53
54 if with_zero:
55 # prune smallest elements (in magnitude) to zero if they are smaller
56 # than ‘x_min / \sqrt(2)‘
57 x_threshold = xmin / np.sqrt(2)
58
59 idx1 = F.greater_equal(ax, x_threshold) * F.less(ax, xmin)
60 idx2 = F.greater_equal(ax, xmin) * F.less(ax, xmax)
61 idx3 = F.greater_equal(ax, xmax)
62 else:
63 idx1 = F.less(ax, xmin)
64 idx2 = F.greater_equal(ax, xmin) * F.less(ax, xmax)
65 idx3 = F.greater_equal(ax, xmax)
66
67 # do not backpropagate gradient through indices
68 idx1.need_grad = False
69 idx2.need_grad = False
70 idx3.need_grad = False
71
72 # do not backpropagate gradient through sign
73 sx.need_grad = False
74
75 # take care of values outside of dynamic range
76 return sx * (xmin * idx1 + quantize_pow2(ax) * idx2 + xmax * idx3)

19

Published as a conference paper at ICLR 2020

B.2.2 CASE P2: PARAMETRIZATION WITH RESPECT TO b AND qMIN

1 def parametric_pow2_quantize_b_xmin(x, sign, with_zero,
2 n_init, n_min, n_max,
3 xmin_init, xmin_min, xmin_max,
4 fix_parameters=False):
5 """Parametric version of ‘pow2_quantize‘ where the
6 bitwidth ‘n‘ and the smallest value ‘xmin‘ are learnable parameters.
7
8 Returns:
9 ~nnabla.Variable: N-D array.

10 """
11 def clip_scalar(v, min_value, max_value):
12 return F.minimum_scalar(F.maximum_scalar(v, min_value), max_value)
13
14 def broadcast_scalar(v, shape):
15 return F.broadcast(F.reshape(v, (1,) * len(shape), inplace=False), shape=shape)
16
17 def quantize_pow2(v):
18 return 2 ** F.round(F.log(F.abs(v)) / np.log(2.))
19
20 n = get_parameter_or_create("n", (),
21 ConstantInitializer(n_init),
22 need_grad=True,
23 as_need_grad=not fix_parameters)
24 xmin = get_parameter_or_create("xmin", (),
25 ConstantInitializer(xmin_init),
26 need_grad=True,
27 as_need_grad=not fix_parameters)
28
29 # ensure that bitwidth is in specified range and an integer
30 n = F.round(clip_scalar(n, n_min, n_max))
31 if sign:
32 n = n - 1
33 if with_zero:
34 n = n - 1
35
36 # ensure that minimum dynamic range is in specified range and a power-of-two
37 xmin = quantize_pow2(clip_scalar(xmin, xmin_min, xmin_max))
38
39 # compute min/max value that we can represent
40 xmax = xmin * (2 ** ((2 ** n) - 1))
41
42 # broadcast variables to correct size
43 xmin = broadcast_scalar(xmin, shape=x.shape)
44 xmax = broadcast_scalar(xmax, shape=x.shape)
45
46 # if unsigned, then quantize all negative values to zero
47 if not sign:
48 x = F.relu(x)
49
50 # compute absolute value/sign of input
51 ax = F.abs(x)
52 sx = F.sign(x)
53
54 if with_zero:
55 # prune smallest elements (in magnitude) to zero if they are smaller
56 # than ‘x_min / \sqrt(2)‘
57 x_threshold = xmin / np.sqrt(2)
58
59 idx1 = F.greater_equal(ax, x_threshold) * F.less(ax, xmin)
60 idx2 = F.greater_equal(ax, xmin) * F.less(ax, xmax)
61 idx3 = F.greater_equal(ax, xmax)
62 else:
63 idx1 = F.less(ax, xmin)
64 idx2 = F.greater_equal(ax, xmin) * F.less(ax, xmax)
65 idx3 = F.greater_equal(ax, xmax)
66
67 # do not backpropagate gradient through indices
68 idx1.need_grad = False
69 idx2.need_grad = False
70 idx3.need_grad = False
71
72 # do not backpropagate gradient through sign
73 sx.need_grad = False
74
75 # take care of values outside of dynamic range
76 return sx * (xmin * idx1 + quantize_pow2(ax) * idx2 + xmax * idx3)

20

Published as a conference paper at ICLR 2020

B.2.3 CASE P3: PARAMETRIZATION WITH RESPECT TO qMIN AND qMAX

1 def parametric_pow2_quantize_xmin_xmax(x, sign, with_zero,
2 xmin_init, xmin_min, xmin_max,
3 xmax_init, xmax_min, xmax_max,
4 fix_parameters=False):
5 """Parametric version of ‘pow2_quantize‘ where the
6 min value ‘xmin‘ and max value ‘xmax‘ are learnable parameters.
7
8 Returns:
9 ~nnabla.Variable: N-D array.

10 """
11 def clip_scalar(v, min_value, max_value):
12 return F.minimum_scalar(F.maximum_scalar(v, min_value), max_value)
13
14 def broadcast_scalar(v, shape):
15 return F.broadcast(F.reshape(v, (1,) * len(shape), inplace=False), shape=shape)
16
17 def quantize_pow2(v):
18 return 2. ** F.round(F.log(F.abs(v)) / np.log(2.))
19
20 xmin = get_parameter_or_create("xmin", (),
21 ConstantInitializer(xmin_init),
22 need_grad=True,
23 as_need_grad=not fix_parameters)
24 xmax = get_parameter_or_create("xmax", (),
25 ConstantInitializer(xmax_init),
26 need_grad=True,
27 as_need_grad=not fix_parameters)
28
29 # ensure that minimum dynamic range is in specified range and a power-of-two
30 xmin = quantize_pow2(clip_scalar(xmin, xmin_min, xmin_max))
31
32 # ensure that minimum dynamic range is in specified range and a power-of-two
33 xmax = quantize_pow2(clip_scalar(xmax, xmax_min, xmax_max))
34
35 # broadcast variables to correct size
36 xmin = broadcast_scalar(xmin, shape=x.shape)
37 xmax = broadcast_scalar(xmax, shape=x.shape)
38
39 # if unsigned, then quantize all negative values to zero
40 if not sign:
41 x = F.relu(x)
42
43 # compute absolute value/sign of input
44 ax = F.abs(x)
45 sx = F.sign(x)
46
47 if with_zero:
48 # prune smallest elements (in magnitude) to zero if they are smaller
49 # than ‘x_min / \sqrt(2)‘
50 x_threshold = xmin / np.sqrt(2)
51
52 idx1 = F.greater_equal(ax, x_threshold) * F.less(ax, xmin)
53 idx2 = F.greater_equal(ax, xmin) * F.less(ax, xmax)
54 idx3 = F.greater_equal(ax, xmax)
55 else:
56 idx1 = F.less(ax, xmin)
57 idx2 = F.greater_equal(ax, xmin) * F.less(ax, xmax)
58 idx3 = F.greater_equal(ax, xmax)
59
60 # do not backpropagate gradient through indices
61 idx1.need_grad = False
62 idx2.need_grad = False
63 idx3.need_grad = False
64
65 # do not backpropagate gradient through sign
66 sx.need_grad = False
67
68 # take care of values outside of dynamic range
69 return sx * (xmin * idx1 + quantize_pow2(ax) * idx2 + xmax * idx3)

21

	Introduction
	Choosing a quantization parametrization
	Parametrization and straight through gradient estimates
	Constraints on
	Experimental comparison of DQ parametrizations

	Training quantized DNNs with memory constraints
	Experiments
	Conclusions
	Derivation of the gradients for differentiable quantization (DQ)
	Derivatives of the uniform quantizer
	Case U1: Parametrization with respect to b and d
	Case U2: Parametrization with respect to b and qmax
	Case U3: Parametrization with respect to d and qmax

	Derivatives of the power-of-two quantizer
	Case P1: Parametrization with respect to b and qmax
	Case P2: Parametrization with respect to b and qmin
	Case P3: Parametrization with respect to qmin and qmax

	Visualization of the error surface for the quantization of Gaussian data
	Further experiments with ADAM

	Implementation details for differentiable quantization
	Uniform quantization
	Case U1: Parametrization with respect to b and d
	Case U2: Parametrization with respect to b and qmax
	Case U3: Parametrization with respect to d and qmax

	Power-of-two quantization
	Case P1: Parametrization with respect to b and qmax
	Case P2: Parametrization with respect to b and qmin
	Case P3: Parametrization with respect to qmin and qmax

